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Abstract

A new protocol using vectors of global timestamps for mutual exclusion in
systems with Distributed Shared Memory (DSM) is described and some of its
properties proved.

1. Introduction

Exclusive access to resources in concurrent programming has found various
solutions originating in aforetime works by Dekker (unpublished but presented
in [Dij 1968]), Dijkstra [Dij 1968 ], [Dij 2002], Lamport [La 1978], [La 1979],
Ricart &Agrawala [R-A 1981], Saxena&Rai [S-R 2003] and a number of others.
With coming of real multicomputer distributed systems without central memory
and clock, where cooperation or competition of computers takes place only
by message passing, the problem became essentially more complicated than in
case of time-sharing systems or multiprocessors with shared physical memory.
This concerns especially systems with no aid of central server: the computers
„negotiate” by exchanging messages through the network and only one at a time
is entitled to access a resource. A protocol based on vectors of global timestamps
is presented in this paper and some of its properties are proved. The protocol is
intended for systems with distributed shared memory (DSM), where the local
memory in every computer is uniformly accessible for all computers: DSM is
treated as a union of local memories. It is known that applications using DSM
with some models of memory consistency [Cz 2016], require mutual exclusion.
In the described solution, every computer keeps a vector of global timestamps
of current requests for critical section, which are being issued by the connected
computers. We do not discuss in details problems of timestamp advancement
and mechanism of vector clocks (cf, for instance [S-R 2003], [K-M-C-H 2016]).
It is assumed that such mechanisms provide current values of timestamps for
the protocol described here. Likewise an issue of deadlock and fairness has been
omitted, because of permitted space limitation of this paper.

A schematic structure of multicomputer system with Distributed Shared Mem-
ory is in Fig.1.1.



Fig.1.1.

2. Global timestamps revisited

A set Z is partially ordered iff its elements are related by relation �⊆ Z × Z

satisfying: for every x ∈ Z, y ∈ Z, z ∈ Z:

1. x � x (reflexivity)

2. if x � y and y � x then x = y (antisymmetry)

3. if x � y and y � z then x � z (transitivity)

Moreover, if apart from (1), (2), (3):

4. x � y or y � x (connectivity)

then Z is linearly (totally) ordered. As usually, x � y iff x � y and x �= y

Let E(S) denote a set of events that may occur during activity of a distributed
system S and let us define a partial order relation combining two kinds of
precedence of events: occurring in the same process and of message sending and
reception. For x, y ∈ E(S) two auxiliary binary relations

� � � � � � �
� � � � � � and

�	� � � 
 � �
� � � � � � �

are admitted as primary notions with the meaning:

• if x precedes y in the same process or if x = y then x
� � � � � � �
� � � � � � y

• if x is a sending message by a certain process and y is a reception of this
message by another process then x

��� � � 
 � �
� � � � � � � y

A (weak) precedence
� � � � � 
 � �
� � � � � � � ⊆ E(S) × E(S) is the least relation satisfying:

• if x
� � � � � � �
� � � � � � y or x

��� � � 
 � �
� � � � � � � y then x

� � � � � 
 � �
� � � � � � � y

• if x
� � � � � 
 � �
� � � � � � � y and y

� � � � � 
 � �
� � � � � � � z then x

� � � � � 
 � �
� � � � � � � z



Events x, y are independent (concurrent) iff neither x
� � � � � 
 � �
� � � � � � � y nor y

� � � � � 
 � �
� � � � � � � x ,

written x||y

Relation
� � � � � 
 � �
� � � � � � � is a modified precedence introduced by Lamport [La 1978] but

due to the reflexivity of
� � � � � � �
� � � � � � , the relation

� � � � � 
 � �
� � � � � � � is a partial order — contrarily

to the Lamport’s version. A common (global) clock and common memory are
absent in asynchronous distributed systems, and partially ordered events are
watched from outside of the system as occuring in real (external) time, thus,
their precedence relation should imply similar order between real time instants
of their occurrences. So, an injection mapping C : E(S) → R (R - set of
real numbers), called a logical clock should be defined, satisfying implication

x
� � � � � 
 � �
� � � � � � � y ⇒ C(x) ≤ C(y), where values C(x), C(y) are logical (not real) time

instants of events x, y. To avoid absurd relationship of events to their time
instants visible from outside of the system (when message reception precedes
its dispatch), a compensation of processors’ local clocks is necessary. So, if a
sender sends a message together with its local time of dispatch and a receiver
gets it earlier with respect to its local time, then the receiver must put forward
its clock (a time register) to a time a little later than the time received from

the sender. This procedure ensures the implication x
� � � � � 
 � �
� � � � � � � y ⇒ C(x) ≤ C(y)

if the values C(x), C(y) are assumed to be compensated time instants of events
x, y, called their timestamps. Obviously the reverse implication does not hold
for some x, y if x||y (see Fig.2.1). The logical clock C measures the compensated
time. But it may happen that C(x) = C(y) and x �= y for some concurrent
x, y, so the mapping C is not one-to-one function, thus C does not establish
unique representation of events by their timestamps. However if the processes
are linearly ordered, e.g. numbered and the notion of event’s timestamp is
supplemented with a number of the process in which the event appears, then
events can be uniquely represented by the richer timestamps, called global. So,
let nr(p � ) be a unique number of process p � in which the event x occurs (a
given event may occur in exactly one process, thus it identifies this process). A
pair 〈C(x), nr(p � )〉 is called a global timestamp of event x and let � denote a
relation between global timestamps defined as 〈C(x), nr(p � )〉 � 〈C(y), nr(p � )〉
iff C(x) < C(y) or if C(x) = C(y) then nr(p � ) ≤ nr(p � ). Obviously � is
linear, the so-called lexicographic order and the one-to-one injection mapping
Γ : E(S) → R × N (N - set of natural numbers) has been established by
Γ(x) = 〈C(x), nr(p � )〉, because Γ(x) = Γ(y) ⇒ x = y for all x, y. Therefore, Γ
establishes a unique representation of events by their global timestamps. Again,

the implication x
� � � � � 
 � �
� � � � � � � y ⇒ Γ(x) � Γ(y) holds but not the reverse one (see

Fig.2.1).

Fig.2.1 exemplifies some relationships between events and their global timestamps
during a system activity fragment. Black and grey circles are events of send
and receive message respectively. Processes are numbered as follows: nr(p1) <

nr(p2) < nr(p3).



Fig.2.1. a
� � � � � 
 � �
� � � � � � � k ⇒ 〈C(a), nr(p 
 )〉 ≺ 〈C(k), nr(p � )〉,

〈C(c), nr(p � )〉 ≺ C(h), nr(ph)〉 but c||h where p 
 = p � = p � = p 
 = p � = p1.
p � = p � = p � = p � = p2. p� = p � = p � = p � = p � = p3.

3. Distributed mutual exclusion, a protocol and its properties

The global timestamps are used in a number of implementations of mecha-
nisms in distributed systems. Consider a new protocol implementing distributed
mutual exclusion with the following assumptions:

1. computers work in paralel asynchronously and are numbered 1, 2, ..., n;

2. writing and reading to/from DSM memory is governed by the memory
manager of each computer; computers communicate by message passing
only and message propagation delay is finite but unpredictable.

3. there is one critical section (if there were more of them, the main concept
of the protocol would be retained);

4. each request to the protocol for the critical section makes deliver of a
current global timestamp of this event to the requesting computer;

5. computer of number i keeps vector −→
r � = [r � � , r � � , ..., r � � ] of variables r � �

i, k = 1, 2, ..., n allocated in its physical memory; it stores the current
timestamp of request in the component r � � , then fetches values of compo-
nents r � � (k �= i) from remaining computers and stores them in variables
r � � of its vector −→

r � . Fig.3.1 depicts location of vectors of timestamps in
the local memories;

6. initially all variables r � � contain ∞ with ∞ > x for any number x;

7. by min(−→
r � ) is denoted the least value of the components in −→

r � ;



Fig.3.1. Structure of distributed system of n computers with vectors −→
r � =

[r � � , r � � , ..., r � � ] (i = 1, 2, ..., n) of timestamps allocated in local memories

A computer of number i when using the protocol depicted as a transition graph
in Fig.3.2 for exclusive access to a protected resource, passes throughout the
following states (subscript i in the names of states is omitted in order not to
overload notation):

• W — execution of local (not critical) section

• B — import of current timestamps stored in variables r � � of remaining
computers; execution of n − 1 assignments r � � := r � � (k �= i); test of
condition r � � > min(−→

r � ). State B is stable when the computer has
completed fetch of all values of r � � (note the various transmission duration
of these values - see Theorem 3.2). In what follows, the adjective "stable"
will be ommited when the noun "state" is used.

• Y — refusal to perform critical section (waiting state)

• R — execution of critical section

• G — release of critical section. This state is stable when the computer has
completed broadcast of ∞ to all remaining computers.

Their set: Ω = {W, B, Y, R, G}



Fig.3.2. The distributed mutual exclusion protocol performed by computer
of number i in the cycle from request for critical section till release.

Let us admit the following denotations:

• Q � → Q �� - computer of number i passes from a state Q � ∈ Ω to the
next state Q �� ∈ Ω in the transition graph depicted in Fig.3.2. Note that
transitions B → R and Y → R are possible when r � � = min(−→

r � ), thus
due to steady growth of global timestamp as a strictly increasing function
of time, at most one computer may perform critical section at a time. A
formal proof is given further.

• Set of global states Ω
� = Ω × Ω × ... × Ω

︸ ︷︷ ︸

��� � ��� �
(the ith component correspods

to computer number i) satisfying: if
−→
Q = [Q � , Q � , . . . , Q � ] ∈ Ω

�
then

¬∃i, j : (i �= j ∧ Q � = R ∧ Q� = R).

• Initial state:
−−−→
Q � � � � = [W, W, . . . , W ] ∈ Ω

�
with r � � = ∞ for every

computer i = 1, 2, . . . , n.

• For
−→
Q = [Q � , Q � , . . . , Q � ] ∈ Ω

� and
−→
Q � = [Q � � , Q �� , . . . , Q �� ] ∈ Ω

� let
−→
Q ⇒

−→
Q � mean: there exists a computer of number i such that Q � → Q ��

and if ¬Q� → Q �� then Q� = Q �� .
−→
Q � is the next global state following

−→
Q . As usually, by

−→
Q

	
⇒

−→
Q � is denoted reachability of

−→
Q � from

−→
Q i.e

existence of global states
−→
Q


,
−→
Q

�

, ...,
−−−→
Q
� � �

,
−→
Q
�

with
−→
Q



=
−→
Q ,

−→
Q
�

=
−→
Q � ,

−→
Q

�
⇒

−−−→
Q

� � �

, j = 0, 1, ..., m − 1.

It follows from the transition graph in Fig.3.2 that for any computer of number
i = 1, 2, ...n:



1. Storing a timestamp in register r � � proceeds only in the state B of computer
of number i; r � � retains this value until the transition R → G takes place.

2. Storing ∞ in register r � � and sending to r � � of remaining computers pro-
ceeds only in the state G. Thus, from point 1 follows that r � � decreases
its value only in the state B.

3. Global states are exactly those reachable from the initial state
−−−→
Q � � � � = [W, W, . . . , W ].

4. Because computation of min(−→
r � ) in the state B of computer of number i

takes place on completion of fetching values of r � � from remaining com-
puters, the order of entering computers into the critical section does not
depend of the transmission latency. This is the FCFS order (First Come
First Served) due to the steady growth of the global timestamps. For-
mal proofs of mutual exclusion realized by the protocol in Fig.3.2 as well
as independence of the FCFS strategy of the order of message transmis-
sions and their latency when executing actions in the state B are given in
Theorems 3.1 and 3.2.

Table 3.1 presents an exemplary piece of run of a four computers system with
Distributed Shared Memory. This is the following succession of global states:
[B, W, B, W ] ⇒ [Y, W, R, W ] ⇒ [Y, W, R, B] ⇒ [Y, B, R, Y ] ⇒ [Y, Y, G, Y ] ⇒

[R, Y, W, Y ] ⇒ [G, Y, W, Y ] ⇒ [W, Y, W, R]
Global timestamps, i.e. pairs of numbers, are coded by single numbers — for
simplicity of notation.

Before demonstration of correctness of the protocol and its FCFS strategy
of giving entrance to critical section for computers, let us make some remarks.

• Consumption of time. In the state B, computer i, on request for critical
section, broadcasts message „send me value of your r � � ” to all n − 1
remaining computers, and waits for delivery. In the worst case the message
reaches all destinations one after one and responses arrive one after one.
This takes 2(n − 1) transmissions. In the state G, on release of critical
section, the computer i broadcasts ∞ to all r � � of all n − 1 remaining
computers. This takes n − 1 transmissions in the worst case.

• Failure. If a computer k sends incorrect timestamp stored in r � � to
requesting computers in the state B, then their behaviour depends on this
value. This may cause indefinite wait of requesting computer i in the state
Y (if r � � is small enough to make min(−→

r � ) permanently less than r � � ) or
violation of mutual exclusion (if computer k delivers to computer i value
of r � � such that r � � = min(−→

r � ), and after a while it delivers to computer j

value of r � � such that r� � = min(−→
r� ); computer j may then enter into the

critical section before computer i leaves it). Problems of failure as well as
decidability of deadlock and fairness (cf. [Cz 1980]) are left to a separate
paper.



Table 3.1 Exemplary run of a system with four computers using protocol de-
picted in Fig.3.2. Pattern of the computers’ background corresponds to their
local states as pictured in the protocol in Fig.3.2



Table 3.1 cont.



Theorem 3.1

In no global state two distinct computers can perform critical section.

Proof. Let on the contrary, in a global state
−→
Q = [Q � , ...Q � , ...Q� , ...Q � ] ∈

Ω
� computers of number i and j perform critical section. Then r � � = min(−→

r � )
and r� � = min(−→

r� ) in the local states Q � and Q� of these computers. By
definition of the global timestamps r � � �= r� � because events of request for
critical section are distinct, so, their global timestamps (i.e. values of r � � and
r� � ) are also distinct — due to the one-to-one function Γ (Section 3). But because
of actions in the stable state B of the protocol in Fig.3.2, r � � = r � � and r � � = r � �
hold. Since r � � and r � � are minimal in vectors −→

r � and −→
r� respectively, so, r � � �

r � � and r� � � r� � , therefore r � � � r� � and r� � � r � � which implies r � � = r� � (by
antisymmetry of � - see Section 2 for definition of the order � between global
timestamps) — a contradiction! �

Lemma 3.1

Suppose that in a global state
−→
Q = [Q � , ...Q � , ...Q� , ...Q � ], computers of

number i and j both are not in the local state W (i.e. min(−→
r � ) < ∞, min(−→

r � ) <

∞) or both are in W (i.e. min(−→
r � ) = ∞, min(−→

r� ) = ∞). Then min(−→
r � ) =

min(−→
r� ).

Proof. Let min(−→
r � ) < ∞, min(−→

r � ) < ∞. Then in the global state
−→
Q ,

exactly one computer, say of number k, either is performing critical section or
is ready to do this, therefore r � � = min(−→

r � ). According to the protocol in
Fig.3.2 r � � = r� � = r � � = min(−→

r � ) and r � � , r � � are the least components of

vectors −→
r � , −→

r� in the state
−→
Q . Thus min(−→

r � ) = min(−→
r � ) = min(−→

r � ). �

Theorem 3.2

Computers enter into the critical section in the order of their requesting for
it. This order is independent of the data transmission latency.

Proof. Let
−→
Q = [Q � , ...Q � , ...Q� , ...Q � ] be a global state with local states

Q � , Q� each of them either B or Y , thus r � � < ∞, r � � < ∞. It is to be
proved that if computer i enters into state Q � before entering of j into state
Q� , i.e. if r � � < r� � , then state R would be reached by computer i before

computer j. By Lemma 3.1, min(−→
r � ) = min(−→

r � ) in
−→
Q and according to

the protocol in Fig.3.2, variables r � � , r� � are not changing their values until

computers i, j reach state G. Thus, if eventually a global state
−→
Q � = [Q � � , ..., Q �� =

R, ...Q �� , ...Q �� ] nearest to
−→
Q is reached from

−→
Q then min(−→

r � ) = r � � in
−→
Q � . But

if a global state
−→
Q

�

= [Q
�

� , ..., Q
�

� , ...Q
�

� = R, ...Q
�

� ] had been reached from
−→
Q

before
−→
Q � then min(−→

r� ) = r� � in
−→
Q

�

would hold. Thus, min(−→
r � ) ≤ r � � < r� � =

min(−→
r� ) because values of r � � and of r� � in the state

−→
Q

�

are the same as in
−→
Q

and min(−→
r � ) = min(−→

r� ) - a contradiction!
Now, note that the value of min(−→

r � ) is established only when values of r � �
are completely transmitted from all computers k �= i to computer i and stored in
r � � (see the protocol in Fig.3.2). This value does not depend on duration of these



transmissions nor on their order. Therefore the order of entering computers into
critical section is independent of transmission latency but only on the order of
their requesting for it. �

Independence of min(−→
r � ) of order as well as latency of transmissions when

the run of four computers system shown in Table 3.1, has reached state 1:
[B, W, B, W ], is illustrated in Fig.3.3(a) and (b). i↑(r � � ) � means: "computer
k sends value of r � � up to computer i" ; k↓(r � � ) � means: "computer i receives
a value sent by computer k and stores it in r � � ".

Fig.3.3(a). Diagram of global state [B, W, B, W ]

Fig.3.3(b). The same global state and min(−→
r � ) as in (a) but different order and

latency of transmissions

Summary

The protocol presented in Fig.3.2 may seem similar to that in [R-A 1981]
in that it is fully distributed (without a coordinating server) and because of
usage of global timestamps and two-way communication between computer re-
questing for critical section and remaining computers. However the algorithm
proposed here is differently organized: a requesting computer, updates its own
vector of timestamps and makes a decision on the basis of its content whether
to enter into critical section or wait. Using ∞ as a largest number, not assumed
by any timestamp unifies activities when making the decision. Most important
properties of the algorithm are formally proved. The algorithm seems suitable
for system with Distributed Shared Memory, since problems with data incon-
sistency do not arise (Theorem 3.2).
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