
A Tool for Creating and Visualizing Semantic
Annotations on Relational Tables

Suvodeep Mazumdar1 and Ziqi Zhang2

1Department of Computer Science, University of Sheffield
211 Portobello, Sheffield, UK

2School of Science and Technology, Nottingham Trent University
50 Shakespeare Street, Nottingham, NG1 4FQ

1s.mazumdar@sheffield.ac.uk, 2ziqi.zhang@ntu.ac.uk

Abstract. Semantically annotating content from relational tables on
the Web is a crucial task towards realizing the vision of the Semantic
Web. However, there is a lack of open source, user-friendly tools to facil-
itate this. This paper describes an extension of the TableMiner+ system,
an open source Semantic Table Interpretation system that automatically
annotates Web tables using Linked Data in an effective and efficient ap-
proach. It adds a graphical user interface to TableMiner+, to facilitate
the visualization and correction of automatically generated annotations.
This makes TableMiner+ an ideal tool for the semi-automatic creation of
high-quality semantic annotations on relational tables, which facilitates
the publication of Linked Data on the Web.

Keywords: Web table, Named Entity Disambiguation, Semantic Table
Interpretation, table annotation, Linked Data

1 Introduction

Recovering semantics from the growing amount of tabular data on the Web is
a crucial task in realizing the vision of the Semantic Web. Traditional search
engines perform poorly on such data, as they ignore the semantics of tabular
structures [2, 3]. Recent years have seen an increase in the research on Semantic
Table Interpretation [2, 5, 3, 6], which annotates relational tables using schema
and entities defined in a reference knowledge base. The process deals with three
types of annotation tasks in tables. Starting with the input of a well-formed
relational table, it (1) links entity mentions in content cells to named entities; (2)
annotates columns with concepts if they contain entity mentions, or properties
of concepts if they contain data literals; and (3) identifies the semantic relations
between columns. The annotations created can enable semantic indexing and
search of the data, and can be used to create Linked Open Data (LOD).

Semantic Table Interpretation systems are intrinsically difficult to implement,
due to, e.g., the complexity of the inter-dependent tasks (e.g., the annotation
of a cell depends on on that of the containing column and vice versa), and the
use of different knowledge bases. TableMiner+ [7] is such a method adopting

2 Mazumdar and Zhang

an incremental, bootstrapping approach that starts by creating preliminary and
partial annotations of a table using ‘sample’ data, then using the outcome as
‘seed’ to guide interpretation of remaining contents. This is then followed by
a message passing process that iteratively refines results on the entire table
to create the final optimal annotations. It has been implemented as open-source
software (as part of the STI library1), however, the system is lacking an intuitive
user interface, which has made it difficult to be used by an average person with
limited technical knowledge.

This work implements a graphical user interface specifically for TableMiner+,
to make it an easy-to-use tool for annotating Web tables using Linked Data, and
also extend it by enabling users to visualise and correct the generated annotations
and Linked Data triples. As a result, data publishers can use TableMiner+ for
transforming tabular data on the Web into high-quality Linked Data, or creating
gold-standard for experiment purposes. The remainder of this paper is structured
as follows. Section 2 briefly discusses related work; Section 3 gives an overview
of TableMiner+; Section 4 introduces the improvement carried out in this work;
Section 5 concludes this paper.

2 Related Work

Recent years have seen an increasing number of work on Semantic Table Inter-
pretation. Venetis et al. [4] annotate columns in a table with semantic concepts
and identify relations between the subject column (typically containing entities
that the table is about) and other columns using a database mined with regular
lexico-syntactic patterns such as the Hearst patterns [1]. The database records
co-occurrence statistics for each pair of values extracted by such patterns. A
maximum likelihood inference model is used to predict the best concepts and
relations from candidates using these statistics. Limaye et al. [2] uses a joint
inference model, i.e., factor graph to model a table and the interdependencies
between its components. Table components are modeled as variables represented
as nodes on the graph; then the interdependencies among variables are mod-
eled by factors. The task of inference amounts to searching for an assignment
of values to the variables that maximizes the joint probability. Mulwad et al.
[3] also uses joint inference with semantic message passing. TableMiner [6] and
TableMiner+[7] adopt a bootstrapping approach starting by creating prelimi-
nary annotations of a table using automatically selected ‘sample’ data in the
table, followed by a message passing process that iteratively refines the prelim-
inary annotations to create the final optimal results. These methods differ in
terms of the inference models, features and background knowledge bases used.
As discussed before, existing tools remains difficult to use due to the lack of a
user friendly interface.

1 https://github.com/ziqizhang/sti

Creating and Visualizing Semantic Annotations on Relational Tables 3

3 Overview of TableMiner+

Figure 1 shows a high-level view of the components and workflow of TableMiner+.
We refer readers to Zhang [7] for details of the methodology. The system can
be divided into three major components. Firstly, it detects a ‘subject column’
(SUBJECT COLUMN DETECTION), which is the one in the table con-
taining named entities that are subjects of each rows. TableMiner+ assumes
other columns in a relational table are data describing the subjects. It then
identifies other columns that also contain named entities (NE-columns), and
performs column classification (assigning a URI from a knowledge base to the
column) and cell disambiguation (assigning a URI from a knowledge base to each
cell) on these as well as the subject columns. Working with each NE-column at
a time, these are further divided into two processes. In the LEARNING phase,
the system attempts to use a subset (Sample Ranking) of rows from the NE-
column to infer a concept URI for the column (Preliminary Col. Classify. with
I-Inf). The idea is that, usually for human-beings, we only need to see some (and
rarely do we need to see all) data in a column in order to classify them. How-
ever, it is likely that our understanding could be biased because of this ‘partial’
view. And therefore, we call these results ‘preliminary’, which will be optimized
later. The LEARNING phase also uses preliminary column annotations as in-
put to guide Preliminary Cell Disambiguation. In this part of the process, the
assigned concept URI for the column determines the candidate named entities
for each row in that column. Next, the preliminary annotations for a column
and its content cells are optimized in the UPDATE phase. In this phase, the
system attempts to ensure annotations on different NE-columns are consistent,
e.g., they belong to the same domain (Compute Domain Representation). The
computation can alter the preliminary annotations in some columns or content
cells, which then causes a chain of alterations due to the interdependency of
the tasks. A semantic message passing algorithm is implemented to control such
update process until convergence. With the column and cell annotations final-
ized, TableMiner+ moves on to infer relations between the subject column and
other columns (RELATION ENUMERATION + LITERAL COLUMN
ANNOTATION). In simple terms, the relation between a subject column and
another column is selected based on the relations derived on each row between
the pairs of subject entity and data in the other column.

4 Description of the TableMiner+ Application Interface

In this section, we describe the TableMiner+ user interface and the use of the
tool through this interface. We use the implementation distributed as part of the
STI library as basis for this work. The STI library provides an implementation
of the system introduced in Zhang [7], and a few baseline systems. The library
is implemented in Java, and uses DBpedia as the knowledge base. Currently, a
Web-based interface consisting of two components are implemented: one that lets
users to define, configure and start a table annotation task; and the other that

4 Mazumdar and Zhang

Fig. 1. Overall component and workflow of TableMiner+

lets users to visualise and correct annotation results. In both cases, interaction
is achieved via a Web browser2.

4.1 Starting a table annotation process

The interface for starting a Semantic Table Annotation task is illustrated in
Figure 23. Users firstly enter the URL of a webpage containing relational tables
that are to be annotated. Upon entering the details, the user is shown a preview
of the page along with a highlighted list of tables potentially containing relational
data. The users then select the tables they wish to annotate. They can also
configure the system to alter settings such as feature weights and knowledge
base query constraints. The users may provide an email address to subscribe
for an automatic alert when the annotation task completes. When the users are
satisfied with the configuration and the input, they can click the button to start
the task, which will create annotations in JSON format. These will be interpreted
and displayed using the visualisation component described below.

4.2 Visualisation and correction of annotations

The JSON files are then passed onto the visualisation component, which consists
of two interactive elements: an annotated table and a graph visualisation module.

2 However, it is not recommended to deploy TableMiner+ as a Web-service as it does
not support concurrent access typically found in multi-user environment.

3 Follow https://github.com/ziqizhang/sti/tree/master/ui for a demo and on how to
use

Creating and Visualizing Semantic Annotations on Relational Tables 5

Fig. 2. User input interface, where the user enters source URL containing the respec-
tive relational tables. The preview button provides an idea of the table that will be
annotated, and proceeding with start initiates the extraction process. An email ad-
dress can be provided if the user prefers not to wait and be notified once the extraction
process has completed.

The annotated table is the first point of interaction with the user, and presents
the original table, annotated with the entities, concepts and relations identified
by TableMiner+. The first step for the UI is to investigate the header cells of
the table - TableMiner+ creates a set of candidate concepts that best describe
the header and the data in the column. Each associated concept has a score
indicating the system’s confidence. This set of candidate concepts is presented
as a dropdown with the scores (Figure 3 section B). Users can select any of the
concepts to indicate a more appropriate annotation by clicking on the respective
concept. Concepts are further encoded on the basis of scores (the highest scoring
concepts are indicated in green, while the lowest in red), which provides an
indication of the confidence in content cell annotations can be visualised in the
same way.

As can also be seen from the figure, some entities have already been rec-
ognized, while some haven’t. In such cases the user can provide a URI that is
appropriate for any missing annotation, this can be done by clicking the relevant
cell, which will provide a prompt for a text input (Figure 4). Further SPARQL
queries can also be triggered to the respective endpoints (based on the user
customisations) that can identify any missing annotations.

While tables can provide a clean annotated replication of the original source
document, with the added ability for users to provide their annotations and

6 Mazumdar and Zhang

Fig. 3. TableMiner UI Annotated Table for the page available at https://en.

wikipedia.org/wiki/Commedia_all\%27italiana

Fig. 4. Editing cell contents to add annotations - for missing/wrong annotations (as
seen in the figure left), clicking on the relevant cell will enable editing (right). All
changes made on the tables are stored until finally pushed to the backend database

correct any mistakes they can observe, a further need may arise for greater
customisation and control of annotations. This provides users with means to
visualise (and annotate) possible relations among table columns, in addition to
visualising possible candidate annotations. The next aspect of the UI is the graph
visualisation, which is invoked from the ‘inspect’ button on the first cell of each
table row (Figure 3, Section C). As an example, the header and it’s relevant
candidate concepts have been plotted as a graph in Figure 5.

Header cells are shown as nodes labelled with the header columns (0-3),
while the candidate classes are shown as nodes, linked with header elements. The
most relevant class is shown with a strong link, while the others are presented
as dashed lines. Clicking on an individual node makes all other nodes more
transparent, and hence keeps the current node and link in focus. Right-clicking
the dashed ones annotate the relevant header cell with the respective concept,
which will then confirm the change with a strong link (here, a straight thick
line). Header cells are also linked with each other with dashed lines, which is

Creating and Visualizing Semantic Annotations on Relational Tables 7

Fig. 5. Visualising table rows as a node-link graph

interpreted as only an indicative relation. However, if TableMiner+ creates any
relations between the columns, it is reflected as straight lines as can be seen in
Figure 5.

Fig. 6. Clicking on nodes focusses the view on the clicked node and immediate con-
nections to other nodes. Right clicking a node creates a stronger connection (right, a
new link is established with ‘Italian Film Directors’) which is interpreted as another
annotation for the column in the original table

Described Scenario In the example shown so far, the source URL (https:
//en.wikipedia.org/wiki/Commedia_all\%27italiana) describes movies re-

8 Mazumdar and Zhang

leased that belong to an Italian film genre. The extraction process in TableMiner+

annotated several cells of the table selected by the user in Figure 2 (Notable
films), however several films could not be identified. This is made evident when
the user visualises the annotated table (Figure 3). Missing cells can then be man-
ually annotated by adding URLs if the user can provide any unidentified ones
(Figure 4). For example, the user observes the cell ‘Boccaccio 7́0’ could not be
identified and hence chose to manually add the resource URL. Further inspect-
ing the different concepts, users can click on the ‘inspect’ button to visualise
the concepts on a node-link graph (Figure 5). While interacting with the graph,
the user notes that since the original webpage discussed Italian movie genre,
the ‘Italian Film Directors’ concept would be appropriate to describe the first
column in the table. Hence the user can right-click on the concept to add a new
annotation for the column. Each row in the table can be visualised as a graph,
and hence the user can introduce row-specific annotations as well. Finally, when
all annotations are completed, the user can click on ‘Save changes’ to submit all
annotations to TableMiner+.

5 Conclusion

This paper introduced a graphical user interface for TableMiner+ to facilitate the
semi-automatic creation of high quality Linked Data and annotations on Web
tables. Future work will extend the system to support, e.g., different knowledge
bases, other algorithms, fine-grained task definition that enable batch processing
and zoning on tables (e.g., specific columns). Furthermore, we will also explore
different visualisations and mechanisms for users to introduce new annotations,
visualising relevant sections of ontologies while exploring table annotations. We
also have a series of user evaluations planned to understand how users can make
use of the user interface.

Acknowledgement This work is funded by the EU FP7 WeSenseIt (grant
agreement 308429)4 and EU Horizon 2020 Seta (grant agreement 688082)5 projects.
We also thank the ADEQUATe6 project team under the lead of Dr Tomas Knap
for contributing valuable design ideas.

References

1. Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th Conference on Computational Linguistics - Volume 2, COL-
ING ’92, pages 539–545, Stroudsburg, PA, USA, 1992. Association for Computa-
tional Linguistics.

4 http://wesenseit.eu/
5 http://setamobility.eu/
6 http://www.adequate.at

Creating and Visualizing Semantic Annotations on Relational Tables 9

2. Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and search-
ing web tables using entities, types and relationships. Proceedings of the VLDB
Endowment, 3(1-2):1338–1347, 2010.

3. Varish Mulwad, Tim Finin, and Anupam Joshi. Semantic message passing for gen-
erating linked data from tables. In International Semantic Web Conference (1),
Lecture Notes in Computer Science, pages 363–378. Springer, 2013.

4. Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web.
Proceedings of VLDB Endowment, 4(9):528–538, June 2011.

5. Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q. Zhu. Understanding
tables on the web. In Proceedings of the 31st international conference on Conceptual
Modeling, ER’12, pages 141–155, Berlin, Heidelberg, 2012. Springer-Verlag.

6. Ziqi Zhang. Towards effective and efficient semantic table interpretation. In Pro-
ceedings of the 13th International Semantic Web Conference, pages 487–502, 2014.

7. Ziqi Zhang. Effective and efficient semantic table interpretation using tableminer+.
Semantic Web Journal, Accepted. Tracking: 1339-2551, 2016.

