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Abstract. The efficiency of SPARQL query evaluation against Linked
Open Data may benefit from schema-based indexing. However, many data
items come with incomplete schema information or lack schema descrip-
tions entirely. In this position paper, we outline an approach to an in-
dexing of linked data graphs based on schemata induced through Formal
Concept Analysis. We show how to map queries onto RDF graphs based
on such derived schema information. We sketch next steps for realizing
and optimizing the suggested approach.
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1 Introduction

The ease of consuming Linked Open Data (LOD) depends on the availability of
schema information. This holds for tasks such as browsing, where a user may not
know the structure of the data found in a dataset, or querying, where schema
information could be used for query optimization. In the LOD setting a query
can be evaluated against the original LOD datasets through query federation or
by evaluating it centrally against a LOD crawl. In both scenarios, the efficiency
of query evaluation may be improved by identifying those datasets schematically
matching the query – maybe partially – while leaving out others.

In the LOD cloud schema information is sparse, as many data items come
with incomplete schema information or lack schema descriptions entirely. Meth-
ods for schema induction and ontology learning have been studied to remedy
this problem ([4], cf. section 2). A method, that has successfully been used in
this context, is Formal Concept Analysis (FCA) (cf. [2], [3], [12]).

To our knowledge, FCA has not been used for constructing indices, that
allow a schema-oriented query-to-graph mapping. Particularly, we are not aware
of previous work on mapping queries to formal contexts. We expect that FCA
will benefit this kind of indexing through the formally sound construction of
schemata that are free of external heuristics and concise at the same time. In
this paper, we outline an approach for such a schema index and point to future
work on an implementation.
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2 Related Work

For our approach to schema indexing, we propose a property-based schema in-
duction using FCA. Property-based type clustering is discussed in literature
as a remedy for the schema sparsity in LOD datasets. The feasibility of such
approaches has been analyzed in [5]. The authors show that the properties of re-
sources within LOD datasets can be used for deducing resource types. [10] argue
for a property-based data access for programming with Linked Data in order to
deal with a lack of type descriptions. [6] further corroborate this position, as they
argue for property-based concept definitions. In order to ensure quality of such
definitions, they propose a system for incorporating interactive user feedback.

Schema induction, the learning of schema information from data, is a way to
handle schema sparsity. [11] describes a statistical approach to schema induction
through association rule mining on transaction tables. A recent approach is
presented in [7]. It combines the mining of property-based entity descriptions
and type clustering over these using DBSCAN. An overview over the field of
schema/ontology learning is given in [4].

FCA has been applied to problems related to ontology learning. In [3] it has
been used for learning taxonomies from natural language text. The authors of
[2] and [12] use attribute exploration from FCA for semi-automatic approaches
to ontology completion. Lately, [1] used FCA-based association rule mining for
completing type definitions given in DBPedia data through further implied in-
formation.

We combine the induction of schema with building and providing an index
for query-to-graph mapping. An index for subgraph querying is presented in
[14]. There the authors make use of a precomputed lattice of subgraphs in order
to narrow down the candidates for subgraph queries. An approach similar to
ours is demonstrated in [8]. The authors present a schema-based index that is
consisting of three layers, each supporting different types of queries. The index
is constructed through clustering of RDF type information in a stream-based
fashion. The approaches presented in [7], [8] and [12] either introduce heuristics
or human oversight or require case specific parameter tuning. We sketch a FCA-
based schema index that is free of such external factors and general enough to
map the diverse data found in the LOD cloud.

3 Preliminaries

In the following we give a short introduction to Formal Concept Analysis (FCA),
a method for conceptual knowledge discovery and representation, as well as the
basics of RDF and SPARQL.

We lend the following definitions 1, 2, 3 from [13]:

Definition 1 (Formal Context). A formal context K := (G,M, I) is a triple
comprised of a set of objects G, a set of attributes M and an indicidence relation
I ⊆ G×M encoding that ”g has attribute m” iff gIm.
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Definition 2 (Formal Concept). For A ⊆ G and B ⊆ M [13] define A′ :=
{m ∈M |∀g ∈ A : gIm}, B′ := {g ∈ G|∀m ∈ B : gIm}.

A formal concept is a pair (A,B) with A′ = B and B′ = A. A is the extent,
B is the intent of the concept. As in [13], we abbreviate the set of all formal
concepts for a formal context as L(G,M, I).

Formal concepts fall naturally into a hierarchy, called a concept lattice, by
a subconcept-superconcept-relation defined via the subset relations over G and
M , respectively.

Definition 3 (≤). For two concepts (A1, B1), (A2, B2) [13] define (A1, B1) ≤
(A2, B2) ⇔ A1 ⊆ A2 (equivalently, ⇔ B1 ⊇ B2). The pair (L(G,M, I),≤) is
called concept lattice.

RDF Datasources of the LOD cloud contain RDF1 data. For now, we abstract
from the possibility of blank nodes in RDF data.

Definition 4 (RDF Graph). Given the set of RDF resource identifiers U and
the set of literals L and having the set of RDF terms T := U ∪L: An RDF graph
is a set of RDF triples D ⊆ {<s, p, o> |s ∈ U, p ∈ U, o ∈ T}. We further define
the set of all known RDF graphs D := {D|D is a known graph}.

SPARQL A language for formulating graph oriented queries against RDF
datasets is SPARQL2. For this paper, we will focus on Basic Graph Patterns
that are used for formalizing graph pattern matching and, thus, are fundamen-
tal to SPARQL(cf. [9]). Here, we further assume that queries are only evaluated
against the default graph of a datasource.

Definition 5 (Basic Graph Pattern). Given a set V of variable names, a
Triple Pattern tp is a triple (s, p, o) ∈ (U∪V )×(U∪V )×(T ∪V ). A Basic Graph
Pattern (BGP) of a query q is a set containing a number of Triple Patterns. We
abbreviate the set of all queries only containing a single BGP as BGP .

With this restriction to single-BGP queries, we define the solution to a query
q through matching its BGP against the RDF graph D as q(D) (cf. [9]). We
further define a solution to q against a set of graphs D as q(D) := q(

⋃
D∈DD).

An example for a BGP and a possible solution is given in fig. 1 b), c).

4 Schema Index

In a query federation system a central query processor accepts and processes
queries by dispatching (parts of) the queries to datasets (i.e., computing nodes
serving them). In the case of LOD these datasets are graphs. The schema in-
dex maps queries onto minimal sets of graphs required for evaluating the given

1 Resource Description Framework; http://www.w3.org/TR/rdf-concepts/
2 http://www.w3.org/TR/sparql11-overview/
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(a)

(b)

album title

ex:abbey:road ”Abbey Road”
ex:quadrophenia ”Quadrophenia”

... ...

(c)

Fig. 1: Examples of (a) RDF graphs, (b) a BGP and (c) a solution to the BGP

queries. The optimal schema index minimizes the subset of all known RDF
graphs to be used for returning the complete solution of a query q:

Di(q) = argminDj⊆D∧q(Dj)=q(D)|Dj |. (1)

The improvement of efficiency of query evaluation then depends on the num-
ber of graphs left out ofDi(q). Judging a graph to be relevant for query evaluation
may be based on a schematic match of a query and the graph.

In our approach the matching will be informed by an underlying lattice of
property type clusters induced from the graph data via FCA. With our ap-
proach, the schema index constructs and maintains a schema lattice covering
every graph encountered. We build this lattice by applying FCA on a formal
context extracted from an RDF graph.

Definition 6 (Resource-Feature Map). We define a feature domain F as
the set of all known predicates p encountered in D. A resource-feature map f :
D × U → 2F assigns an RDF resource r the set of describing features found in
a graph: f(D, r) = {p ∈ F |∃o ∈ T :< r, p, o >∈ D}.

Example 1. f(gex, ex:quadrophenia) = {ex:title, ex:tracks}

There are other possible manifestations of such a resource-feature map. For ex-
ample, one could (also) map the types assigned to resources through rdf:type.

Definition 7 (Schema Lattice). We define a graph-covering formal context
K := (U,F, If ) with the set of resources U , the feature domain F and If :=
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{(r, p)|∃D ∈ D,∃r ∈ U : p ∈ f(D, r)}. The schema lattice LS = (L(U,F, If ),≤)
is the lattice constructed from K via FCA.

While extracting features given in the graphs, the schema index will also
store the set of graphs contributing individual features to the subsequent lattice
construction.

Definition 8 (Feature-contributing Graph). For an RDF resource r and a
feature p ∈ F , we define a set of feature-contributing graphs as γ(r, p) = {D|p ∈
f(D, r)}. For the features of an intent B, we define the set of contributing graphs
as γ′(B) = {D|∃p ∈ B, ∃r ∈ U : D ∈ γ(r, p)}.

We conceive the schema index as a pair (LS , Γ ) of the schema lattice LS and
a function Γ mapping queries to indexed graphs. In order to look up graphs that
a query should be evaluated against, the schema index then derives the queries
type information through the Query-Type Map function:

Definition 9 (Query-Type Map). The Query-Type Map Θ is a function Θ :
BGP → 2F that maps a query q to a set of intents Θ(q).

For a query q the schema index returns the set of schematically appropriate
graphs as follows:

Γ (q) = {D|D ∈ γ′(B) for some B ∈ Θ(q)}.

For our running example (cf. fig. 1), the graph gex would be returned for
the BGP, as here {ex:title, ex:tracks} constitutes an intent reflected in the
query.

5 Outlook and Conclusion

In this position paper, we sketch the idea of a schema index for a query-to-graph
mapping. For constructing the index we aim at an automatic schema induction
process through FCA. We hypothesize that FCA is a good method for this use.
One, it is independent of external factors, such as expert involvement as in [12]
or a task specific parameter tuning as done in [7]. Two, by design it is a method
targeting property-based entity descriptions as argued for in [6], [5].

Our proposition is that the schema index returns the graphs necessary for a
complete query evaluation:

q(Γ (q)) = q(D) (for every query q) (2)

However, Γ (q) may return graphs that might be disregarded for evaluating BGP.
Hence, the proposed schema index is not necessarily optimal. For a future im-
plementation we plan to approximate the optimal case (cf. (1)). This must only
be done to a degree that is sensible, since potential savings in execution time
are being countered by costs for building and looking up the index.
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Towards a realization of the proposed schema index, we expect to face ques-
tions such as for the size of formal contexts as given through the feature domains
of a graph. Next steps for our research will also involve empirical analysis of
runtime behaviour and scalability of FCA in the LOD use scenario. We have in-
dications that in spite of exponential worst-case complexity, the property-based
clustering of data items may lead to empirically acceptable runtime behaviour.
A further question in this context is how to efficiently update existing lattices,
when, e.g., encountering further features of an object while still ingesting a graph
in a stream-based fashion. For such a scenario, we will also look into what lat-
tice construction algorithm to choose. Finally, we plan to address the problems
of reducing the size of formal contexts and lattices through appropriate data
preparation and cleansing lattices of ”noisy” concepts.
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