
Advanced UML Style Visualization of OWL Ontologies

Jūlija Ovčiņņikova*, Kārlis Čerāns

julija.ovcinnikova@lumii.lv, karlis.cerans@lumii.lv

Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga, LV-1459, Latvia

Abstract. The OWLGrEd ontology editor allows graphical visualization and au-

thoring of OWL 2.0 ontologies using a compact yet intuitive presentation that

combines UML class diagram notation with textual OWL Manchester syntax for

expressions. We describe here the approaches available for ontology presentation

fine tuning within the OWLGrEd editor, namely the ontology visualization op-

tion framework and the editor plug-in mechanism together with concrete plug-

ins aimed to enhance the ontology presenting and editing experience.

Keywords: OWL, OWLGrEd, UML-style ontology visualization, ontology vis-

ualization options

1 Introduction

Presenting OWL ontologies [1] in a comprehensible form is important for ontology

designers and their users alike. The graphical form in general and UML class diagram

notation in particular offers an option of basic visual ontology construct presentation

that allows linking together constructs that are related in the ontology (e.g. an object

property can be depicted as a line connecting its domain and range class boxes). UML

class diagrams need to be extended to cope with full OWL 2.0 construct modeling. This

is solved in different graphical notations in different ways. So, ODM [2], defines a

UML profile for ontology presentation and OWLGrEd [3] and TopBraid Composer [4]

integrate OWL Manchester Syntax [5] for presenting advanced OWL constructs in tex-

tual form. The uniqueness of OWLGrEd lies in its combined ability to lay out an ontol-

ogy that is imported or created in the editor in a compact graphical UML-style form,

and make further manual ontology editing/adjustment. VOWL [6] visualizes ontologies

by another approach using graphical primitives both for object and data property

presentation, so obtaining a more uniform ontology presentation in a dynamic, yet read-

only, graph-like form. The VOWL presentation of the same ontology will also typically

require more graphical elements, than OWLGrEd.

The real strength of ontology presentation in an editor like OWLGrEd comes from

the user’s ability to fine-tune the ontology diagram after its automated rendering to

obtain documentation-ready ontology presentations. Such a fine tuning may involve the

* Supported, in part, by Latvian State Research program NexIT project No.1 “Technologies of

ontologies, semantic web and security”.

136

diagram object repositioning, as well as its re-structuring up to full ontology editing

facilities available in the tool (including e.g. manual deletion of irrelevant information).

In order to achieve a high quality ontology presentation in the tool, even in the pres-

ence of manual fine tuning options available, the quality of first ontology diagram cre-

ated upon the import of the ontology into the tool still remains very important. Since

the UML diagrams, as well as the OWLGrEd notation allow for different presentations

of the same semantic elements (e.g. a graphical and textual one), and different ontolo-

gies may correspond to different desirable ontology presentation options, we describe

here a re-factored ontology visualization option framework offering a number of

choices that the user can make already before importing the ontology into the tool.

We describe here also a number of OWLGrEd plugins that can be used for diagram

refactoring services, as well as its structural and semantics extensions. This part of work

extends the earlier authors’ work on domain specific ontology visualizations [7,8] (this

paper describes new re-factoring services plug-in, as well as reviews the plug-in mech-

anism and concrete plugin architecture from the ontology visual presentation perspec-

tive). The editor plugins described here are included in the OWLGrEd tool download

and can be activated on-demand for concrete projects. The OWLGrEd editor with pre-

installed configuration, as described here, is available at http://owlgred.lumii.lv/pp.

2 OWLGrEd Notation and Editor

OWLGrEd (http://owlgred.lumii.lv/) provides a graphical notation for OWL 2 [1],

based on UML class diagrams. OWL classes are typically visualized as UML classes,

data properties as class attributes, object properties as association roles, individuals as

objects, cardinality restrictions on association domain class as UML cardinalities, etc.

The UML class diagrams are enriched with new extension notations, e.g. (cf. [3,9]):

 fields in classes for equivalent class, superclass and disjoint class expressions writ-

ten in Manchester OWL syntax [5];

 fields in association roles and attributes for equivalent, disjoint and super properties

and fields for property characteristics, e.g., functional, transitive, etc.;

 anonymous classes containing equivalent class expression but no name;

 connectors (as lines) for visualizing binary disjoint, equivalent, etc. axioms;

 boxes with connectors for n-ary disjoint, equivalent, etc. axioms;

 connectors (lines) for visualizing object property restrictions some, only, exactly, as

well as cardinality restrictions.

Fig. 1 contains a simple demonstration fragment of Latvian Medicine Registries ontol-

ogy [10] in OWLGrEd notation, illustrating the class, data and object property, as well

as subclass, sub-property and object property restriction notation, different ways of dis-

joint classes notations, class-level inline comments and ontology level annotations.

The OWLGrEd tool allows both for ontology authoring (with option to save the on-

tology in a standard textual format) and ontology visualization that includes automated

ontology diagram formation and layouting step, followed by optional manual diagram

fine tuning to obtain the highest quality rendering of the ontology.

Advanced UML Style Visualization of OWL Ontologies

137

Fig. 1. Demo fragment of Latvian Medicine Registries Ontology

3 Ontology Visualization Parameters

The UML notation provides several options for presenting its semantic elements in dif-

ferent visual ways. This principle is kept also in OWLGrEd by including both graphical

and textual notations for such semantic elements as subclass relations, object property

relations, annotations and object properties as association roles or as attributes.

The automatic ontology visualization in OWLGrEd by default shall use the graphical

notation, if there is no clear reason for switching to textual one. Fig. 2 shows a larger

fragment of Medicine Registries Ontology in a graphical notation for all object proper-

ties and object property restrictions, and with separate disjoint classes axiom rendering.

Trauma

Cancer

Person
personID:string

dateOfBirth:dateTime

CancerTreatment

TraumaTreatment

DiabetesTreatment

<<EnumClass>>

MedicalEstablishement
estNam e:string

estType:string

<<disjoint>>

<<disjoint>>

<<EnumClass>>

Doctor
doctorName:string

doctorCode:string

IllnessTreatment

<<EnumClass>>

Diagnosis
diagnCode:string

diagnDescr:string

Diabetes

IllnessCase

traumaDiagnosis

{<illness Diagnosis}

patient

traumaPatient

{<patient}

cancerPatient

{<patient}

diabPatient {<patient}

illnessRegDoctor

traumaRegDoctor {<illness RegDoctor}

cancerRegDoctor {<illness RegDoctor}

diabRegDoctor {<illness RegDoctor}

treatedIl lnessCase only

treatedIl lnessCase

only

workplace

treatmentPlace

treatedDiagnosis

diabTrDiagnosis

{<treatedDiagnosis}

cancerTrDiagnosis

{<treatedDiagnosis}

treatingDoctor

treatedIl lnessCase

cancerDiagnosis

{<illness Diagnosis}

treatedIl lnessCase

only

diabDiagnosis {<illness Diagnosis}

illnessDiagnosis

traumaTrDiagnosis {<treatedDiagnosis}

Fig. 2. Medicine Registries Ontology: a larger fragment in a graphical notation

For different ontologies and their parts, the appropriate element visualization meth-

ods may differ depending on the ontology content, e.g. if the ontology contains a small

IllnessCase

Trauma
"Trauma illness case"

Cancer
"Cancer illness case" Diabetes

"Diabetes illness

case"

Person
personID:string

dateOfBirth:dateTime

IllnessTreatment

{dis joint}

CancerTreatment

TraumaTreatment

DiabetesTreatment <<disjoint>>

<<comment>>

"Illness case

and patient

ontology

fragment"

patient

traumaPatient

{<patient}

cancerPatient

{<patient}

diabPatient {<patient}

treatedIllnessCase

treatedIllnessCase

only

treatedIllnessCase

only treatedIllnessCase

only

Advanced UML Style Visualization of OWL Ontologies

138

number of object property restrictions, a better way to display object property re-

strictions would be graphical. However, it would not carry much information to display

graphically object property restrictions that are based on owl:Thing as the target class.

A textual form object property restriction visualization may be favorable also in the

presence of a large number of these restrictions in the ontology.

The ontology visualization parameter framework offers parameters for inclusion /

not inclusion of different object types in ontology visualization (e.g. one can choose to

visualize ontology without data property annotations or without disjoint class axioms).

Most of the framework parameters, however, refer to different ways (e.g. a graphical,

or a textual form) of different type entity and axiom information visualization.

Figure 3 illustrates parameter setting interface including the option to represent sub-

class relations as text or graphically. In graphical mode there is a possibility to draw

subclass relations as lines or combine them through forks, if there are more than one

subclass for a given class.

Fig. 3. Ontology Visualization Parameter form illustration

There are also parameters for disjoint class axiom rendering in Fig. 3. Along with

disjoint classes representation as text or graphically (in a separate graphical node), there

is a possibility to group disjointness relations, into boxes if there are more than two

disjoint classes, and it is possible to hide information if it is not presented graphically.

An important option in UML is a possibility to mark the generalization sets as dis-

joint. This notation is brought also over to OWLGrEd since it can greatly simplify the

graphical diagram appearance, if the disjointness axiom matches a level within the class

hierarchy. If the ‘Use Disjoint mark at forks’ box is checked in the import parameter
form, the ontology importer is able to identify the cases when all class subclasses are

disjoint and add specific {disjoint} mark to the generalization element (cf. the general-

ization set notation for the subclasses of the IllnessTreatment class in Fig. 1).

Figure 3 also shows possible extra choices that can be made for the subclass rela-

tions, such as “Mark top-level named classes as subclasses of ‘Thing’”, “Draw subclass

relations to named class A from expression ‘A and ...’”, “Draw subclass relations from

named classes to their union”, “Hide subclass information, if not presented graphically”

and an option to choose whether to create anonymous subclasses as boxes, or not. The

Advanced UML Style Visualization of OWL Ontologies

139

extra parameters are left unchecked by default to obtain less loaded graphical presenta-

tion, however they can be turned on to show more clear class hierarchy, if desired.

<<EnumClass>>

Diagnosis
diagnCode:string

diagnDescr:string

IllnessTreatment
treatingDoctor:Doctor

treatmentPlace:Medica lEstablishement

treatedDiagnosis:Diagnosis

treatedIl lnessCase:IllnessCase

CancerTreatment
<treatedIllnessCase on ly Cancer

cancerTrDiagnosis:Diagnosis{<treatedDiagnosis}

DiabetesTreatment
<treatedIllnessCase only Diabetes

diabTrDiagnosis:Diagnosis{<treatedDiagnosis}

Trauma
traumaRegDoctor:Doctor{<illnessRegDoctor}

traumaDiagnosis:Diagnosis{<illnessDiagnosis}

traumaPatient:Person{<patient}

{disjoint}

Cancer
cancerRegDoctor:Doctor{<illnessRegDoctor}

cancerDiagnosis:Diagnosis{<illnessDiagnosis}

cancerPatient:Person{<patient}

Diabetes
diabRegDoctor:Doctor{<illnessRegDoctor}

diabDiagnosis:Diagnos is{<illnessDiagnosis}

diabPatient:Person{<patient}

IllnessCase
illnessRegDoctor:Doctor

illnessDiagnosis:Diagnosis

patient:Person

{disjoint}

Person
personID:string

dateOfBirth:dateTime

TraumaTreatment
<treatedIllnessCase only Trauma

traumaTrDiagnosis:Diagnosis{<treatedDiagnosis}

<<EnumClass>>

MedicalEstablishement
estNam e:string

estType:string

<<EnumClass>>

Doctor
doctorName:string

doctorCode:string

workplace:

MedicalEstablishement

Fig. 4. Demo fragment of Latvian Medicine Registries Ontology: textual notation

Figure 4 illustrates the same Medicine Registries Ontology of Fig.2 with subclass

relations presented graphically and disjoint marks at forks, while presenting textually

the object properties and object property restrictions. The obtained ontology visualiza-

tion has less elements that can be a benefit, however, the textual representation of object

properties and object property restrictions somewhat hides the ontology structure.

4 Ontology Editor Plugins

To enhance the ontology visualization fine tuning experience after the ontology initial

loading into the tool, as well as to support different custom ontology visualization

means and the ontology editing work in general, the OWLGrEd ontology editor can be

extended by means of plugins. The ontology editor plugins offer editor notation and

environment extension means, in a similar manner, as profiles do for UML class dia-

grams [11,12]. A plugin to the ontology editor, may include structural editor symbol

extensions with fields and visual effects, as well as editor behavior extensions.

The OLWGrEd plugin for ontology re-structuring includes transformations for ad-

justing the ontology visual presentation after its automatic visual rendering. It allows

switching between the textual and graphical presentation form for concrete object prop-

erty and object property restriction presentations within the ontology diagram, as well

as re-factoring individual disjoint classes axiom presentation (e.g. from a separate dis-

joint-box to the ‘disjoint’ mark at the sub-class form symbol). The plugin can be used

to transform e.g. the ontology diagram of Fig. 2 or Fig. 4 into the one of Fig. 5, where

certain object properties (in the concrete example – the ones not having super-proper-

ties) are displayed in a graphical form to balance the structure presentation and com-

pactness requirements. For an experienced OWLGrEd user it should take about 5

minutes to change manually the ontology diagram of e.g. Fig. 2 into the one of Fig. 5.

The ontology presentation in Fig. 5, as well as the presentation in Fig. 2 and Fig. 4

uses also a custom “enumerated class” boolean user field presentation.

Advanced UML Style Visualization of OWL Ontologies

140

<<EnumClass>>

Diagnosis
diagnCode:string

diagnDescr:string

<<EnumClass>>

Doctor
doctorName:string

doctorCode:string

IllnessTreatment
treatingDoctor:Doctor

treatmentPlace:Medica lEstablishement

treatedDiagnosis:Diagnosis

{disjoint}

CancerTreatment
<treatedIllnessCase only Cancer

cancerTrDiagnosis:Diagnosis{<treatedDiagnosis}

DiabetesTreatment
<treatedIllnessCase only Diabetes

diabTrDiagnosis:Diagnosis{<treatedDiagnosis}

<<EnumClass>>

MedicalEstablishement
estNam e:string

estType:string

Person
personID:string

dateOfBirth:dateTime

Trauma
traumaRegDoctor:Doctor{<illnessRegDoctor}

traumaDiagnosis:Diagnosis{<illnessDiagnosis}

traumaPatient:Person{<patient}

IllnessCase
illnessRegDoctor:Doctor

illnessDiagnosis:Diagnosis

TraumaTreatment
<treatedIllnessCase only Trauma

traumaTrDiagnosis:Diagnosis{<treatedDiagnosis}

{disjoint}

Cancer
cancerRegDoctor:Doctor{<illnessRegDoctor}

cancerDiagnosis:Diagnosis{<illnessDiagnosis}

cancerPatient:Person{<patient}

Diabetes
diabRegDoctor:Doctor{<illnessRegDoctor}

diabDiagnosis:Diagnos is{<illnessDiagnosis}

diabPatient:Person{<patient}

patient treatedIl lnessCase

workplace

Fig. 5. Demo fragment of Latvian Medicine Registries Ontology: custom notation with plugins

In general, the editor extensions with symbol fields and graphical effects enhance

the ontology presentation options by introducing domain-specific notations into the on-

tology presentation (the extensions can be configured to take into account the domain

specific notations also during the ontology import); they are handled by a generic User

Fields plugin [8] that is currently part of the default OWLGrEd editor configuration.

The available editor enhancements, supported by the User Fields plugin [8] include:

 custom fields, together with their semantics mappings (e.g. “enumerated class”);
 custom visual effects for text and choice fields and symbols dependent on con-

crete text or choice field values (e.g. a brown/darker enumerated class color);

 views applying certain visual effects to the entire diagram (e.g. hiding certain in-

formation from the presentation). The default OWLGrEd configuration includes

views for horizontal and vertical alignment, and hiding all annotations.

An example of ontology editor plugin that involves both the user fields and custom

functionality definition is the data ontology support plugin [13]; it contains the above

considered “enumerated class” field definition. It also adds extra maximum cardinality

1 axioms to all data and object properties that are rendered in the editor in the textual

form and do not have explicit cardinality specification. The plugin also records the class

attribute ordering into an annotation so that this ordering could be further used in auto-

mated user interface generation for ontology-conformant data browsing (cf. [13]).

The other currently maintained OWLGrEd editor plugins are: (i) Controlled Natural

Language (CNL) interface support plugin (used to augment the ontology with lexical

information in [14]) and (ii) database to ontology mapping support plugin DBExpr [13].

5 Conclusions

The UML style visualization and authoring of OWL ontologies has been proven to be

a successful alternative to other ontology visualization and authoring means. The

OWLGrEd editor is able to offer a compact ontology notation by using OWL Manches-

ter syntax [5] for textual presentation of advanced ontology constructs.

Advanced UML Style Visualization of OWL Ontologies

141

We have described three mechanisms that can be applied to enhance the ontology

visual presentation and editing experience: (i) ontology visualization parameters; (ii)

ontology profiles that may enhance the user experience in creating comprehensible and

visually appealing ontology presentations; (iii) ontology visualization transformation

means. Each of them can be further developed and enhanced to reflect new ontology

rendering patterns, as well as to respond to the needs of concreate use cases.

A future work direction is also to move the OWLGrEd editor to the web environ-

ment, this depends on suitable tool definition framework availability providing the nec-

essary editor definition infrastructure; this is work in progress in itself, as well.

References

1. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language Structural

Specification and Functional-Style Syntax (2009)

2. ODM UML profile for OWL, http://www.omg.org/spec/ODM/1.0/PDF/

3. Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.: OWLGrEd: a UML Style

Graphical Notation and Editor for OWL 2. In: Proc. of OWLED 2010 (2010)

4. TopBraid Composer. http://www.topquadrant.com/tools/modeling-top-

braid-composer-standard-edition/.

5. OWL 2 Manchester Syntax, http://www.w3.org/TR/owl2-manchester-

syntax/

6. Lohmann, S., Negru, S., Haag F., Ertl, T.: Visualizing Ontologies with VOWL. Semantic

Web 7(4), 399-419 (2016)

7. Cerans, K., Liepins, R., Sprogis, A., Ovcinnikova, J., Barzdins, G.: Domain-Specific OWL

Ontology Visualization with OWLGrEd. In: ESWC 2012 Satellite Events, Springer LNCS,

pp. 419-424, (2012)

8. Cerans, K., Ovcinnikova, J., Liepins, R., Sprogis, A.: Advanced OWL 2.0 Ontology Visu-

alization in OWLGrEd. In: Caplinskas, A., Dzemyda, G., Lupeikiene, A., Vasilecas, O.

(eds.), Databases and Information Systems VII, IOS Press, Frontiers in Artificial Intelli-

gence and Applications, Vol 249, pp.41-54 (2013)

9. Barzdins, J., Cerans, K., Liepins, R., Sprogis, A.: UML Style Graphical Notation and Editor

for OWL 2. In: Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, pp. 102-113 (2010)

10. Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Semantic Latvia Approach in the

Medical Domain. Proc. DB&IS2008. Haav, H.M., Kalja, A. (eds.), TUT Press, pp. 89-102,

(2008).

11. Unified Modeling Language: Infrastructure, version 2.1. OMG Specification ptc/06-04-03,

http://www.omg.org/docs/ptc/06-04-03.pdf

12. Unified Modeling Language: Superstructure, version 2.1. OMG Specification ptc/06-04-02,

http://www.omg.org/docs/ptc/06-04-02.pdf

13. Cerans, K., Barzdins, G., Bumans, G., Ovcinnikova, J., Rikacovs, S., Romane, A. and Zvie-

dris, M.: A Relational Database Semantic Re-Engineering Technology and Tools // Baltic

Journal of Modern Computing (BJMC), Vol. 3 (2014), No. 3, pp. 183-198.

14. Liepins, R., Bojars, U., Gruzitis N., Cerans, K., Celms, E.: Towards Self-explanatory On-

tology Visualization with Contextual Verbalization. In Arnicans, G., Arnicane, V., Borzovs,

J., Niedrite, L. (eds.), Databases and Information Systems, Springer, Communications in

Computer and Information Science, Vol 615, pp.3-17 (2016)

Advanced UML Style Visualization of OWL Ontologies

142

