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Abstract. In order to pose queries on SPARQL endpoints, users need
to understand the underlying structure of the data that is stored. Un-
fortunately, and despite the importance of endpoints in the Semantic
Web infrastructure, in most (if not all) publicly available endpoints the
only way of understanding this structure is by performing a considerable
number of probe queries, perhaps inspired in a few examples that are
also made available.
This paper looks into the problem of providing additional information
for SPARQL-fluent users that need to query a RDF dataset they are not
familiar with. We set up to understand what is the essential informa-
tion that a user needs to query a SPARQL dataset, and then propose a
visualisation that can effectively help users learn this information. This
visualisation consists of a labelled graph whose nodes are the different
types of entities in the RDF dataset, and where two types are related if
entities of these types appear related in the RDF dataset. We illustrate
our visualisation using the Linked Movie Database dataset.

1 Introduction

SPARQL Endpoints are one of the key elements in the current Semantic Web
infrastructure. The idea of these endpoints is to allow users to extract informa-
tion from a remote RDF dataset; the dataset is made available to be queried
over the HTTP protocol, and the information must be obtained using SPARQL
queries, according to the latest SPARQL specification [7].

From an algorithmic point of view, the problem of querying endpoints (or
at least a single endpoint) has been very well studied, and nowadays there is a
considerable number of working endpoints that permit querying databases from
numerous different domains. See [15] for a list of working endpoints. Today, one
can reasonably state that querying an endpoint is an easy task, assuming of
course that the user is familiar in SPARQL and that she is familiar with the
structure of the dataset in the endpoint.

Unfortunately, this is a pretty strong assumption: even if the endpoint is
up and running, and even if the user is an expert in SPARQL, the task of
producing a query that extracts the desired information may end up demanding
more resources than those needed to actually compute the query. The problem is
the unstructured nature of RDF: as there is no real notion of schema, knowing
what and how the RDF data is stored is not an easy task. In contrast with
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relational databases, where users can directly consult the schema information for
the names and attributes of tables, with RDF data one has almost no alternative
but to understand the data by issuing several probe queries. This behaviour has
been confirmed when analysing query logs of different endpoints [3, 14].

As an example of the challenges we face, consider and endpoint for Linked

Movie Database (LinkedMDB [8]), a database storing information about movies:
who starred them, who directed them, when and where were they shot, etc.
Imagine now a SPARQL expert trying to obtain the information demanded by
the query Q below:

Q: Return the names of all directors that have also acted in one of their
movies.

The landing page of our LinkedMDB endpoint of choice would probably not pro-
vide any information on the structure of the data residing in the endpoint. Fur-
thermore, the only guidelines for constructing the appropriate SPARQL query
would be a small number of general examples that may not even mention the
entities we are looking for. In particular, for our query Q above we would need
the following information.

– First, how are directors stored in the database? In RDF one typically identi-
fies resources with types, so one would expect that a pattern of the form
{?x a linkedmdb:director} would match precisely all directors in our
database. However, to be able to produce such a query we need to obtain
the precise IRI used in the dataset to indicate the director type, in this case
http://data.linkedmdb.org/resource/movie/director.

– Next, how is the connection between actors, directors and movies
stored? Assuming we already know how to identify actors, directors
and movie resources with SPARQL, we still need information about
the way these are linked together. In the case of LinkedMDB, direc-
tors are connected to entities of type film via the same predicate
http://data.linkedmdb.org/resource/movie/director, and similarily for ac-
tors and films.

– How to understand when a director and an actor are the same person? There
could be several possibilities. For example, there could be a linking triple {A
owl:sameAs D} between an actor resource A and a director resource D. But in
LinkedMDB this is not stored directly, so we need to query for actors A and
directors D that have the same name. Thus, we also need to understand the
way in which the names of actors and directors are stored in the database.
Furthermore, there is no way of knowing that an owl:sameAs link will not
work without an explicit SPARLQ query that looks for the existence of
triples of this form.

We argue that users new to RDF datasets would benefit tremendously from
a graphical interface that would explicitly give them the information they need
to start producing meaningful SPARQL patterns. We want a quick and easy
lightweight solution, that can be added onto endpoints without much computa-
tional overload. This issue has been recognised before, in e.g., [5, 10, 9, 11, 1, 4,
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17], and several visualisation proposals have been made to aid users in perform-
ing SPARQL queries.

But how can one identify which of these visualisations has the necessary
ingredients to be a good aide for querying endpoints? We try to answer this
question by proposing 3 basic requirements that must be fulfilled by any system
or visualisation if they aim to be a reasonable help for users posing SPARQL
queries. Then, as a proof of concept, we present one visualisation that does fulfil
all of our requirements, and explain the different choices made when creating
this interface. Thorough the paper we assume familiarity with RDF, SPARQL,
and the basics of SPARQL endpoint architecture.

2 Looking for the Precise Meta-Information

In RDF databases the term schema is used in two completely different contexts.
First there is the notion of RDF schema [2], a number of classes and properties
with predefined meaning that serve for structuring RDF data. For example, the
keywords rdf:type and rdf:subClassOf are part of the RDF schema specifica-
tion, and are used as properties within documents to specify, respectively, that
a resource is of a certain type or that a type is a subclass of another type.

But in relational databases, a relational schema not only defines the structure
of the data, but also gives us guidelines on how to query the data: the names
of the relations, which attributes are associated to each relation, the domains of
each of those attributes, etc. RDF schema, being stored in RDF itself, does not
automatically provide this information, and thus this second notion of schema
is not immediately present when dealing with RDF, and has to be obtained by
other means.

Thus the natural question: what kind of meta-information is actually needed
to write SPARQL queries? Think of the information that a SPARQL expert
would need in order to produce a query that fulfils the task at hand, when
confronted with a new RDF dataset she doesn’t know. This information can be
represented in several ways, so we do not discuss how this information should
look like, but rather specify what should be expected from it. To this extent, we
propose three requirements that any aide for querying SPARQL must have.

R1: The user should be able to identify all different types of resources in
the database, and search for the types she is interested on.

This is the most basic requirement one could think of: if we need to query a
certain type of entity (such as actors, directors, or films), we need to know how
each of these entities is stored in the database, and how to recognise them by
means of patterns. Usually one specifies the types of an entity e with triples of
the form {e rdf:type <type>}, but we we refer to type in an abstract way; if
RDF schema types are not present then there are other options to classify the
resources in a database, such as discovering them as in [13].

The main challenge behind this requirement is that the amount of different
types in a database may be so big that simply showing a list of types is useless

A Visual Aide for Understanding Endpoint Data

104



(for example DBpedia, as reported in http://wiki.dbpedia.org, has more than a
hundred thousand different types). Thus, a way of navigating this information
has to be present or included in the interface, so that the user can look for the
types she needs without being confronted to a list with thousands of entries.

R2: When given a pair of types, the user should be able to identify how
and when are two entities of these types connected to each other.

Even if we can identify entities of a given type, we still need to know how
they link with each other. Thus, any meta-information that deems to be useful
towards query formulation needs to be able to produce, for each pair of types A
and B, all relations that span between an entity of type A and an entity of type
B (and vice-versa). For some types we always know that all entities of the given
types are connected to each other (like actors and films in LinkedMDB). But
sometimes there might only be a few connections between entities of two given
types. Thus, we also need a way of specifying how likely is that two entities are
connected to each other.

R3: For each type, the user should be able to identify which attributes
are common to entities of this type, and how common is this attribute
amongst all entities of the given type.

To put common terms between RDF and the relational models, we define the
attributes of an entity e as all the properties p present in triples of the form {e
p l}, where l is a literal. Attributes give us specific information of entities: if
we want to know the name of an actor a, then it is probably stored in a triple of
the form {a actor name <name>}, and likewise for any other name or numerical
attribute associated to e. Again, while some attributes may be common for all
entities of a given type (such as the titles of films in LinkedMDB), in other case
these attributes may appear only in a subset of the entities (such as the duration
of films, as less than a fifth of the films in LinkedMDB has this information).

We also note that there is a scalability issue which is orthogonal to all of
these requirements: small datasets are of course easier to understand, but bigger
datasets (in terms of different types and relationships) are harder, and thus the
visualisation must work regardless of the size of the dataset. For this reason,
it is almost impossible to develop a static visualisation that satisfies these re-
quirements. On the contrary, we believe that the best option is an interactive
page when users can be clearly guided so that they see the details only in the
information that they are looking for. We describe our approach at building such
a system in the following section.

3 Our Approach

Our approach is to compute, in advance, a graph that contains all the infor-
mation mandated by requirements R1, R2 and R3, so that users can see this
information when attempting to query the endpoint. As we have mentioned, our
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visualisation is not static, but instead allow the users to select the level of gran-
ularity they wish to see in this graph. We start in section 3.1 with a high-level
description of our system, and then proceed, in section 3.2, to specify the more
specific choices that were taken when designing our visualisation. As a running
example we use LinkedMDB’s dataset, but of course the ideas are independent
of any particular dataset used3. Our visualisation of LinkedMDB is available at
http://jreutter.sitios.ing.uc.cl/VisualRDF.html.

3.1 Overview of the System

Our main visualisation is a labelled, undirected graph, where the nodes are the
types of the dataset, and where there is a p-labeled edge between nodes t1 and
t2 if and only if there are entities u1 and u2 such that u1 is of type t1, u2 is of
type t2 and the dataset contains the triple {u1 p u2}. That is, two types are
related to each other is there are entities of these types that are connected by a
triple in the dataset.

However, showing just this graph is probably not enough for users. In a sim-
ilar research related to the exploration of social networks, Viegas et al. [16],
found that solely relying on the traditional graph representation was a disad-
vantage compared to a user interface that complemented the graph metaphor
with additional visual aids. For this reason we include two panels with additional
information: a panel on the left side that allows the users to obtain additional
information of the semantic graph as a whole and a panel on the right-side with
information about the specific node or edge selected on the main pane. Figure
1 presents a screenshot of our visualisation applied to the LinkedMDB dataset.
The main pane contains the aforementioned graph, the left-side panel display
the top 10 types ranked according to the number of total entities of this type,
and the right-side panel shows specific information about the node selected by
the user (in this case performance).

In what follows we give a brief description of our visualisation, while dis-
cussing the satisfaction of requirements R1, R2 and R3 given in the previous
section. Further details ara available in the following subsection.

Hierarchical navigation of types. In most RDF graphs the type assignment
is hierarchical. Entities can be of different types, but there is usually a hierarchy
between them: there can be two types, A and B that are subclass of a higher
type C. In turn, C itself can be a subclass of a type D, and so on. We take
advantage of the forest-like shape of the RDF type hierarchy4 and include in our
visualisation the ability to slice the type graph in different levels of this hierarchy.
Coming back to our example, Figure 2(a) describes the same visualization of
LinkedMDB as in Figure 1, but where some nodes are hidden and the emphasis is
on the Person node. In LinkedMDB there are several types which are a subclass

3 We do note that computing the necessary files for our visualisation may take several
minutes, or even hours, so it is not possible to offer on-demand visualisations.

4 Note this is not necessarily the case with more powerful ontologies in the OWL
profile, this is in fact an interesting direction for future work.
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Fig. 1. The top-level visualisation of LinkedMDB’s dataset

of Person, and users interested in one of them can drill down on this node,
subdividing Person into each of its subclasses, as shown in Figure 2(b).

Together with the left panel, we believe this interactive visualisation fully
satisfies requirement R1: all types are present in the graph, but we prevent an
overload of information by showing only the top-level types first, allowing the
user to produce more fined-grained views on demand.

Navigation and summarisation of relations. It is not strange to find differ-
ent relations amongst entities of the same type in an RDF dataset. For example,
there are several relations between persons and films in LinkedMDB. As we
did with nodes, we aggregate all relationships into a single set, and only show
the more fine-grained relationships whenever they are requested by the user,
by hoovering over the relation. This again prevents information overload, and
allows users to visualise only those relations that are interesting, thus satisfy-
ing requirement R2. Figure 3 shows an example of a relation that is in fact an
aggregation of several different properties, shown in the right-side panel.

Summarisation of attributes. Recall that an attribute of a an entity u is a
property that relates u with a certain string or value. For example, in Linked
MBD, entities of type performance have attributes such as performance actor,
performance character, etc., according to Figure 1. As we have specified in re-
quirement R3, attributes are vital to users when asking questions meant to
retrieve literal values, such as What is the name of...? or In which year did...?.
However, due to the unstructured nature of RDF data, it is presumable that
there will be several attributes that could potentially be associated to each type,
and possibly not all entities of the same type have the same attributes. More-
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(a) Graph with Person node

(b) Result of dividing the Person node

Fig. 2. Visualisation of LinkedMDB when the Person node is subdivided into actor,
director, editor, cinematographer and film crewmember.
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Fig. 3. Highlighting the relations between films and persons in LinkedMDB

over, it is impossible to show each of the types attributes in the same graph at
the same time. For this reason we construct our visualisation so that, when users
hover over or select a particular node in the graph, the right-side panel displays
all the information about the attributes of entities of this type. Additionally, we
also show the percentage of entities of the chosen type that posses this attribute.

3.2 Visualization

Finally, we shed light on the specific choices and details of our visualisation.

Architecture: The input to the visualisation is a JSON file that needs to be
pre-computed from the dataset wanted to be visualised. This JSON contains
the information of all types present in the dataset, as well as the relationships
between them. The visualisation is separated into a back end, in charge of re-
trieving the appropriate data from the JSON file, and a front end built with
D3 that displays only the nodes and relations pertinent to the current state of
the interaction. This separation allows the server to handle the bigger document
with all the pre-processed types, and whereas the computational power of pro-
ducing the visualisation is shifted to the front end, with the double advantage
of reducing the amount of computational resources demanded from the server,
and hasting the response time of simple operations in the visualisation.

Panes: The visualisation is divided in three panels. The central and main panel
is our connection graph. The left-side panel is available on demand, and it shows
a box with the 10 most important entities in the current graph. The left-side
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panel is connected to the graph, so that a selection of one of the entities in the
box it is reflected as if it was selected on the graph. For example, in Figure 1,
the user is selecting the node performance in the left side box, which appears
highlighted in the graph. The right-side panel is where the details of the nodes
are shown. There are two different visualisations. When a node is selected, the
box shows the URI and name of the corresponding type, and all properties that
connect at least one entity of this type with a literal (names are assigned auto-
matically from URIs). In turn, for each property we show how many entities of
the selected type have this connection, the minimum number of such connections
in an entity of this type, and the maximum number of such connections. For ex-
ample, looking at the first line after Properties in the right-side box in Figure 1,
we see that the 100% of entities of type performance have a connection of the
form {e performance actor <string>}. Finally, if the type has any subclasses,
then the right-side panel also shows all of these subtypes. This can be seen in
Figure 2(a), when the Person node is selected. Next, when a relation is selected,
the right-side box shows all the different relations that connect entities of this
type, as well as the total number of such connections, their URI, and their di-
rection. For example, Figure 3 highlights all connection between entities of type
film and type Person. The right-side box in this case shows, for example, that
there are 1955 triples of the form {e1 cinematographer e2} where e1 is of type
film and e2 is of type Person.

Color: The graph uses essentially two colours: we use red for nodes and rela-
tionships that can be navigated (or split) in several subtypes or that contain
different relations, and blue for the ordinary nodes and relations. Coming back
to LinkedMDB, we see that the node Person is shown in red, because one can
divide it (into actor, cinematographer, etc). On the other hand, nodes such
as film are instead shown in blue, because film has no subclasses. The system
highlights nodes and/or relationships by applying a more vivid version of the
same colour. Furthermore, the name of the node or relationship is always shown
when nodes are highlighted.

User interaction: Apart from displaying the left-side panel and highlighting
nodes or relationships, by right-clicking the objects a user can interact with the
visualisation in the following ways: First, one can hide a particular node and all
the edges that connect this particular node. But also one can hide everything
that is not related to a given node (keeping only those nodes connected to the
selected node), or show all nodes that are related to a given node (in case they
where previously hidden). Finally, there is the subdivide operation: Any red
node can be subdivided into their immediate subclasses. When this operation
is performed the red node dissapears, and for each subtype of the red node we
create the corresponding node with their relations. In our LinkedMDB example,
Figures 2(a) and 2(b) show the outcome of dividing the Person node, creating
nodes actor, director, editor, cinematographer and film crewmember.

Size and positioning of objects: In both nodes and edges, the total area
is proportional to the number of entities (respectively, triples) of a given type
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(a) (b)

Fig. 4. Result of hiding and dragging objects in our graph

(relationship). The positioning is also relative to the area, so that the bigger
the nodes the farther away they appear. This is done to avoid visual stress by
clogging two big nodes together. We take advantage of a number of D3 libraries
to produce a graph that can be dragged and repositioned at will. Together with
the ability to hide nodes, this facilitates the exploration and analysis of the
graph. Figures 4(a) and Figure 4(b) provide an example of this power: The
second graph is built from the first by simply hiding a few unimportant nodes
and repositioning the important ones.

3.3 Related Work

The system closest to our ideas is LODSight [5], which works in a very similar
way than our visualisation. However, LODSight does not have any hierarchical
functionality, and thus the visualisation is rather static. We view our system
as an alternative for LODSight that provides more opportunities of interaction.
Furthermore, [10] proposes an algorithm and a system that is similar in spirit
to ours, but with more emphasis on understanding the used ontologies: the sys-
tem can describe different namespaces, and is in general oriented at a database
with different namespaces. However, there is again no hierarchical navigation on
classes or relationships, and cannot deal with summarisation when types are not
present. Finally, [11] also provides an interesting alternative to visualise end-
points, but the proposal is based more on structured tables than a graph. It
remains to see which approach is the best.

More on the profiling side one can highlight ExpLOD [9], that summarises
RDF based on the most frequently occurring patterns. This creates a much more
specific and smaller view, but on contrast it hides information inside the shape
of the patterns. This is again a problem for users that are not familiar with
the dataset, as they would need to spend considerable time understanding how
the summarisation works. Loupe [12] and ProLOD++ [1] are systems that cre-
ate a systematic profile of an RDF dataset. As a system they are much more
robust, in the sense that it can create a much bigger set of statistics and rela-
tionships. However, bigger also means that there is more information to process,
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and it seems these types of profiling tools aims more at maintainers and regu-
lar users of endpoints instead of casual users, and thus it might too much for
a user that is just looking to produce a few SPARQL queries: in this case we
argue that a more lightweight option is better. Finally, LodLive [4] and RDF
Pro (http://www.linkeddatatools.com/rdf-pro-semantic-web) are good tools for
visualizing particular pieces of an RDF dataset, but they are not focused on
providing an aerial view of the entire dataset, and there are also FedViz [6] and
ViziQuer [17], interfaces with a much more ambitious goal of helping users which
are not even fluent in SPARQL. Instead, we look for the simplest way of pre-
senting not the full information to the user, but only what is enough to produce
the desired SPARQL query. This includes information about, for example, how
many entities of a certain type have a particular type of label, which is something
that ViziQuer does not show.

4 Future Work

There is still much to do in terms of understanding the best way to facilitate
SPARQL query answering, and it would be interesting to continue demonstrat-
ing the appropriateness of our requirements. There are two main directions that
one could take. First, it is important to analyse previous work on visual infor-
mation about RDF datasets from the lenses of our requirements: what do they
satisfy, what don’t they satisfy, and how does this reflects at the time of pro-
ducing SPARQL queries. In this respect, it would also be useful to understand
whether a graph visualisation such as ours is the best one can do in order to
fulfil these requirements, or whether one should look for other paradigms. The
other direction is to demonstrate, via an empirical experiment, the usefulness of
our particular visualisation. A possible way of doing this experiment would be
to divide a group of SPARQL experts not familiar with a particular dataset, and
assign the same set of tasks to both groups, but where only one group is allowed
to use our visualisation while the other is not. The feedback from this experiment
could then be used to improve our visualisation. We believe this is an interesting
line of work and, to our best knowledge, one that is almost unexplored.
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