
Challenges in the Evolution of Metamodels: Smells and
Anti-Patterns of a Historically-Grown Metamodel

Misha Strittmatter
Chair for Software Design and

Quality (SDQ)
Karlsruhe Institute of

Technology
Karlsruhe, Germany

strittmatter@kit.edu

Georg Hinkel
Software Engineering Division

FZI Research Center of
Information Technologies

Karlsruhe, Germany
hinkel@fzi.de

Michael Langhammer
Chair for Software Design and

Quality (SDQ)
Karlsruhe Institute of

Technology
Karlsruhe, Germany

langhammer@kit.edu
Reiner Jung

Software Engineering Group
Christian-Albrechts-University

Kiel
Kiel, Germany

reiner.jung@email.uni-
kiel.de

Robert Heinrich
Chair for Software Design and

Quality (SDQ)
Karlsruhe Institute of

Technology
Karlsruhe, Germany
heinrich@kit.edu

ABSTRACT
In model-driven engineering, modeling languages are devel-
oped to serve as basis for system design, simulation and
code generation. Like any software artifact, modeling lan-
guages evolve over time. If, however, the metamodel that
defines the language is badly designed, the effort needed for
its maintenance is unnecessarily increased. In this paper,
we present bad smells and anti-patterns that we discovered
in a thorough metamodel review of the Palladio Compo-
nent Model (PCM). The PCM is a good representative for
big and old metamodels that have grown over time. Thus,
these results are meaningful, as they reflect the types of
smells that accumulate in such metamodels over time. Re-
lated work deals mainly with automatically detectable bad
smells, anti-patterns and defects. However, there are smells
and anti-patterns, which cannot be detected automatically.
They should not be neglected. Thus, in this paper, we focus
on both: automatically and non-automatically detectable
smells.

Keywords
metamodel smells; metamodel maintainability; metamodel
anti-patterns; Palladio Component Model

1. INTRODUCTION
Model-driven engineering uses domain-specific modeling

languages (DSMLs) to express abstractions of reappearing
domain concepts. DSMLs can then be used to design sys-
tems. The resulting models (instances of DSMLs) can be
analyzed and used for simulation. Depending on the DSML,
its instances can be used for purposes ranging from stub gen-
eration to the generation of fully functional code. DSMLs
are defined by metamodels.

The evolution of metamodels is a big challenge, as they
tend to be central artifacts with many tools that depend
on them. A change in a metamodel may cause many errors
in dependent code. Thus, it is important that metamodels

allow the addition of new features by creating metamodel
extensions (which we will refer to as external extensibility).
Some bad smells in metamodels make external extensions
impossible. Other bad smells degrade a metamodels general
maintainability.

In this paper, we present the results of a thorough meta-
model review of the PCM in the form of a list of bad smells.
The PCM [26] is a metamodel to describe component-based
software architectures with a focus on their performance
properties. It is implemented in EMF’s Ecore [29], which
is an implementation of EMOF [24]. The metamodel is ap-
proximately 10 years old and has been extended by features
over time. While later features have been extended exter-
nally, earlier additions were made intrusively. Thus, the
PCM is a representative specimen of a big, old and grown
over time metamodel. That is the reason why we think the
results of our review are important to the community. They
show what type of smells typically accumulate in metamod-
els over time.

Related work mainly focuses on the automatic detection
of metamodel smells and simple defects of the metamodel.
Being able to detect these problems automatically is im-
portant. However, smells and anti-patterns that cannot be
automatically detected should not be ignored. Thus, be-
sides four bad smells that can be automatically detected,
we also present 6 smells which can only be detected man-
ually. This paper does not cover any metamodel defects,
which break conformance to the meta-metamodel (compa-
rable to compiler errors in programming). These defects are
usually taken care of by the modeling frameworks validation
functionality.

This paper is structured as follows: Section 2 gives foun-
dational information about metamodels, their evolution and
maintainability, anti-patterns and bad smells. Section 3
presents the state of the art in evaluating metamodel qual-
ity and detecting bad smells in metamodels. Section 4 will
briefly give background information and present the internal
structure of the PCM. Section 4 will show how the PCM has

30



developed over the year. Section 5 contains the list of bad
smells in the PCM. Section 6 concludes the paper.

2. FOUNDATIONS
In this paper, we are concerned with Essential Meta-Ob-

ject Facility (EMOF)-conforming metamodels [24] (e.g. in-
stances of the EMF’s Ecore meta-metamodel). A metamodel
defines and constrains the set of its instances (i.e. models).
In the sense of EMOF, a metamodel consists of metaclasses,
which in turn contain relations and attributes. If the ele-
ments of a model conform to the definitions in the meta-
model, the model is an instance of the metamodel. EMOF-
conforming metamodels are similar to UML class diagrams.
The differences are that they have to be complete and have
to form a containment tree.

The relations that can be defined in a metamodel connect
two metaclasses. Attributes of metaclasses have only prim-
itive types. Metaclasses are able to inherit from each other.
A special case of a relation is the containment relation. Each
element of a model, except its roots, has to be contained
in another element. A metamodel can be subdivided into
packages. A metamodel may also reference metaclasses of
another metamodels. Constraints can be defined (e.g. using
the Object Constraint Language (OCL) [25]).

Metamodels evolve because their languages evolve. New
features have to be added, concepts have to be adapted,
and bugs have to be fixed. A more detailed classification of
metamodel evolution can be found in [31]. In our experience
with the PCM, the biggest driver is the inclusion of new
features.

How easy it is to evolve a metamodel can be considered
the maintainability of a metamodel. The maintainability is
influenced directly by a metamodel’s complexity and under-
standability. Understandability is not completely derived
from complexity, as it is possible to metamodel a simple
concept in a way which is not intuitive. The concepts of co-
hesion [36] and coupling [4] can be transferred from object-
oriented software development. The cohesion of a module
is described as how related its classes are. Coupling of one
module to another expresses how dependent the first module
is on the second. Both measures are heuristics for maintain-
ability. A high cohesion is beneficial, as related classes tend
to evolve together. A high coupling between packages is
detrimental, because modifications may have a bigger im-
pact on dependents.

In object-oriented software development, a bad smell [9]
is considered an indicator for a possible problem in the soft-
ware’s design or code. An anti-pattern was originally de-
fined as being “... just like pattern, except that instead of
a solution it gives something that looks superficially like a
solution, but is none.” [27]. However, the meaning of anti-
patterns changed over time to mean a recurring pattern that
has negative consequences [28, 14], regardless if it was pur-
posely used or not. When transferring these terms to the
domain of metamodeling, some bad smells can be defined as
anti-patterns [2]. Other bad smells may be indicated by met-
rics [2]. Some are only detectable by manual investigation.
In the following, we will refer to bad smells in metamodels
as metamodel smells or simply smells. Metamodel smells
may have various negative effects on metamodel maintain-
ability, which we will explain in this paper. In our list of
smells, we include automatically detectable smells, but even
more importantly smells which can only be reliably detected

manually. As the PCM is a valid metamodel, metamodel-
ing errors (which prevent the generation of the model code)
will not appear in our list. For each smell we identified, we
explain the characteristics of this smell, its consequences,
reasons why they appeared in the PCM, how we think they
can be best corrected, whether we can automatically detect
them and where they occurred in PCM.

3. STATE OF THE ART
EMF Refactor [2, 1] is a tool that can be used to au-

tomatically detect bad smells and perform refactorings in
Ecore-based metamodels and UML models. They detect
bad smells either by a violation of a specific metric or by
the detection of an anti-pattern. For Ecore they feature
automated detection of the following anti-patterns1: Large
EClass, Speculative Generality EClass, Unnamed EClass.
They feature an even longer list for UML anti-patterns. Of
these, some may also be applicable to Ecore metamodels.

Elaasar [7, 8] developed an approach for automated detec-
tion of patterns and anti-pattern in MOF-based models. His
approach provides a ready to use catalog with patterns spec-
ifications but also supports the creation of new pattern spec-
ifications by the user. His MOF anti-patterns are grouped
in the categories well-formedness, semantic and convention.

López et al. propose a tool and language to check for prop-
erties of metamodels [20]. In their paper, they also provide
a catalog of properties, which they categorize in: design
flaws, best practices, naming conventions and metrics. They
check for breaches of fixed thresholds for the following met-
rics: number of attributes per class, degree of fan-in and
-out, depth of inheritance tree and the number of direct
subclasses.

Vépa et al. present a repository for metamodels, models,
and transformations [35]. The authors apply metrics that
were originally designed for class diagrams onto metamodels
from the repository. For some of the metrics, Vépa et al.
provide a rationale how they relate to metamodel quality.

Di Rocco et al. [6] applied metrics onto a large set of meta-
models. Besides the usual size metrics, they also feature the
number of isolated metaclasses and the number of concrete
immediately featureless metaclasses. Further, they searched
for correlations of the metrics among each other. E.g., they
found that the number of metaclasses with superclass is pos-
itively correlated with number of metaclasses without fea-
tures. Based on the characteristics they draw conclusions
about general characteristics of metamodels. Their long-
term goal is to draw conclusions from metamodel character-
istics concerning the impact onto tools and transformations
that are based on the metamodel.

Gómez et al. [13] propose an approach, which aims at eval-
uating the correctness and expressiveness of a metamodel.
I.e. weather it allows invalid instances (correctness) and is
it able to express all instances it is supposed to (expressive-
ness). Their approach automatically generates a (preferably
small) set of instances to evaluate these two criteria.

Garćıa et al. [11] developed a set of domain specific meta-
model quality metrics for multi-agent systems modeling lan-
guages. They propose three metrics: availability, specificity
and expressiveness. These metrics take domain knowledge
into account, e.g., the “number of necessary concepts” or
the “number of model elements necessary for modeling the

1https://www.eclipse.org/emf-refactor/index.php

31

https://www.eclipse.org/emf-refactor/index.php


system of the problem domain”.
There is much work on quality metrics for object-oriented

design and UML class diagrams [5, 22, 21, 12]. Further,
there are publications that present empirical analyses of
object-oriented design metrics [3, 34]. E.g. Subramanyam
found that the correlation between metrics and bug detec-
tion varied when applied to different programming languages
and observed interactions between metrics. The purpose
and usage of object-oriented design and class diagrams is
very different compared to metamodels, thus their benefit
cannot be assumed for metamodels.

4. THE PALLADIO COMPONENT MODEL
The Palladio approach [26] is an approach to component-

based software engineering. At its core is the PCM, a meta-
model, which defines a language to express component-based
software architectures and abstractions of several quality as-
pects. In this section, we present insights into the structure
of the PCM.

The PCM is separated in different hierarchical packages.
The root package is called pcm and directly or indirectly
contains the remaining packages. In this paper, we consider
packages, that are directly contained in the root packages as
first level packages. Packages contained in first level pack-
ages are considered as second level packages and so on. The
containment hierarchy of the packages is depicted in Fig-
ure 1, while dependencies between the packages implied by
inheritance of classes within the packages are depicted in
Figure 5.

pcm

core

entity

composition

qosannotations

qos_performance

qos_reliability

resourcetype

reliability

repository

seff

seff_performance

seff_reliability

system

resourceenvironment

allocation

subsystem

usagemodel

parameter

protocol

Figure 1: The package containment hierarchy of the
PCM

In [32], we identified different main concerns of the PCM,
which can be seen in Figure 2. The figure shows dependen-
cies how they should be, not how they actually are. As one
can see, in these two figures, the packages are mainly sliced

as the concerns. For instance, the repository package con-
tains all classes that are necessary to build a Repository

with its DataTypes and ComponentTypeHierarchy. How-
ever, some packages contain information for multiple con-
cerns.

Repository

Environment

Allocation

Composition

Performance

Resource

Types

SEFF

Usage

Model

RDSEFF

DataTypes

Variable

Characterization

Legend

Concern

Dependency

Component 

Type Hierarchy

Resource

Environment

Entity

Reliability

Figure 2: The main concerns of the PCM [32]

Starting in August 2006, the PCM has a long evolution
history. Since then, many new features have been added.
Although Palladio initially was built for performance predic-
tion, it now also supports to simulate reliability, data consis-
tency, energy consumption and maintainability. At the same
time, besides the original call characteristics, a system can
now be specified in an event-based manner and PCM has
built-in support for extensions in the form of stereotypes.

0

50

100

150

200

250

Total Number of Classes

Figure 3: Evolution of the Palladio Component
Model between March 2007 and September 2012 in
terms of the number of classes

Many of these perfective changes have had a footprint to
the metamodel. Today, the version control system registers
more than 120 revisions of the core metamodel plus several
revisions for underlying shared functionality it is using. To
give an impression on the evolution of the metamodel, we
have depicted the total number of classes between spring
2007 and fall 2012 in Figure 3. Most changes to the PCM
were mad in this period and the metamodel size in terms of
number of classes has more than doubled.

32



5. METAMODEL SMELLS
In this Section, we will present the list of metamodel

smells we found in the most recent version of the PCM.
This version of the metamodel was released with the Pal-
ladio Bench 4.0. For each metamodel smell, the following
aspects will be elaborated: general description, its conse-
quences, reasons for its forming, or even rationale why it
might have been purposefully used, possible resolutions, if
the smell is automatically detectable as well as brief men-
tion of its occurrences in the PCM. In a smell’s description,
we will also briefly discuss the relation of a smell to object-
oriented design and programming (OO).

5.1 Redundant Container Relation
Description: Containment relations are necessary to be

able to specify entities that are more complex and they guide
serialization. To navigate models, it can be necessary to tra-
verse from a contained element to the containing element.
For this purpose, the container reference can be used. In
EMF, this feature is provided by a generic and implicit ref-
erence eContainer. However, it is also possible to define an
explicit container reference utilizing the concept of opposite
references.

This smell does not exist in OO, as there are in general no
explicit containers. Objects are contained in the heap mem-
ory and are merely referenced by other objects. If no more
references to an object exist, the object is eventually deleted.
In metamodeling and modeling on the other hand, an EOb-
ject must have a container. If that container is deleted, all
contained elements are also deleted and all references to the
deleted elements are unset.

Consequence: This smell has several negative implica-
tions. First, it introduces redundancy, as the implicit eCon-
tainer reference is always present and an explicit container
reference is a duplication. Second, it increases metamodel
complexity due to this duplication. In case a class is used in
different containments, multiple explicit container references
exist. These references are all mutually exclusive, but this
cannot be declared with EMF itself. Furthermore, the op-
posite references must be declared as optional, which weak-
ens their meaning. For example, the PCMRandomVariable

of the PCM metamodel is used in 17 contexts. Therefore,
the class has 17 opposite references, but only one is used
by an instance. Third, the explicit container reference can
harm reuse and evolution of metamodels. In case a con-
tainer class is added or removed, this always also requires
the adaption of the contained class. In case different as-
pects and partitions of metamodels are stored separately,
a cyclic reference between the metamodel of the contain-
ing class and the contained class is necessary. This hinders
reuse, as both metamodels must be present. However, using
an implicit eContainer reference, the metamodel with the
contained class can be reused in other contexts.

Reason and Rationale: Some may argue that container
references allow ensuring static type safety. However, this
only applies for cases with only one container reference and
realized in Java directly. In case of multiple containing
classes, the static type safety property is weakened, as the
containing class type cannot be determined statically. In-
stead, at runtime each property must be checked which is
similar to testing the type of the containing class, but it is

obfuscated that this is indeed a type check.
In some UML metamodels, associations are used where

both ends are named, and one end is declared as composite.
If this property of the UML metamodel must be preserved,
an explicit container reference cannot be omitted. However,
such naming can exist only for documentary reasons, which
allows ignoring them for the EMF mapping of the UML
metamodel.

Correction: The explicit container reference can be re-
moved and its usage in code can be replaced by accessing the
eContainer reference. If only the explicit container reference
was used before, the eContainer reference can be safely cast
to that container. If, however, the explicit container refer-
ence is checked for null, the eContainer reference has to be
checked for the type of the expected container.

Automatic Detection: Opposite references for containment
references can be detected automatically.

Occurrences: In the PCM, 85 explicit container references
can be found with 17 of these references originating from the
aforementioned PCMRandomVariable.

5.2 Obligatory Container Relation
Description: This smell is a special case of the redundant

container relation smell (Section 5.1). If a containment re-
lation has an opposite reference that has a lower bound of
1, we call it an obligatory container relation. This is illus-
trated in Figure 4. Class C1 contains A and the container
relation is obligatory. As with the redundant container re-
lation smell, this smell is not relevant in OO, as there is no
explicit containment.

C1
1 *

C2 *

A

Figure 4: Obligatory Container Relation for Classes
C1 and A

Consequence: A cannot be used in any other context. E.g.,
although C2 has a containment relation to A, an instance of
C2 can never contain any instances of A, as the container
relation to an instance of C1 has to be set. In such cases,
the EMF framework does not even allow code generation.

Reason and Rationale: There are some reasons to use an
obligatory container relation. It ensures type safety when
navigating to the container. It is also possible, that the de-
velopers want to restrict reuse explicitly. However, in most
circumstances the developers were most likely unaware of
these consequences. Obligatory container relations can also
be the result of translation from another format or language
(e.g., UML) by a transformation.

Correction: To fix this smell, remove the container rela-
tion (this will also resolve the redundant container smell).
As the class could only be in one type of container, the eCon-
tainer can be safely cast to that container class.

33



Automatic Detection: Obligatory container relations can
easily be detected. However, manual evaluation is still re-
quired, as in some cases they may be intended by the devel-
oper.

Occurrences: In the PCM, many container relations are
obligatory. We suspect this to be the result of the transfor-
mation from Rational Software Architect.

5.3 Concern Scattered in Package Hierarchy
Description: The package hierarchy of a metamodel is

mainly for logical partitioning of its content. We consider
it a bad smell, if the classes that constitute a feature or
concern of the language are spread over multiple packages.
Even crosscutting concerns can be modularized in a more
meaningful way.

In OO, there are issues similar to this smell, e.g., when
cohesive classes are scattered over packages or assemblies.
However, to our knowledge, there is no explicit smell that
covers the problem on this level. OO smells are more con-
cerned with the internals of packages: relations between
classes and the internals of classes and methods.

Consequence: This bad smell has negative consequences
on the understandability and thus maintainability of meta-
models. When a developer tries to understand a metamodel,
he examines its packages and from their content and docu-
mentation (if there is any) tries to conclude its purpose. If
a concern is scattered, the purpose of the package cannot
be fully comprehended without tracing relations that leave
the package. The smell may also increase coupling between
affected packages and reduce relative cohesion within the
packages.

Reason and Rationale: We suspect that this smell occurs
mostly, when new concerns are implemented in an already
existent metamodel. The new concern is related to the con-
cerns of multiple other packages. Parts of the new concern
are then placed in the packages of the related concerns and
so the new concern is ripped apart.

Correction: A better approach would be to place the new
concern in its own package. The package should further
contain sub-packages for each related concern, which then
contain the classes that are related to these concerns. The
package of the new concern should be placed meaningfully.
If it is a first order concern, it should be placed below the
root package. If it is a subconcern, its package should be
placed as a subpackage of the parent concern. If it is a
crosscutting concern, it should be placed on the same level,
as the concerns it is intersecting with.

Moving classes can be done through refactorings. Even
the code, which depends on the classes, may be automat-
ically fixed. A mere moving of affected classes may lead
to other bad smells, if the dependencies are not modified.
The new dependencies between packages may lead to pack-
age dependency cycles (see Section 5.5) and violations of
the dependency inversion principle on the package level (see
Section 5.6). This is not the fault of consolidating a concern,
but of dependencies that were improper in the first place.
An explicit reference structure (e.g., [33, 30]) can help in
structuring packages and directing their properties properly.

Automatic Detection: This bad smell is not automatically
detectable. An algorithm is not able to automatically infer
the semantics of parts of the metamodel.

Occurrences: It is difficult to nail down the exact number
of occurrences in the PCM, as this depends on how fine-
grained its concerns are identified. Looking at quite coarse-
grained concerns, there are at least six occurrences of this
smell in the PCM [32]. The following concerns are affected:
resource interfaces, middleware infrastructure, performance,
repository (especially interfaces), event communication and
reliability.

5.4 Multiple Concerns in Package
Description: Conversely to the scattered concern smell,

we also consider it a smell, if a package contains the classes
of multiple concerns. The relation of this smell to OO is
analog to the scattered concern smell. Insufficient modular-
ization on the package level is an issue in OO. However, we
are not aware of an explicit smell definition.

Consequence: Having multiple concerns in one package,
increases the effort to understand the package, because the
developer has to identify the contained concerns and their
respective classes. Simply put, the package is needlessly
complex. This bad smell might also decrease the cohesion
within the package.

Reason and Rationale: We suspect that this smell has two
explanations. Developers tend to place classes in packages,
which hold their container or represent a closely related con-
cern. It is just more convenient to use the existing package
hierarchy than to think of a new structure yourself.

Correction: How to modularize and package concerns is
already well explained in the resolution part for the scat-
tered concern smell (see Section 5.3). As already suggested,
new concerns should be placed in their own package. If a
concern is a subconcern, then its package should be placed
as a subpackage.

Automatic Detection: This bad smell is not automatically
detectable. An algorithm is not able to automatically infer
the semantics of parts of the metamodel.

Occurrences: There are at least two occurrences of this
smell in the PCM [32]. The following concerns are affected:
data types and the abstract component type hierarchy, which
both are located in the repository package.

5.5 Package Dependency Cycles
Description: When creating a metaclass, one of the most

important choices is the selection of appropriate base classes,
from which some functionality can be reused. However, in-
heritance is a white-box technique. Therefore, one needs
to fully understand the base classes. Hence, a closer look
into the containing packages is required. This dependency
between packages implied by inheritance can be shown vi-
sualized as a graph. We depicted this graph for the latest
PCM version in Figure 5. This graph may contain cycles
(shown in red).

In OO, having dependency cycles in assemblies is consid-

34



Figure 5: Dependencies between packages in PCM
implied by inheritance of classes, thickness of arrows
indicates how many classes use an inheritance rela-
tion, cycles are marked in red.

ered a bad practice, or is even treated as an error on some
platforms. However, there is not so much emphasis placed
on dependency cycles on the package level.

Consequence: A consequence of such a circular depen-
dency may be that to fully understand a package contained
in such a circle, a developer has to understand all packages
contained in this circle. This challenges the appropriateness
of the package structure.

Especially if the cycle is formed from inheritance depen-
dencies, the maintainability of the metamodel may suffer.
Changes made to the metamodel propagate down the class
hierarchy and thus into other packages where they should
not.

Reason and Rationale: PCM makes extensive use of mul-
tiple inheritance and the inheritance hierarchy of some meta-
classes is quite high. Therefore, it may have become difficult
to keep an eye on package dependencies.

Correction: In situations when developers have lost an
overview of the package dependencies, we think that an
overview such as in Figure 5 can already be helpful to avoid
this anti-pattern.

Automatic Detection: A circular dependency can be de-
tected automatically (in fact, Figure 5 is entirely generated
by a tool) and could be even automatically resolved by merg-
ing the affected packages. However, we think a manual in-
spection can be more beneficial in such a scenario.

Occurrences: The occurrences of this pattern in the latest
version of Palladio is shown in Figure 5.

5.6 Dependency Inversion Principle Violated
Description: The dependency inversion principle [23] is

a design principle from OO. When translated to metamod-
eling it states that high-level classes should not depend on
low-level classes (high- and low-level regarding the level of
abstraction). Both may depend on abstractions. The same
can be said about packages and even metamodels, when the
dependencies of a package or metamodel are regarded as the
combined dependencies of their elements.

Part a) of Figure 6 shows a violation of the principle on the
class level. Package H contains high-level concepts, relative
to which the content from the package L is low-level. Class A

has a dependency (relation, inheritance or containment) to
K. Thus, a high-level class is dependent on a low-level one.
Class K contains further information about A (indicated by
the data attribute). Although it is illustrated as a single at-
tribute, this information may come in the form of attributes,
relations and containments.

Consequence: A violation of the dependency inversion
principle may have detrimental effects on the maintainabil-
ity of a metamodel. During evolution, modifications of a
concern may influence a more high-level concern. Such vi-
olations do also hinder understanding. When a developer
tries to understand a concern, he may trace the outgoing
relations to more low-level concerns. Thus, he may exam-
ine concerns which are not necessary for understanding the
high-level concern or even irrelevant to his intent.

Reason and Rationale: In our opinion, these violations
stem from the integration of features. It is most conve-
nient for a developer to extend an existing class hierarchy by
adding dependencies that point to the new content. How-
ever, there is a difference between object-oriented design and
metamodels. In OO, it is easier and more natural to intro-
duce new abstraction layers. In metamodels, on the other
hand, interfaces cannot be used in a similar way, because
usually it is not similar functionality that is added, but new
and different data. At first glance, it seems to be a good so-
lution just to create a new subclass, which adds the needed
information. However, when multiple new features are im-
plemented this way, they cannot be combined. Therefore,
in metamodeling, it can be reasonable to violate the depen-
dency inversion principle in certain cases. A possible rule
would be to do so for core features of the language. A fea-
ture can be considered a core feature, if it is useful in every
use case of the language and for every possible type of user.
Core features should be integrated intrusively into the meta-
model with a violation of dependency inversion principle.
This has the following advantages: type safety, adherence
to cardinality and retrieval in O(1) (constant time).

Correction: When implementing non-core features, the
dependency inversion principle should be used. In Figure 6,
we point out two possible options.

In b), the new abstract class B is created as well as a con-

A

K

A

K

B A

K

High-Level 

Concepts

Low-Level 

Concepts

a) b) c)H

L

data data data

Figure 6: Violation and Application of the Depen-
dency Inversion Principle

35



tainment from A to B. Class K then inherits from B. Thus,
the dependency is reversed and now goes from L to H. This
solution has some benefits. The instances of K are con-
tained in instances of A. This enables direct navigation and
thus retrieval in constant time. In addition, the cardinality
can be controlled directly without having to specify complex
constraints. However, type safety is not guaranteed, as the
extended data is not placed in B but in K. This solution has
to be enabled in the initial development, as the class B is
required. This is no issue, if K is also already created during
the initial development or if the future extension of K can
be foreseen. The main disadvantage of this solution is that
H has to be modified, if this solution should be implemented
in hindsight.

In c), an alternate solution is shown which does not re-
quire modification of H. By either stereotype application [18,
17], aspect-oriented extension [15, 16] or plain referencing,
instances of K can be associated with instances of A. Com-
pared to b) this has the disadvantage, that the look-up is in
O(k), where k is the number of instances of K.

Automatic Detection: This smell is not automatically de-
tectable. An algorithm is not able to deduce if concepts are
higher- or lower-leveled compared to others.

Occurrences: Within the PCM is at least one serious oc-
currence of this smell with regard to the inheritance hierar-
chy. The superclass that represents entities that require and
provide interfaces, inherits from a superclass which repre-
sents entities which require and provide resource interfaces.
While the usage of interfaces is a core feature of the PCM,
resource interfaces are not. Regarding violations with ref-
erences, there are countless occurrences. They stem from
the intrusive integration of features into more abstract con-
cepts.

5.7 Dead Class
Description: As a result of a refactoring, in some cases

a class is no longer required as its responsibilities are taken
care of by another class. Sometimes, although the references
to the class are deleted, the class itself is not. In OO, this
smell falls under the category of dead code or oxbow code.

Consequence: This has a negative impact on understand-
ability since the class has to be considered, even though it
cannot be contained in the rest of the model. Furthermore,
developers may have a hard time trying to understand how
the class is used. When they finally find out that it is not
used at all, this has an impact on their opinion of the meta-
model.

Reason and Rationale: The pattern is mainly a result of
bad metamodel reuse. As the metamodel gets large, it is
no longer obvious in which places a class is used. Thus,
when the class is no longer required in one specific scenario,
it still may be required in another. However, as developers
do not check whether the class is used in some other place,
the class may be left behind with no usage elsewhere in the
metamodel.

Correction: This problem can be avoided if developers
make sure that classes they no longer need are either still
used elsewhere or deleted.

Automatic Detection: It is possible to statically detect
that a class cannot be contained in another class. However,
a manual assessment is then required to decide whether this
class is dead, as for root container classes, it is viable (though
not obligatory) to be uncontainable.

Occurrences: A static analysis of PCM delivers in to-
tal nine uncontainable classes. From these, the classes Us-

ageModel, Repository, ResourceRepository, System, Re-

sourceEnvironment and Allocation represent view types
and therefore serve as model roots. Thus, it is perfectly
valid for them to be uncontainable. The class DummyClass

has been introduced to overcome a technical limitation in
the QVT-O compiler, but this is a rather different issue (the
purpose of this class is hardly documented, but developers
trying to understand PCM would not expect any reasonable
semantics from a class named like this). However, over the
history, two classes have been left over from refactoring op-
erations, CharacterisedVariable and ResourceInterface-

ProvidingRequiringEntity. For both of these cases, it is
not obvious that they are no longer needed, so developers
may try to find usages and fail to do so.

5.8 Concrete Abstract Class
Description: This smell is concerned with classes that

should be abstract, but are not. Usually, in a class hier-
archy, a class with subtypes is abstract. However, not every
occurrence is necessarily bad design, as sometimes even a
concrete class might have concrete subclasses.

In OO, having a concrete abstract class is also a problem.
However, we are not aware of an existing smell definition.

Consequence: However, if a class that should be abstract
is not declared as such, this has a negative impact on the
metamodels correctness and understandability. Due to the
fact, that an instance of the metamodel may validly contain
direct instances of a class that should not have any instances,
the metamodel is less correct. Usually this problem is hid-
den by self-built model editors, which just do not offer any
possibility to create direct instances of the affected class.
However, using fully generated model editors (like the EMF
tree editors), this problem does manifest. Further, the un-
derstandability of the metamodel is slightly reduced by this
smell. A developer, who investigates the metamodel, can-
not instantly identify the class as abstract and has to reflect.

Reason and Rationale: We expect this smell to appear
mainly because of carelessness mistakes.

Correction: The correction of this smell is trivial. The
affected class just has to be declared as abstract.

Automatic Detection: Occurrences of this smell can only
partly be detected automatically. When a concrete class has
subclasses, it might be a true case of this smell [2]. If any of
the subclasses are abstract, it is even more likely that there
is an issue. However, manual evaluation is still required, as it
might be the case that the superclass is validly concrete. In
constellations, where all subclasses of the concrete abstract
class are in external metamodels, the smell is not detectable
if the external metamodels are not analyzed. This smell
might lead to wrongful detections of the dead class smell

36



(5.7). This is the case when the class and its superclasses
are never used within the metamodel but carry the informa-
tion of an abstract concept that should be specialized in an
external metamodel.

Occurrences: Within the PCM, the CallReturnAction

class from the SEFF package is a true occurrence of the con-
crete abstract class smell. It is a concrete superclass and
cannot be instantiated by the custom build graphical model
editors of the PCM bench. This class cannot be meaning-
fully instantiated, as it or its superclasses have no container.
However, it can still be confusing for a developer.

5.9 Duplicate Features in Sibling Classes
Description: In metamodels, classes represent concepts

and inheritance is used to specialize concepts by providing a
more comprehensive specification. For example, an abstract
component type only describes that a component type has
an interface. This class can be specialized into a component
type that allows having internal components. In case a class
has multiple children, of which some realize the same feature,
this can be seen as a redundancy in the model.

In OO, one could argue that this issue falls under the du-
plicate code smell [9].

Consequence: Redundant declarations harm maintainabil-
ity, as they must be maintained equally in all classes. If one
class is overlooked, the metamodel degrades, which hinders
long time evolution of the metamodel. They also have a neg-
ative impact on implementing transformations, as for each
sibling class, the transformation rule must be able to support
the feature. This is necessary, as from a syntactic viewpoint
on the model these features are different.

Reason and Rationale: Duplicated features can appear
when metamodels are altered iteratively. In that case, one
of the sibling classes is extended with a specific feature, and
later another sibling is extended in the same way. Through
this process, more and more classes have a semantically iden-
tical feature, but they are declared syntactically as different
features. While in some cases this situation may be the ef-
fect of limited time, carelessness, or overlooked, it can also
be made intentional. The latter case occurs when not all
siblings require the feature.

Correction: To mitigate the issue of duplicate features,
in OO, a refactoring would move the feature up to the par-
ent class in case all siblings have the feature [19]. However,
this can be in violation with the underlying semantics of the
concepts, which are expressed in the classes. Furthermore,
the pull up cannot be used in cases where not all, but some
siblings declare the same feature. An alternative strategy
is to define an interface that provides the feature in ques-
tion and inherit the interface by all siblings that require the
particular feature. The strategy has two advantages. First,
the meaning of the feature is encapsulated in its own con-
cept. Second, the interface can be used in transformations.
Therefore, the transformation must only test whether the
interface exists instead of testing multiple classes.

Automatic Detection: An automatic detection of dupli-
cations based on name and type is unreliable, as the de-
tection is based only on syntactic properties. Therefore,

the detection may result false positives and false negatives.
First, there could be identical typed and named features
that do not represent the same relationship. Second, fea-
tures may be named differently, but still represent the same
idea. Therefore, manual intervention is required.

Occurrences: In the PCM, the classes OperationSigna-

ture, InfrastructureSignature and EventType have all
a property returnType with the same intended semantic.
These could be extracted into an IValueReturning inter-
face, which is inherited by the three classes.

5.10 Classification by Enum
Description: If an enum is used as an alternate way to

classify a class, we consider it a bad smell. This should not
be confused with using an enum to model a mere property.

Using an enum for classification is one possible solution
of how to model multiple orthogonal classifications. Part a)

of Figure 7 illustrates the problem. It should be possible to
classify the class Base as either A1 or A2 and additionally
either as B1 or B2. This is not possible by just using an
inheritance hierarchy of the depth of just one. Part b) of
Figure 7 shows a solution by using an enum for the second
classification dimension.

Base

A1 A2

Aspect A

Base

B1 B2

Aspect B

a1 a2 b1 b2

Base

A1 A2

a1 a2

a)

b)

BType

b1

b2

BType
«enum»

B1

B2

Figure 7: a) Problem of Orthogonal Classifications
b) Classification by Enum

The naive solution to modeling orthogonal classifications
is shown in Figure 8. There, every possible combination is
explicitly modeled by inheritance. This obviously has sev-
eral disadvantages. It produces high amounts of classes.
Although, a single classification dimension is externally ex-
tensible, it is not possible to develop independent extensions,
as every combination of every dimension has to be modeled.

A1

B1

Base
A2

B2

A1B2 A2B2A2B1A1B1

Figure 8: Naive Solution to Orthogonal Classifica-
tions

In OO, classification by enum is also a problematic solu-
tion to the problem of orthogonal classification dimensions.

37



However, we are not aware of any bad smell definition.

Consequence: Using an enum for additional classifica-
tions makes the classification impossible to extend exter-
nally. Further, in contrast to classification by inheritance, it
is not possible to add features to parts of the classification
selectively. This might lead to the developer adding features
to the base class, which are only used for specific values of
the enum. By doing that, the complexity of the class in-
creases unnecessarily and its understandability suffers. This
is shown in part b) of Figure 7.

Reason and Rationale: As already stated, using an enum
for classification is one possible solution of how to model
multiple orthogonal classifications. In most situations, how-
ever, it is not a very suited one. Developers use it because
of lack of knowledge of more appropriate solutions. In ad-
dition, it looks simple and little intrusive compared to the
naive approach (see Figure 8). If, however, the developer
wants one classification to be closed for extension and it
does not carry any new features that vary for its subtypes,
classification by enum can be legitimately used.

Correction: There are two ways to resolve this smell. If
the classification is already known when the metamodel is
initially implemented, or it is possible to modify the meta-
model, the composition over inheritance principle [10] should
be applied. This is shown in part a) of Figure 9. If not,
stereotypization should be applied. This is shown in part b)

of Figure 9.

Automatic Detection: This smell is not automatically de-
tectable. One could scan for each usage of an enum. How-
ever, not every usage is a classification. Therefore, each
enum usage has to be checked manually.

BBase

A1 A2

a)

b)

B1

B2

Base

A

B

A1 A2

B1 B2

Figure 9: Solutions to Orthogonal Classifications

Occurrences: In the PCM, the classification by enum oc-
curs in the class ImplementationComponentType. It con-
tains an enum that declares its component type: business
component or infrastructure component. This classification
is orthogonal to the classification of atomic vs. composite,
which is implemented by inheritance. This enum makes it
impossible to add further component types without intru-
sively modifying the PCM.

6. CONCLUSION
Within this paper, we presented a list of metamodel smells

we found in the current version of the PCM. We identified
10 different types of smells. Simple metamodel errors (which
cause validation errors and prohibit code generation) are not

included, as the PCM is already in operation and thus does
not contain any.

Two of the presented smells are exclusive to metamod-
els. The remaining eight smells also represent issues in OO.
However, there are differences in the usage of metamodeling,
OO design and code. Therefore, in OO there is not as much
emphasis on the smells which were presented here.

The smells presented in this paper are specific to lan-
guages that are similar to EMOF. All smells are concerned
with the following basic concepts: classes, relations and
attributes. Some smells are concerned with more specific
meta-language features: explicit containments (5.1, 5.2),
modularization (5.3, 5.4, 5.5), inheritance (5.8, 5.9) and
enums (5.10).

Four of the smells might be detected by scanning for anti-
patterns. However, all of them still have to be reviewed,
as there are circumstances where an occurrence is not nec-
essarily bad design. The remaining six smells can only be
detected by manual review.

For each smell, we explain how it might come into be-
ing. Some smells are built in by mere carelessness or lack of
knowledge. Therefore, knowledge of these metamodel smells
is very valuable for metamodel developers. Other smells,
however, do only manifest with time, when multiple evolu-
tion steps have been performed (some of them in a short-
sighted manner).

For each smell, we explained the effects we observed and
further consequences that we expected. Some smells add un-
necessary complexity. Others simply impair understandabil-
ity by obfuscating design decisions or the intended structure
of the metamodel. Some have negative effects on coupling
and cohesion of packages. Thus, these metamodel smells
have detrimental effects on metamodel maintainability. The
consequences are even worse, if the metamodel is long living,
is evolved and the smells accumulate without being fixed.
Metamodels tend to live in metamodel-centric software sys-
tems. Many tools, like editors, analyzers and simulators,
are built upon them. If the metamodel is changed, all tools
have to be fixed. The effort caused by resolving smells in
the metamodel increases over time, as new dependencies pile
up. Thus, smells should be fixed as early as possible.

Future work includes inspecting further metamodels also
including less mature ones. Further, results from smell and
error detection tool could be incorporated and analyzed.

7. ACKNOWLEDGMENTS
This work was supported by the Helmholtz Association of

German Research Centers and the DFG (German Research
Foundation) under the Priority Program SPP1593: Design
For Future – Managed Software Evolution. We would like to
thank Anne Koziolek, Richard Rhinelander, Kiana Rostami,
Dominik Werle, Kateryna Yurchenko and the anonymous
peer-reviewers for their valuable input.

References
[1] T. Arendt and G. Taentzer. “A tool environment

for quality assurance based on the Eclipse Modeling
Framework”. In: Automated Software Engineering 20.2
(2013), pp. 141–184.

[2] T. Arendt et al. “Defining and checking model smells:
A quality assurance task for models based on the

38



eclipse modeling framework”. In: BENEVOL work-
shop. 2010.

[3] V. Basili et al. “A validation of object-oriented design
metrics as quality indicators”. In: Software Engineer-
ing, IEEE Transactions on 22.10 (Oct. 1996).

[4] P. Bourque et al. Guide to the software engineering
body of knowledge. IEEE, 2014.

[5] S. R. Chidamber and C. F. Kemerer. “Towards a Met-
rics Suite for Object Oriented Design”. In: SIGPLAN
Not. 26.11 (Nov. 1991), pp. 197–211.

[6] J. Di Rocco et al. “Mining Metrics for Understanding
Metamodel Characteristics”. In: Workshop on Model-
ing in Software Engineering. ACM, 2014.

[7] M. Elaasar. “An approach to design pattern and anti-
pattern detection in mof-based modeling languages”.
PhD thesis. Carleton University Ottawa, 2012.

[8] M. Elaasar et al. “Domain-Specific Model Verification
with QVT”. In: ECMFA. Springer, 2011.

[9] M. Fowler et al. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[10] E. Freeman et al. Head First Design Patterns. Head
First. O’Reilly Media, 2004.

[11] I. Garćıa-Magariño et al.“An evaluation framework for
MAS modeling languages based on metamodel met-
rics”. In: Agent-Oriented Software Engineering (2009).

[12] M. Genero et al. “Building measure-based prediction
models for UML class diagram maintainability”. En-
glish. In: Empirical Software Engineering 12 (5 2007).

[13] J. J. C. Gómez et al. “Searching the Boundaries of
a Modeling Space to Test Metamodels”. In: Software
Testing, Verification, and Validation, 2008 Interna-
tional Conference on (2012), pp. 131–140.

[14] K. Julisch. “Understanding and overcoming cyber se-
curity anti-patterns”. In: Computer Networks 57.10
(2013), pp. 2206–2211.

[15] R. Jung et al. “A Method for Aspect-oriented Meta-
Model Evolution”. In: Proceedings of the 2Nd Work-
shop on View-Based, Aspect-Oriented and Ortho-
graphic Software Modelling. VAO ’14. York, United
Kingdom: ACM, July 2014, 19:19–19:22.

[16] R. Jung et al. “GECO: A Generator Composition Ap-
proach for Aspect-Oriented DSLs”. In: Theory and
Practice of Model Transformations: 9th International
Conference on Model Transformation, ICMT 2016.
Springer International Publishing, 2016, pp. 141–156.

[17] M. E. Kramer et al. “Extending the Palladio Compo-
nent Model using Profiles and Stereotypes”. In: Palla-
dio Days 2012. Ed. by S. Becker et al. Karlsruhe Re-
ports in Informatics ; 2012,21. Karlsruhe: KIT, Faculty
of Informatics, 2012, pp. 7–15.

[18] P. Langer et al. “EMF Profiles: A Lightweight Exten-
sion Approach for EMF Models”. In: Journal of Object
Technology 11.1 (2012), 8:1–29.

[19] K. Lano and S. K. Rahimi.“Case study: Class diagram
restructuring”. In: Proceedings Sixth Transformation
Tool Contest, TTC 2013, Budapest, Hungary, 19-20
June, 2013. 2013, pp. 8–15.

[20] J. J. López-Fernández et al. “Assessing the Quality of
Meta-models”. In: Proceedings of the 11th Workshop
on Model Driven Engineering, Verification and Vali-
dation (MoDeVVa). 2014, p. 3.

[21] M. Manso et al. “No-redundant Metrics for UML
Class Diagram Structural Complexity”. In: Advanced
Information Systems Engineering. Vol. 2681. Lecture
Notes in Computer Science. Springer Berlin Heidel-
berg, 2003, pp. 127–142.

[22] M. Marchesi. “OOA metrics for the Unified Modeling
Language”. In: Proceedings of the Second Euromicro
Conference on Software Maintenance and Reengineer-
ing. Mar. 1998, pp. 67–73.

[23] R. Martin. Agile Software Development: Principles,
Patterns, and Practices. PH, 2003.

[24] Object Management Group (OMG). MOF 2.4.2 Core
Specification (formal/2014-04-03). 2014.

[25] Object Management Group (OMG). Object Constraint
Language, v2.0 (formal/06-05-01). 2006.

[26] R. H. Reussner et al. Modeling and Simulating Soft-
ware Architectures – The Palladio Approach. to ap-
pear. Cambridge, MA: MIT Press, Oct. 2016. 408 pp.

[27] L. Rising. The Patterns Handbook: Techniques, Strate-
gies, and Applications. SIGS, 1998.

[28] C. U. Smith and L. G. Williams. “Software perfor-
mance antipatterns”. In: Workshop on Software and
Performance. 2000, pp. 127–136.

[29] D. Steinberg et al. EMF: Eclipse Modeling Framework.
second revised. Eclipse series. Addison-Wesley Long-
man, Amsterdam, Dec. 2008.

[30] M. Strittmatter and R. Heinrich. “A Reference Struc-
ture for Metamodels of Quality-Aware Domain-Specific
Languages”. In: 13th Working IEEE/IFIP Conference
on Software Architecture. Apr. 2016, pp. 268–269.

[31] M. Strittmatter and R. Heinrich. “Challenges in the
Evolution of Metamodels”. In: 3rd Collaborative Work-
shop on Evolution and Maintenance of Long-Living
Software Systems. Vol. 36. Softwaretechnik-Trends 1.
2016, pp. 12–15.

[32] M. Strittmatter and M. Langhammer. “Identifying
Semantically Cohesive Modules within the Palladio
Meta-Model”. In: Symposium on Software Perfor-
mance. Universitätsbibliothek Stuttgart, Nov. 2014,
pp. 160–176.

[33] M. Strittmatter et al. “A Modular Reference Structure
for Component-based Architecture Description Lan-
guages”. In: Model-Driven Engineering for Component-
Based Systems. CEUR, 2015, pp. 36–41.

[34] R. Subramanyam and M. Krishnan. “Empirical analy-
sis of CK metrics for object-oriented design complex-
ity: implications for software defects”. In: IEEE Trans-
actions on Software Engineering 29.4 (2003).

[35] E. Vépa et al. “Measuring model repositories”. In: Pro-
ceedings of the 1st Workshop on Model Size Metrics.
2006.

[36] E. Yourdon and L. L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design. 1st. Prentice-Hall, 1979.

39


	Introduction
	Foundations 
	State of the Art 
	The Palladio Component Model 
	Metamodel Smells 
	 Redundant Container Relation 
	 Obligatory Container Relation 
	 Concern Scattered in Package Hierarchy 
	 Multiple Concerns in Package 
	 Package Dependency Cycles 
	 Dependency Inversion Principle Violated 
	 Dead Class 
	 Concrete Abstract Class 
	 Duplicate Features in Sibling Classes 
	 Classification by Enum 

	Conclusion 
	Acknowledgments



