
Heterogeneous Megamodel Slicing for Model Evolution

Rick Salay
Department of Computer

Science
University of Toronto

Toronto, Canada
rsalay@cs.toronto.edu

Sahar Kokaly
McMaster Centre for Software

Certification
McMaster University
Hamilton, Canada

kokalys@mcmaster.ca

Marsha Chechik
Department of Computer

Science
University of Toronto

Toronto, Canada
chechik@cs.toronto.edu

Tom Maibaum
McMaster Centre for Software

Certification
McMaster University
Hamilton, Canada

maibaum@mcmaster.ca

ABSTRACT

Slicing is a widely used technique for supporting comprehen-
sion and assessing change impact during software evolution
activities. While there has been substantial research into
the slicing of particular model types, model-based software
development typically involves heterogeneous collections of
related models and there is little work addressing slicing in
this context. In this paper, we propose a generic slicing ap-
proach for“megamodels”– a well-known model management
technique for representing and manipulating collections of
models and relationships between them. Our approach ex-
ploits existing model slicers for particular model types as
well as the traceability relationships between models to ad-
dress the broader heterogeneous model slicing problem. We
illustrate our approach on an example of evolution in model-
based automotive software development.

Keywords

Evolution, model slicing, model management, megamodels.

1. INTRODUCTION
Slicing is a widely used technique for supporting soft-

ware evolution activities [19]. Specifically, static slicing [26]
can identify the subset of software that is semantically de-
pendent on a specific portion that has or is planned to be
changed and hence is useful for assessing change impact due
to evolution. In the MDE context, model slicing has been
studied for particular model types, e.g., State Machines [16,
18], Class Diagrams [13, 18], etc. However, large-scale soft-
ware systems are often described using heterogeneous col-
lections of interrelated models, and change impact analysis
requires a broader slicing approach that can address this.

While some work has addressed slicing for heterogeneous
model collections, these have been limited to a specific set of
model types (e.g., [20]) or remain at a theoretical level (e.g.,
[7]). In this paper, we propose a general and pragmatic
static slicing algorithm for heterogeneous model collections.
Specifically, (1) it operates on “megamodels” – a general
modeling technique to represent collections of interrelated
models; (2) it can work with arbitrary model types (e.g.,
conceptual, behavioural, goal models, test models, etc.) by

utilizing their corresponding type-specific model slicers; and
(3) it uses the widely adopted notion of traceability relations
to assess change impact between models. We then analyze
the proposed algorithm for termination, correctness, running
time and minimality.

The remainder of this paper is structured as follows. In
Sec. 2, we give a motivating example from the automotive
software domain. In Sec. 3, we recall the background needed
for the slicing approach and in Sec. 4, we describe the pro-
posed slicing algorithm and its analysis. Then, in Sec. 5, we
give a detailed illustration of the algorithm on the automo-
tive example. In Sec. 6, we discuss related work and finally,
in Sec. 7, we give our conclusions and report on future work.

2. MOTIVATING EXAMPLE
Consider an automotive subsystem that controls the be-

haviour of a power sliding door in a car. The system has an
Actuator that is triggered on demand by a Driver Switch.
This example is presented in Part 10 of the ISO 26262 stan-
dard [12]. Refer to Fig. 1 which shows the system models
comprised of a Class Diagram (to model its structure), a Se-
quence Diagram (to model its behaviour) and a relationship
between them. This can be visualized at a high-level as the
megamodel (to be defined in Sec. 3) in Fig. 2.

The Driver Switch input is read by a dedicated Electronic
Control Unit (ECU), referred to as AC ECU, which powers
the Actuator through a dedicated power line. The vehicle
equipped with the item is also fitted with an ECU which is
able to provide the vehicle speed (VS). This ECU is referred
to as VS ECU. The system includes a safety element, namely,
a Redundant Switch. Including this element ensures a higher
level of integrity for the overall system.

The VS ECU control unit provides the AC ECU with the vehi-
cle speed. The AC ECU monitors the driver’s requests, tests if
the vehicle speed is less than or equal to 15 km/h, and if so,
commands the Actuator. Thus, the sliding door can only
be opened or closed if the vehicle speed is no more than 15
km/h. The Redundant Switch is located on the power line
between the AC ECU and the Actuator as a secondary safety
control. It switches on if the speed is less than or equal
to 15 km/h, and off whenever the speed is greater than 15
km/h. It does this regardless of the state of the power line

50



requestDoorOpen() 
requestDoorClose() 

open:Boolean requestSpeed() 
sensed_speed: Real 

request Speed() 
closed: Boolean 

sensed_speed: Real 
 

getSpeed(sensed_speed) 
sensed_speed: Real 

openDoor() 
closeDoor() 

powered: Boolean 
activated: Boolean 

powers controls 

communicatesWith communicatesWith 

communicatesWith 

controls 

!"#$%&'()*'+,-' .%#$%&(/,'+,-' .(/%0&.012' 3"'(425!$2'*650%7' "(8$3&93.90'*650%7'

ds.requestDoorOpen() 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor() 

ds.requestDoorClose() 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor() 

s.requestSpeed() 

[if s.sensed_speed<=15]  s.closed else s.open 

par 

R: CD-SD 

PowerSlidingDoor: CD 

PowerSlidingDoor: SD 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

Figure 1: Power sliding door system models.

!"#$%&'()(*+,""%-./,. !"#$%&'()(*+,""%-.&,.
CD-SD 

Figure 2: Power sliding door system megamodel.

(its power supply is independent). The Actuator operates
only when it is powered.

Now, consider that the power sliding door system changes
and the redundant switch is removed. This could be due to
the need to minimize cost and produce a cheaper vehicle.
In the new system, only the AC ECU checks the vehicle speed
before commanding Actuator. In this case, it would be de-
sirable to provide a sliced megamodel of the system that
reflects the parts of the original megamodel affected by this
change in order to help with system evolution activities. For
example, we shown that with safety-critical software, such
as for automotive systems, a system megamodel slice is an
essential part of re-assessing the safety assurance of the sys-
tem [15].

After presenting our slicing approach, we demonstrate it
on the power sliding door example in Sec. 5.

3. BACKGROUND AND PRELIMINARIES

3.1 Megamodeling and Model Management
A complexity problem in MDE arises due to the prolif-

eration of software models, and the area of Model Manage-
ment [2] has emerged to address this challenge. Model man-
agement focuses on a high-level view in which entire mod-
els and their relationships (i.e., mappings between models)
can be manipulated using operators (i.e., specialized model
transformations) to achieve useful outcomes. In this pa-
per, we focus on one of the model management operators –
model slice [20]. Other model management operators that
have been studied include match [2], diff [2], lift [23], and
merge [6]. Each of these model management operators can
be viewed as an abstract transformation that defines a class
of concrete transformations, i.e., the implementations that
refine the operator for particular model types. For example,
a slice operator for class diagrams is implemented differently

than a slice operator for state machines.

Megamodels. To help visualize and work with collections
of models and their relationships, model management uses a
special type of model called a megamodel [3]. In this paper,
we define this and related concepts as follows.

Definition 1 (Megamodel). A megamodel is a model
with elements representing models and links between ele-
ments representing relationships between the models.

Fig 3 shows the simplified metamodel used for megamod-
els in this paper. A Megamodel consists of a graph of named
and typed Model elements with Relationship links connect-
ing them. These refer to models and model relationships
(defined below), respectively, and the types indicate their
metamodels. The well-formedness constraint requires that
the models on either end of every relationship are distinct.
We have made the simplifying assumptions that (1) all rela-
tionships are binary; and (2) megamodels cannot be nested
or reference other megamodels. In Sec. 4.3, we discuss how
are these assumptions can be relaxed.

Fig. 2 shows a megamodel for our power sliding door ex-
ample. Here, PowerSlidingDoor : CD and PowerSliding−
Door : SM refer to the Class Diagram and Sequence Diagram,
respectively, while the line connecting them refers to the re-
lationship of type CD− SD for connecting these two types of
models. Note that relationship names are optional.

Definition 2 (Model). A model is set of typed ele-
ments and links conforming to a metamodel. We use the
term atom to denote either an element or a link.

Definition 3 (Model relationship). A model rela-
tionship connecting models M and M ′ consists of a set of
typed links conforming to a metamodel. Each link connects
atoms of M to atoms of M ′.

Definition 4 (Traceability relationship). A trace-
ability relationship is a model relationship in which the links
express a dependency relationship between the atoms it con-
nects. The dependency relationship can be unidirectional or
bidirectional depending on the type of traceability link.

51



Node

name

type

Model Relationship

Megamodel

2

end

*

Well formedness constraint:

Figure 3: (Simplified) metamodel for megamodels.

Note that the definition of traceability relationship used
in this paper is broader than that typically used by require-
ments engineering [11] and narrower than what is sometimes
used for general modeling [1]. We focus solely on traceability
relationships and use them to determine cross-model depen-
dencies. In fact, we assume that the only relationships in the
megamodels are the traceability relationships. In Sec. 4.3,
we discuss how this assumption can be relaxed.

Definition 5 (Model fragment). A model fragment
S of a model M , denoted S[M ], is any subset of atoms of
M .

Definition 6 (Megamodel fragment). A megamodel
fragment S of a megamodel X, denoted S[X], is any set of
model fragments of the models in X. We say that S[X] is
contained in S′[X], denoted S[X] ⊑ S′[X], iff the following
condition holds:

∀M ∈ X·∪{S[M ]|S[M ] ∈ S[X]} ⊆ ∪{S′[M ]|S′[M ] ∈ S
′[X]}

Thus, S[X] ⊑ S′[X] when, for each model M ∈ X, the
combined model fragments of M in S[X] is contained in
the combined model fragments of M in S′[X]. Note that
a megamodel fragment is defined as containing only model
fragments and no relationships between them.

3.2 Model slicing
Program slicing, and, correspondingly, model slicing ap-

proaches, fall into four categories: static, dynamic, condi-
tional and amorphous [7]. In each case, we are given a
model and a slicing criterion indicating some “aspect of in-
terest” in the model, and the slicing process produces a slice
of the model that addresses the criterion. Static slicing uses
a model fragment as the criterion. A forward slice expands
the criterion to all dependent atoms while a backward slice
expands to all depending atoms. While static slicing uses
a subset of the syntax as a criterion, dynamic slicing uses
a constraint from the semantic domain. For example, dy-
namic slicing can be used to identify the classes used in a
particular run of a program. Conditional slicing combines
both static and dynamic approaches by allowing a hybrid
criterion. Finally, while the first three types of slicing pro-
duce a slice that is a fragment of the model, amorphous
slicing allows the slice to be a different model. For example,
the approach used in [20] adds stuttering transitions to state
machine slices in order to preserve behaviours.

In this paper, we focus on static forward slicing since it is
readily applicable to assessing the impact of changes due to
model evolution. We define this as follows.

Definition 7 (Static forward model slice). Given
a model M and model fragment S[M ], the static forward
slice of M with respect to the slicing criterion S[M ] is the
model fragment S′[M ] satisfying the following conditions:

1. (Correctness) S′[M ] contains all atoms of M that are
directly or indirectly dependent on atoms of S[M ].

2. (Minimality) Every atom of S′[M ] is either directly or
indirectly dependent on atoms of S[M ].

Note that since S[M ] is dependent on itself, these conditions
imply that S[M ] ⊆ S′[M ].

4. MEGAMODEL SLICING
In this section, we propose a slicing approach for heteroge-

neous megamodels. Intuitively, such a slicer should allow the
criterion to be expressed as a megamodel fragment and the
forward slice should expand this to the megamodel fragment
containing all dependent elements. We generalize Def. 7 to
capture this intuition.

Definition 8 (Static forward megamodel slice).
Given a megamodel X and megamodel fragment S[X], the
static forward slice of X with respect to slicing criterion
S[X] is the megamodel fragment S′[X] satisfying the follow-
ing conditions for all M ∈ X:

1. (Correctness) There exists a model fragment S′[M ] ∈
S′[X] that contains all atoms of M that are directly or
indirectly dependent on the atoms of any model frag-
ment in S[X].

2. (Minimality) If there exists a model fragment S′[M ] ∈
S′[X], then every atom of S′[M ] is either directly or
indirectly dependent on the atoms of some model frag-
ment in S[X].

There are two levels of expansion in this slicing process:
(1) expansion within individual models to dependent ele-
ments and, (2) expansion between models across relation-
ships to dependent elements in neighbouring models. This
two-level process is repeated until it produces no further
expansion. For (1), we leverage existing type-specific slicers
that take the semantics of the individual model types into ac-
count. For (2), we use the links in traceability relationships
to connect dependent elements. Here, no special relationship-
type specific slicers are needed since all relationship types
are assumed to be sets of links and every link is assumed to
represent a dependency.

Note that this definition of slicing is a deep slicing since the
process includes the content of the models and relationships
referenced by the elements of the megamodel. In contrast,
a shallow megamodel slicing would be one that only con-
sidered the elements of the megamodel and not what they
reference. Here, a subset of a megamodel (the criterion) is
expanded to the subset that is connected directly or indi-
rectly via relationship links (the slice), i.e., the shallow slice
is the largest subset contained in the transitive closure of the
initial subset taken along relationship links. There may be
some use cases in which shallow megamodel slicing is useful
but in this paper we focus on the deep version.

52



4.1 Slicing algorithm
Fig. 4 gives the algorithm for forward slice. The input is

megamodel X with megamodel fragment Sc[X] given as the
slicing criterion. The output is megamodel fragment S[X]
representing the forward slice. The algorithm makes the
following assumptions:

Assumption 1. For each model type T represented in X,
we have a slicer SliceT for models of type T that satisfies
Def. 7.

Assumption 2. The set of traceability relationships in X

express all and only the direct dependencies between atoms
of models in X.

In addition, we require several simple supporting opera-
tions.

Definition 9 (Union). Given a pair of megamodel frag-
ments S1[X], S2[X], the megamodel fragment union, de-
noted Union(S1[X], S2[X]), is defined with the following con-
dition.

∀S[M ] ∈ Union(S1[X], S2[X])·

S[M ] = ∪{S′[M ]|S′[M ] ∈ S1[X] ∪ S2[X]}

Thus, the Union(S1[X], S2[X]) can be constructed by first
taking the set union S1[X] ∪ S2[X] and then unioning all
model fragments of the same model within this.

Definition 10 (Trace). Given a traceability relation-
ship R with ends M and M ′, and model fragment S[M ],
the trace of S[M ] along R, denoted Trace(R,S[M ]) is the
model fragment S′[M ′] consisting of the subset of atoms in
M ′ dependent on the atoms in M according to R.

We compute Trace(R,S[M ]) by following the links of R
from the atoms of M to the atoms of M ′.

Definition 11 (OppEnd). Given a traceability relation-
ship R with ends M and M ′, we define OppEnd(R,M) = M ′

and OppEnd(R,M ′) = M .

In line 1 of the algorithm, the current slice is initialized
to the criterion. The two levels of expansion are in lines 4-9
and lines 10-17, respectively, inside the main loop of lines
2-19. For level 1, the temporary result S1[X] is initialized in
line 3 to the empty set and then lines 5-9 iterate through the
model fragments in the current slice. In line 7, the model
type-specific slice is computed using the model fragment as
the criterion and the result is accumulated in S1[X] (line 8).
The level 2 expansion temporary result S2[X] initialized

on line 10. The outer iteration (lines 11-17) is over the model
fragments from the level 1 expansion, and the inner iteration
(lines 12-16) is over each relationship connected to the model
fragment. Note that the set of relationships connected to a
model fragment S1[M ] is the set of relationships connected
to M via the end property (see Fig. 3). For each such re-
lationship R, we first determine the model M ′ on the other
end of the relationship using supporting function OppEnd in
line 13. Then in line 14, the model fragment S2[M

′] is pro-
duced by tracing the links in R from S1[M ] to M ′. Finally,
in line 15, this result is accumulated in S2[X].

Algorithm: Forward Megamodel Slice
Input: megamodel X, criterion megamodel fragment Sc[X]
Output: slice megamodel fragment S[X]
1: S[X] := Sc[X]
2: do {
3: S′[X] := S[X]
4: S1[X] := ∅
5: for (S[M ] ∈ S[X]) {
6: T := M.type

7: S1[M ] := SliceT (M,S[M ])
8: S1[X] := Union(S1[X], {S1[M ]})
9: }
10: S2[X] := ∅
11: for (S1[M ] ∈ S1[X]) {
12: for (R ∈M.end) {
13: M ′ := OppEnd(R,M)
14: S2[M

′] := Trace(R,S1[M ])
15: S2[X] := Union(S2[X], {S2[M

′]})
16: }
17: }
18: S[X] := Union(S1[X], S2[X])
19: } until (S[X] ⊑ S′[X])
20: return S[X]

Figure 4: Algorithm for forward megamodel slice.

After the two levels of expansion, the combined result is
computed in line 18 and checked to see if any actual expan-
sion has occurred (line 19). If no expansion has occurred, a
fixed point has been reached and the main loop exits with
the current slice returned as the final result in line 20; oth-
erwise, the main loop repeats.

4.2 Analysis
We consider the issues of termination, complexity and cor-

rectness for forward slice algorithm in Fig. 4.

Termination. We show that the slicing algorithm is guar-
anteed to terminate. After the level 1 expansion loop com-
pletes (lines 5-9), it is clear that S′[X] ⊑ S1[X] since S1[X]
is constructed by expanding each model fragment in the cur-
rent slice S[X] using type-specific slicers (see Assumption 1)
and doing Union (see Def. 9). Furthermore, S′[X] = S[X]
(line 3). Then, in line 18, when the new slice is computed,
S1[X] ⊑ S[X] since Union cannot produce a result smaller
than its arguments. Therefore, S′[X] ⊑ S[X]. Thus, on line
19, either no expansion has occurred (S[X] ⊑ S′[X]) and
the algorithm terminates or some expansion has occurred
and the loop iterates again. Thus, in each iteration, the
current slice can only get larger and since this process is
bounded by X, the algorithm must terminate.

Time Complexity. The level 1 loop (lines 5-9) can iterate
NM times and the level 2 loop (lines 11-17) can iterate N2

M

times where NM is the number of models in X. The domi-
nating operation in the level 1 loop is the type-specific slicer.
Since the time complexity varies according to the slicer used,
we represent it using a type-independent upper bound SL(n)
as a function of the number of elements n in the input model.
Tracing along a relationship and union (lines 14-15) is O(Na)
in the worst case, where Na is the total number of atoms
across all models of X. Thus, in the worst case, one iter-
ation of the main loop is O(NM × SL(Na) + N2

M × Na).

53



Finally, in the worst case, the size of the current slice can
increase by one in each iteration of the main loop, for Na

iterations. Thus, the time complexity is given by:

O(Na ×NM × SL(Na) +N
2

M ×N
2

a )

Correctness. We argue that the slicing algorithm satis-
fies the correctness condition in Def. 8. Assume that the
algorithm is at line 3 and there exists a non-empty set of
atoms not in the current slice S[X] that are dependent on
atoms of model fragments in S[X]. Note that if some atom
a is indirectly dependent on an atom a′, then there must be
a sequence of directly dependent atoms a, a1, ..., an, a

′ con-
necting them. Thus, there must also be a non-empty set of
atoms not in S[X] that are directly dependent on atoms of
model fragments in S[X]. Let us choose one such atom a′ in
some model M ′ in X that is directly dependent on an atom
a in some model fragment S[M ] in S[X]. We consider the
two cases: M ′ = M and M ′ 6= M .

Case 1). If M ′ = M , then by Assumption 1, the slicer
used in line 7 satisfies the correctness condition in Def. 7 and
thus, atom a′ will be added to a model fragment in S1[X]
in an iteration of the level 1 loop (lines 5-9).

Case 2). If M ′ 6= M , then by Assumption 2, there is a
traceability relationship R in X with a link that connects a
to a′ and thus, line 14 will cause a′ to be added to a model
fragment in S2[X] in an iteration of the level 2 loop (lines
11-17).

In either case, the atom a′ will enter the next iteration
of the slice in line 18. Furthermore, since the addition of a′

expands the slice, the main loop will iterate again and will
capture the next set of directly dependent atoms, and so
on. When the set of directly dependent atoms not in S[X]
is empty, no further level 1 or level 2 expansion is possible,
and the algorithm terminates.

Minimality. We show that the slicing algorithm satisfies
the minimality condition in Def. 8. To do this, we must
show that the slice produced by the algorithm contains no
atom that is not dependent on the criterion. Assume that
there is an atom a′ in the final slice that is not dependent on
the criterion. In this case, a′ must have been added to the
slice on line 7 or line 14 in some iteration of the main loop.
However, by Assumption 1 and Def. 7, SliceT can only
produce minimal model slices in line 7 and so a′ could not
have been added there. Also, by Assumption 2, traceability
relationships only contain links between true dependencies
and in line 14, Trace is applied from the current slice to
these dependent atoms. Thus, a′ could not have been added
at line 14. Therefore, we have a contradiction and so the
megamodel slice must be minimal.

4.3 Discussion

Well-formedness and referential integrity. Def. 7 does
not require that a slice be a well-formed model. However,
in practice, ensuring that a slice is well-formed may be de-
sirable because the slice can be used directly by tools such
as editors, analyzers and transformations. Making a model
fragment into a well-formed model requires it to be expanded
by a minimum number of atoms in order to satisfy the well-
formedness constraints. For example, if a CD fragment con-
tains an association without one of its endpoints, adding the

missing endpoint class will make it well-formed.
The problem with doing this expansion is that atoms can

be added that are not dependent on the criterion since, if
they were dependent, then they would already be in the slice.
In particular, if SliceT used in line 7 of the slicing algorithm
always included an expansion to well-formedness then in the
subsequent steps of the algorithm the atoms added for well-
formedness would be treated as though they were atoms
added for dependency. This would result in a non-minimal
megamodel slice. As a result, we view the expansion to well-
formedness as an optional post-processing step that could be
applied after the megamodel slice is computed.

A similar argument can be made about the issue of refer-
ential integrity. Assume that one atom references another,
e.g., a lifeline in a sequence diagram references the class of
the object that the lifeline represents. The referenced class
is not dependent on the referencing lifeline; thus, if the for-
ward slice includes the lifeline, it need not contain the class.
However, it may be desirable to expand the slice to include
the class to provide relevant contextual information for the
lifeline. As with well-formedness, this referential integrity
expansion can introduce atoms that are not dependent on
the criterion and thus such an expansion should only be done
as a post-processing step on the slice.

Generalizing the slicing algorithm. In Sec. 3, we made
several simplifying assumptions in order to focus on the core
aspects of the slicing algorithm. We now briefly discuss how
to relax these assumptions.
• N-ary Relationships. We have assumed that all re-

lationships in the megamodel are binary but it is straight-
forward to extend the algorithm to handle N-ary relation-
ships. Specifically, the iteration through the relationships
(lines 12-16) must be generalized to handle the case where a
traceability link holds between atoms in models on multiple
ends, and the supporting operations OppEnd and Trace must
be adapted to address this.
• Nested megamodels. In the general case, a meg-

amodel can contain other megamodels. Such a megamodel
could be viewed as a tree with models as leaves and nested
megamodels as intermediate nodes. A megamodel fragment
is a tree with the same structure but with model fragments
as leaves. Thus, the algorithm follows a similar approach as
currently but in addition it must preserve the megamodel
tree structure in the final slice.
• Arbitrary relationships. We have assumed that all

relationships are traceability relationships since these are
the only ones that matter to the slicing algorithm. In gen-
eral, however, there may be other types of relationships in
the megamodel, e.g., refinement, overlap, etc. The simplest
way to allow these relationship types is to ignore all non-
traceability relationships in the loop in lines 12-16.

5. POWER SLIDING DOOR EXAMPLE
In this section, we demonstrate our slicing approach on

the power sliding door example presented in Sec. 2.

5.1 Megamodels of class and sequence diagrams
For the purpose of the example presented here, we instan-

tiate our general framework such that its input is a system
megamodel X given by a class diagram CD, a sequence di-
agram SD, and a relationship CD− SD between them. Note
that, although these are both UML diagrams, we are treat-

54



Table 1: Dependency relations for CD and SD slicers.

Rule Component under assessment Dependant parts potentially impacted

CD1 Class

Owned attributes and methods.

Associations connected to class.

Attributes/methods in other classes using types introduced in this class.

Subclasses.

SD1 Term (portion of an expression) Associated expression.

SD2 Expression (guard/action) Associated message.

SD3 Message Associated arrow (from source to target lifeline).

SD4 Arrow
Arrows directly after the arrow in the sequence.

Message on the arrow.

SD5 Lifeline
Arrows connected to the lifeline.

Messages on arrows connected to the lifeline.

ing them separately for the sake of this example. In general,
not all models in a megamodel have to be UML diagrams.

Assume we are given some known change on the meg-
amodel, which represents the slicing criterion Sc[X] used as
input to our algorithm. As stated in Sec. 4, we also as-
sume that we are provided with correct class diagram and
sequence diagram model slicers similar to those presented in
[18] and [21], respectively.

For simplicity, we define our own CD and SD slicers for this
example as follows:
• CD slicer works with the dependency rule shown as CD1 in

Table 1: If a class is being considered for impact assessment,
then all of its attributes, methods, associations linked to it
and its subclasses are considered dependant on it and could
potentially be impacted. They are therefore to be added in
the slice.
• SD slicer works with the dependency rules shown as

SD1− SD5 in Table 1: If a term, i.e., any portion of an ex-
pression (e.g., a guard or an action) in a message, is being
considered for impact assessment, then its associated expres-
sion could be impacted. Similarly, if an expression (e.g., a
guard or an action) is being considered, its associated mes-
sage should be included in the slice. Other rules for impact
assessment of messages, arrows and lifelines are shown in
the table.

Note that both slicers satisfy Def. 7, i.e., they are correct
and minimal. We also assume that the set of traceability
relationships in CD− SD expresses all and only the depen-
dencies between the CD and SD in our system megamodel.

5.2 Slicing of Power Sliding Door megamodel
Recall the Power Sliding Door megamodel presented in

Fig. 2 which we refer to as PSD. The models represented by
PSD are in Fig. 1.

There are three threads running in parallel in the se-
quence diagram: the top thread describes the behaviour of
the Redundant Switch; the middle thread describes the be-
haviour when the driver requests to open the door, and the
bottom thread describes the behaviour when the driver re-
quests to close the door. The relationship R : CD− SD is a
unidirectional traceability relationship (refer to Sec. 3) that
goes from SD to CD, since the objects and terms of SD are
dependent on classes, attributes and methods in CD. The
traceability between the two models is given implicitly by
the SD referencing parts of the CD.
As described in Sec. 2, let us consider a scenario where the

system changes, and the redundancy is removed by deleting

the Redundant Switch class from the CD. This change repre-
sents our slicing criterion given by the megamodel fragment
with detail shown in Fig. 5. Note that only the class itself is
considered for the impact assessment and not its methods,
attributes and associations linked to it.

We now demonstrate the application of the forward meg-
amodel slice algorithm presented in Fig. 4 on the megamodel
PSD and the criterion megamodel fragment Sc[PSD].

Line 1 (Initialization): The current slice is initialized to
the criterion Sc[PSD] shown as the highlighted parts of Fig. 5.

1st iteration of the outer loop (lines 2-19):

Lines 4-9 (Expansion Level 1): The temporary result
S1[PSD] is initialized to the empty set. Then in lines 5-9,
we iterate through the model fragments in the current slice
shown in Fig. 5. The CD is considered first and the CD slicer
is used. Based on the dependency rule CD1 in Table 1,
since the Redundant Switch class is being impacted, all
of its attributes and methods are added to the slice and
stored in S1[PSD] on line 8. Since there are no other model
fragments to consider on line 5, the loop exits with S1[PSD]
as shown by the highlighted parts in Fig. 6.

Lines 10-17 (Expansion Level 2): Up to this point,
R : CD− SD has not been considered in the slicing. In this
expansion level, we do use it. First, the level 2 expan-
sion temporary result S2[PSD] is initialized on line 10 to
the empty set. The outer iteration (lines 11-17) is over
the model fragments from the level 1 expansion. We first
consider the CD. On the opposite end of R : CD− SD is the
PowerSlidingDoor : SD (which is M ′ in the algorithm on
line 13). On line 14, we trace through R : CD− SD and add
to S2[M

′] all the atoms related to those highlighted in the
CD. This includes the Redundant Switch object and lifeline
and all messages (or parts of them) that are traced back to
attributes/methods of the Redundant Switch class in the
CD. The result is added to S2[PSD] on line 15 and can be
seen in the highlighted parts of the SD in Fig. 7. Since no
other model fragments exist in S1[PSD] on line 11, the loop
exits.

Line 18: The combined result S[PSD] is computed by com-
puting the union of the results of the level 1 and level 2
slices, and can be seen as the result of the 1st iteration of
the algorithm in the highlighted parts of Fig. 7.

55



!"#$%"&'(#)*+& ,'&-./&

0.&-./& 0*)12)3"& !33"&

requestDoorOpen() 
requestDoorClose() 

open:Boolean requestSpeed() 
sensed_speed: Real 

!"#$%#&%'()*+',-(

request Speed() 
closed: Boolean 

sensed_speed: Real 
 

getSpeed(sensed_speed) 
sensed_speed: Real 

openDoor() 
closeDoor() 

powered: Boolean 
activated: Boolean 

powers controls 

communicatesWith communicatesWith 

communicatesWith 

controls 

$45%*16,'&-./& 2*5%*160.&-./& 260*)12)3"& 746!"#$%"&'(#)*+& 468%719729)&'(#)*+&

ds.requestDoorOpen() 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor() 

ds.requestDoorClose() 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor() 

s.requestSpeed() 

[if s.sensed_speed<=15]  s.closed else s.open 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

par 

R:CD-SD 

PowerSlidingDoor: CD 

PowerSlidingDoor: SD 

ac_ecu.sensed_speed

Figure 5: Slicing criterion Sc[PSD].

!"#$%"&'(#)*+& ,'&-./&

0.&-./& 0*)12)3"& !33"&

requestDoorOpen() 
requestDoorClose() 

open:Boolean requestSpeed() 
sensed_speed: Real 

!"#$%#&%'()*+',-(

request Speed() 
closed: Boolean 

sensed_speed: Real 
 

getSpeed(sensed_speed) 
sensed_speed: Real 

openDoor() 
closeDoor() 

powered: Boolean 
activated: Boolean 

powers controls 

communicatesWith communicatesWith 

communicatesWith 

controls 

$45%*16,'&-./& 2*5%*160.&-./& 260*)12)3"& 746!"#$%"&'(#)*+& 468%719729)&'(#)*+&

ds.requestDoorOpen() 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor() 

ds.requestDoorClose() 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor() 

s.requestSpeed() 

[if s.sensed_speed<=15]  s.closed else s.open 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

par 

R:CD-SD 

PowerSlidingDoor: CD 

PowerSlidingDoor: SD 

ac_ecu.sensed_speed

Figure 6: Result of level 1 slicing in 1st iteration.

!"#$%"&'(#)*+& ,'&-./&

0.&-./& 0*)12)3"& !33"&

requestDoorOpen() 
requestDoorClose() 

open:Boolean requestSpeed() 
sensed_speed: Real 

!"#$%#&%'()*+',-(

request Speed() 
closed: Boolean 

sensed_speed: Real 
 

getSpeed(sensed_speed) 
sensed_speed: Real 

openDoor() 
closeDoor() 

powered: Boolean 
activated: Boolean 

powers controls 

communicatesWith communicatesWith 

communicatesWith 

controls 

$45%*16,'&-./& 2*5%*160.&-./& 260*)12)3"& 746!"#$%"&'(#)*+& ./!"#$%#&%'()*+',-(

ds.requestDoorOpen() 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor() 

ds.requestDoorClose() 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor() 

s.requestSpeed() 

[if s.sensed_speed<=15]  s.closed else s.open 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

par 

R:CD-SD 

PowerSlidingDoor: CD 

PowerSlidingDoor: SD 

ac_ecu.sensed_speed

Figure 7: Result of the 1st iteration.

56



Line 19: In this line, we check to see if any actual expan-
sion has occurred. Since the condition is not met (i.e., the
result of the 1st iteration did indeed expand on the initial
criterion) we iterate one more time.

2nd iteration of the outer loop (lines 2-19):

The slicing criterion S[PSD] in this iteration is the result
of the previous iteration shown in Fig. 7. S1[PSD] is reset
again to the empty set.

Lines 4-9 (Expansion Level 1): First the CD is selected
on line 5. Since none of the slicing dependency rules given
in Table 1 apply, nothing is added to S1[PSD] on line 8.
Next, the SD is selected on line 5. Now, SD1− SD3 rules
for the SD slicer in Table 1 apply, and the SD slice is ex-
panded to include the arrows of the top two messages and
the entire expressions (and therefore messages and arrows)
that the term s.closed appears in. This is seen in the
highlighted parts of the SD portion of Fig. 81.

Lines 10-17 (Expansion Level 2): In this level, trac-
ing across the R : CD− SD relationship from the CD to the
SD (recall this is a unidirectional traceability relationship),
since no new elements are introduced in the CD slice, noth-
ing is traced to them in the SD. The result is an empty
set.

Line 18: The results of the level 1 and the level 2 expan-
sions are unioned and are reflected in the highlighted parts
of Fig. 8.

Line 19: Since an expansion (w.r.t. the initial slice for
this iteration) has occurred, the condition does not hold,
and we iterate one more time on the outer loop.

3rd iteration of the outer loop (lines 2-19):

In this iteration, neither the CD nor the SD are expanded in
the first level expansion as none of the dependency rules
for their respective slicers holds. Similarly, no new ele-
ments are added, and therefore going through the trace
links does not identify any other elements to be added to
the expansion in level 2. The condition on line 19 now
holds (no expansion has occurred), and the main loop of
the algorithm exits.

Line 20 (Return): The current slice, S[PSD], which is
shown in the highlighted parts of Fig. 8, is returned as the
final result of the algorithm.

5.3 Post-processing
As suggested in Sec. 4, we perform a post-processing step,

we expand the result of slicing algorithm shown in Fig. 8 to
ensure the model fragments are well-formed and contextual
information for referential integrity is included.

For the CD, the VS ECU and Actuator classes are included
since both endpoints of associations communicatesWith and
controls are needed for well-formedness.

For the SD, the VS ECU, AC ECU and Actuator objects and
their lifelines are included to satisfy the well-formedness con-
straint of arrows requiring their lifelines. Also, the execution

1Due to space limits, we have skipped visualizing the result
at each step of the 2nd iteration and have shown the final
result of the union only.

bar on the leftmost lifeline is included, as both of its input
and output arrows are included in the result of the slicing.

Finally, all the methods and attributes of the Actuator

class, as well as the sensed speed attribute of the AC ECU

class and the AC ECU class itself are added to satisfy the ref-
erential integrity condition between the SD and the CD (they
are all referenced in the SD).

The detail of the final megamodel fragment produced af-
ter the slicing and post-processing is shown in the high-
lighted parts of Fig. 9. This can now be used to more ef-
ficiently complete the model evolution process by focusing
only on the model parts impacted by the original deletion
of Redundant Switch in the CD.

6. RELATED WORK
We identify three main categories of related work: work

on model evolution, work on megamodeling operators, and
finally, work on model slicing. We describe them below.

Model evolution. A survey on supporting the evolution of
UML models in model-driven software development is pre-
sented in [14]. The scenarios that cause a model to change
are discussed; these form the basis for megamodel evolution
in our approach. In [22], the authors discuss some of the key
problems of evolution in MDE, summarize the key state-of-
the-art, and present some new challenges in research in this
area. The problem of model evolution with respect to meg-
amodels is stated as a“dependency heterogeneity”challenge.
The authors express the need for a sound, precise theory of
heterogeneous dependencies between MDE artefacts, as well
as compliant and pragmatic tool support, both of which are
complimentary to and/or are part of our current work.

Megamodeling operators. A formal approach to meg-
amodeling, calledMapping-Aware Megamodeling, is presented
in [9]. Our notion of a megamodel is consistent with it. The
approach also describes category theory-based operations on
the mapping-aware megamodels, but does not address meg-
amodel slicing. In previous work [24], we presented a set of
operators (Map, Filter, Reduce) that can be applied at the
megamodel level. We are not aware of any other work in
the area of applying operators at the megamodel level, and
specifically, we have not seen any work addressing slicing of
megamodels.

Model Slicing. We divide this area into work on specific
model slicers, work on generic model slicers and work on
slicing multiple models.

Specific Model Slicers. Numerous approaches have appeared
in the literature describing slicers for specific model types.
For example, [13] defines context-free model slicing and presents
an algorithm for computing slices on UML class models. [18]
also considers UML models, namely, class diagrams, indi-
vidual state machines, and communicating sets of state ma-
chines. The approach achieves slicing of these models using
model transformations. An approach for slicing state-based
models, in particular, EFSM (extended finite state machine)
models, is discussed in [16]. Finally, [17] proposes a slicing
technique for UML architectural models, and demonstrates
the uses of slicing for different purposes such as regression
testing and understanding large architectures. Many other
approaches (e.g., [21], [18]) are presented in the literature
and can all be used as part of our framework as specific

57



!"#$%"&'(#)*+& ,'&-./&

0.&-./& 0*)12)3"& !33"&

requestDoorOpen() 
requestDoorClose() 

open:Boolean requestSpeed() 
sensed_speed: Real 

!"#$%#&%'()*+',-(

request Speed() 
closed: Boolean 

sensed_speed: Real 
 

getSpeed(sensed_speed) 
sensed_speed: Real 

openDoor() 
closeDoor() 

powered: Boolean 
activated: Boolean 

powers controls 

communicatesWith communicatesWith 

communicatesWith 

controls 

$45%*16,'&-./& 2*5%*160.&-./& 260*)12)3"& 746!"#$%"&'(#)*+& ./!"#$%#&%'()*+',-(

ds.requestDoorOpen() 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor() 

ds.requestDoorClose() 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor() 

s.requestSpeed() 

[if s.sensed_speed<=15]  s.closed else s.open 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

par 

R:CD-SD 

PowerSlidingDoor: CD 

PowerSlidingDoor: SD 

ac_ecu.sensed_speed

Figure 8: Result of 2nd iteration.

!"#$%"&'(#)*+& !"#$%&#

'%#$%&# '()*+),-# !,,"&

requestDoorOpen() 
requestDoorClose() 

open:Boolean requestSpeed() 
sensed_speed: Real 

./0*10+1)#"23)(4#

request Speed() 
closed: Boolean 

sensed_speed: Real 
 

getSpeed(sensed_speed) 
sensed_speed: Real 

openDoor() 
closeDoor() 

powered: Boolean 
activated: Boolean 

powers controls 

communicatesWith communicatesWith 

communicatesWith 

controls 

567/(*8!"#$%&# +(7/(*8'%#$%&# +8'()*+),-# -./!"#$%"&'(#)*+& 68./0*10+1)#"23)(4#

ds.requestDoorOpen() 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.openDoor() 

ds.requestDoorClose() 

[if ac_ecu.sensed_speed<=15 and a.powered and s.closed] a.activated = True, a.closeDoor() 

s.requestSpeed() 

[if s.sensed_speed<=15]  s.closed else s.open 

ac_ecu.requestSpeed() 

ac_ecu.sensed_speed 

par 

R:CD-SD 

PowerSlidingDoor: CD 

PowerSlidingDoor: SD 

ac_ecu.sensed_speed

Figure 9: Output of algorithm after post-processing.

model type slicers for each of the model types in our hetero-
geneous megamodels.

Generic Model Slicers. Generic model slicing has also been
studied in the MDE community. For example, the major
contribution of [4, 5] is the Kompren language, which pro-
vides a generic approach to define a model slicer for a any
domain-specific metamodel. The approach permits develop-
ers to either use “strict slicers” that output models which
conform to their expected metamodel, or to define “soft
slicers” that can output nonconforming models or even out-
puts that are not models. Although Kompren can be used
for identifying specific type slicers in our framework, it is not
applicable for megamodel slicing, where a megamodel slicer
has to carefully invoke the specific type slicers. The work
in [7] defines slicing at a theoretical level, whereas we focus
on a more pragmatic approach. Also, the same work focuses
on dynamic slicing, as does the transformation slicing work
in [25], whereas our approach is considered a static slicing
approach. As far as we know, none of the approaches in
this category directly address megamodel slicing (whether
the megamodels are heterogeneous or not).

Slicing Multiple Models. Although the work presented in
[7] does not primarily focus on megamodel slicing, it briefly

discusses heterogeneous slicing as the union of individual
slicers. A slicing theory is presented at a high level and
does not go into the details of implementing a megamodel
slicing algorithm. From the modeling and safety community,
[20] proposes a batch model slicer for slicing SysML models
related to safety requirements. [10] presents a prototype tool
called SafeSlice which performs the slicing needed in [20].
This line of work performs slicing on specific model types,
whereas our work is a generic slicing approach. Also, the
presented approach is amorphous slicing, where the result
of the slice is not a model fragment of the original system.
For example, transitions are added to sliced state-machines
in order to preserve their behaviour. Our current approach
only considers slices to be fragments of the original model
(non-amorphous); however, we do plan to look at amorphous
slicing in future work.

7. CONCLUSION
Model slicing is a useful technique for assessing change

impact during model evolution activities. Although slicing
of individual models has been investigated, slicing of het-
erogeneous model collections has received much less atten-
tion. In this paper, we have proposed a general algorithm for

58



slicing of heterogeneous model collections represented using
megamodels and illustrated the algorithm on an automotive
example. We analyzed the algorithm and showed that it
behaves as expected with respect to termination, correct-
ness, time complexity and minimality. Finally, we discussed
the issues concerning slice well-formedness and referential
integrity as well as how to generalize the algorithm to sup-
port arbitrary relationship types, N-ary relationship and
nested megamodels. We are currently developing tooling
for the algorithm using the Model Management INTeractive
(MMINT) framework [8] and plan to use it to conduct more
extensive case studies to better understand the strengths
and weaknesses of the approach.

8. ACKNOWLEDGMENTS
This work is being done as part of the NECSIS project
(www.necsis.ca), funded by Automotive Partnership Canada
and NSERC.

9. REFERENCES

[1] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and
Y. Shaham-Gafni. Model traceability. IBM Systems
Journal, 45(3):515–526, 2006.

[2] P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In Proc. of CIDR’03,
volume 2003, pages 209–220, 2003.

[3] J. Bézivin, F. Jouault, and P. Valduriez. On the Need
for Megamodels. In Proc. of OOPSLA/GPCE
Workshops, 2004.

[4] A. Blouin, B. Combemale, B. Baudry, and
O. Beaudoux. Modeling Model Slicers. In Proc. of
MODELS’11, pages 62–76. Springer, 2011.

[5] A. Blouin, B. Combemale, B. Baudry, and
O. Beaudoux. Kompren: Modeling and Generating
Model Slicers. SoSyM, 14(1):321–337, 2015.

[6] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati,
N. Niu, and M. Sabetzadeh. A Manifesto for Model
Merging. In Proc. of GAMMA@ICSE’06, pages 5–12.
ACM, 2006.

[7] T. Clark. A General Model-Based Slicing Framework.
In Proc. of Wrksp on Composition and Evolution of
Model Transformations, 2011.

[8] A. Di Sandro, R. Salay, M. Famelis, S. Kokaly, and
M. Chechik. MMINT: A Graphical Tool for
Interactive Model Management. In Proc. of
MODELS’15 (demo track), 2015.

[9] Z. Diskin, S. Kokaly, and T. Maibaum.
Mapping-Aware Megamodeling: Design Patterns and
Laws. In Proc. of SLE’13, pages 322–343, 2013.

[10] D. Falessi, S. Nejati, M. Sabetzadeh, L. Briand, and
A. Messina. SafeSlice: A Model Slicing and Design
Safety Inspection Tool for SysML. In Proc. of
ESEC/FSE’11, pages 460–463. ACM, 2011.

[11] O. Gotel and A. Finkelstein. Contribution structures.
In Requirements Engineering, 1995., Proceedings of
the Second IEEE International Symposium on, pages
100–107. IEEE, 1995.

[12] International Organization for Standardization. ISO
26262: Road Vehicles – Functional Safety, 2011. 1st

version.

[13] H. Kagdi, J. I. Maletic, and A. Sutton. Context-Free
Slicing of UML Class Models. In Proc. of ICSM’05,
pages 635–638. IEEE, 2005.

[14] A. Khalil and J. Dingel. Supporting the Evolution of
UML Models in Model Driven Software Development:
a Survey. Technical Report 602, School of Computing,
Queen’s University, Ontario, Canada, 2013.

[15] S. Kokaly, R. Salay, V. Cassano, T. Maibaum, and
M. Chechik. A Model Management Approach for
Assurance Case Reuse due to System Evolution. In
Proc. of MODELS’16, 2016. (to appear).

[16] B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing
of State-Based Models. In Proc. of ICSM’03, pages
34–43. IEEE, 2003.

[17] J. T. Lallchandani and R. Mall. A Dynamic Slicing
Technique for UML Architectural Models. IEEE TSE,
37(6):737–771, 2011.

[18] K. Lano and S. Kolahdouz-Rahimi. Slicing of UML
Models Using Model Transformations. In Proc. of
MODELS’10, pages 228–242. Springer, 2010.

[19] B. Li, X. Sun, H. Leung, and S. Zhang. A Survey of
Code-Based Change Impact Analysis Techniques. J.
Software Testing, Verification and Reliability,
23(8):613–646, 2013.

[20] S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and
T. Coq. A SysML-based Approach to Traceability
Management and Design Slicing in Support of Safety
Certification: Framework, Tool Support, and Case
Studies. Information and Software Technology,
54(6):569–590, 2012.

[21] K. Noda, T. Kobayashi, K. Agusa, and S. Yamamoto.
Sequence Diagram Slicing. In Proc. of APSEC’09,
pages 291–298. IEEE, 2009.

[22] R. F. Paige, N. Matragkas, and L. M. Rose. Evolving
Models in Model-Driven Engineering: State-of-the-art
and Future Challenges. J. of Systems and Software,
111:272–280, 2016.

[23] R. Salay, M. Famelis, J. Rubin, A. Di Sandro, and
M. Chechik. Lifting Model Transformations to
Product Lines. In Proc. of ICSE’14, pages 117–128.
ACM, 2014.

[24] R. Salay, S. Kokaly, A. Di Sandro, and M. Chechik.
Enriching Megamodel Management with
Collection-Based Operators. In Proc. of MODELS’15,
pages 236–245, 2015.

[25] Z. Ujhelyi, Á. Horváth, and D. Varró. Towards
dynamic backward slicing of model transformations.
In Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on, pages
404–407. IEEE, 2011.

[26] M. Weiser. Program Slicing. In Proc. of ICSE’81,
pages 439–449. IEEE Press, 1981.

59




