
Evolving Multi-Tenant SaaS Cloud Applications Using
Model-Driven Engineering

Assylbek Jumagaliyev
School of Computing and

Communications
Lancaster University

United Kingdom

a.jumagaliyev@lancaster.ac.uk

Jon Whittle
School of Computing and

Communications
Lancaster University

United Kingdom

j.n.whittle@lancaster.ac.uk

Yehia Elkhatib
School of Computing and

Communications
Lancaster University

United Kingdom

y.elkhatib@lancaster.ac.uk

ABSTRACT

Cloud computing promotes multi-tenancy for efficient resource
utilization by sharing hardware and software infrastructure among

multiple clients. Multi-tenant applications running on a cloud

infrastructure are provided to clients as Software-as-a-Service

(SaaS) over the network. Despite its benefits, multi-tenancy

introduces additional challenges, such as partitioning,
extensibility, and customizability during the application

development. Over time, after the application deployment, new

requirements of clients and changes in business environment

result application evolution. As the application evolves, its

complexity also increases. In multi-tenancy, evolution demanded
by individual clients should not affect availability, security , and

performance of the application for other clients. Thus, the multi-

tenancy concerns add more complexity by causing variability in

design decisions. Managing this complexity requires adequate
approaches and tools. In this paper, we propose modeling

techniques from software product lines (SPL) and model-driven

engineering (MDE) to manage variability and support evolution of

multi-tenant applications and their requirements. Specifically,

SPL was applied to define technological and conceptual
variabilities during the application design, where MDE was

suggested to manage these variabilities. We also present a process

of how MDE can address evolution of multi-tenant applications

using variability models.

Keywords

Evolution; multi-tenancy; variability; cloud computing; cloud

application; software product lines; model-driven engineering

1. INTRODUCTION
Cloud computing provides on-demand, scalable, and flexible

computing resources to develop and deploy cloud applications [1].

Applications deployed on cloud are provided to clients as services
over the Internet and are known as SaaS. As mentioned in [2], one

key attribute of SaaS is multi-tenant efficiency, which enables

economies of scale and efficient resource utilization by sharing a

cloud infrastructure across multiple clients (i.e., tenants). A tenant

is an organization or company with its end users that uses SaaS

application.

As illustrated in Figure 1, there are generally two multi-tenancy
patterns [3]: multiple instances multi-tenancy and single instance

multi-tenancy. In the former, each tenant has a dedicated

application instance on a shared hardware, operating system, or

middleware. In the latter, tenants are served by a single

application instance that runs on shared hardware and software
infrastructure. We explore and address challenges that relate to the

latter multi-tenancy pattern where tenants require isolation in

application and database. Tenants may also want to extend or

customize a business process workflow to cater for their specific

needs. However, extensions and customizations of individual

tenants should not affect the use of the application by other

tenants. Thus, partitioning, extensibility, and customizability

challenges emerge during the application development.

Over time, applications evolve because of changes in tenant
requirements or new tenant requirements [6]. The evolution may

imply changes in the application structure. Usually, cloud

applications consist of several layers (e.g., presentation layer, data

logic layer, and business logic layer) and changes in any layer

may entail changes in other layers. Moreover, multi-tenancy
requires the following architectural considerations to be

addressed. First, the application layers must be multi-tenant aware

to ensure tenant isolation. Second, the application must allow per

tenant customization. Finally, each layer must scale independently

of each other.

Cloud providers offer various technologies and tools for cloud
application development. Nevertheless, multi-tenancy concerns

cause additional variability challenges in design decisions such as

different multi-tenant data architectures, partitioning schemas and

design patterns. The variability represents different available

options to implement a certain functionality and it should be
considered in the whole lifecycle of multi-tenant applications to

meet tenant requirements, and to leverage resource pooling and

scalability of the cloud.

Variability can be efficiently managed using SPL techniques.

Mainly, SPL engineering focuses on the development of software

products from reusable core assets [7]. In SPL, software systems

share common functionality, but each software system has some

variable functionality [5].

Modeling the variability can also help to efficiently evolve

applications. During the application development a set of

variability models can be chosen for a given cloud deployment.

When the application evolves, it is possible to evolve the

corresponding code by selecting another set of options from the

Figure 1. Multi-tenancy patterns

60

variability model. For example, a multi-tenant data architecture

can be modeled in different ways: 1) single database shared by all

tenants, 2) a separate database for each tenant, or 3) multiple
database instances where each instance serves a group of tenants.

Initially, the developers might select a single database for all

tenants. However, the security requirements of tenants may

require a more isolated approach that cannot be provided in a

single database instance. Therefore, the developer selects another
multi-tenant architecture and the application evolves to multiple

database instances.

The main contribution of our ongoing research is exploring

combination of SPL and MDE techniques for managing

variability in design decisions and evolving multi-tenant cloud

applications. Others have advocated the integration of SPL and

MDE for managing variability in multi-tenant cloud applications.
For example, in [10], Orthogonal Variability Model (OVM) and

Service Oriented Modeling Language (SoaML) were used to

model variability and customizability in cloud applications. While

in [4], a framework was proposed to model customizable multi-

tenant cloud applications and to support their evolution. However,
these approaches address application variability, customizability,

and limited evolution scenarios, such as onboarding new tenants,

removing tenants, and tenant customizations. In our approach, we

use SPL to identify technological and conceptual variability prior

to application implementation, where MDE concepts are applied
to manage variability. Subsequently, variability models may

efficiently support evolution of applications and their

requirements. Moreover, we illustrate our approach by a multi-

tenant application example.

The reminder of the paper is structured as follows. Section 2

describes variability in multi-tenant applications and their
evolution. It also describes SPL and discusses related work in the

field. Section 3 explains our approach for addressing variability

and evolution challenges in multi-tenant applications. Section 4

presents a case study to motivate and illustrate our work. Finally,

Section 5 concludes the presented approach.

2. BACKGROUND
In this section, we briefly explain variability in multi-tenant

applications and their evolution. We also describe SPL and give
an overview of related work.

2.1 Variability
Variability emerges in all levels of cloud applications. Abu-Matar
et al. [4] categorized the variability into the following levels:

application variability, business process variability, platform

variability, provisioning variability, deployment variability and

provider variability. Through this paper, we consider application

variability and business process variability.

In application variability, different tenants may have different

functional and non-functional requirements in addition to the core

application. In business process variability, tenants may have

varying business workflows. Therefore, the application must

enable configuration and customization to meet tenant’s goals and
requirements. In [8], variability is separated as customer-driven

variability and realization-driven variability. The customer-driven

variability comprises tenant requirements. We can classify

application and business process variability as customer-driven

variability. The realization-driven variability represents different
implementation options derived by customer-driven variability. In

this paper, we use design decision variability as realization-driven

variability.

2.2 Evolution
Evolution is an inevitable process in any software system [6] and

multi-tenant applications are no exception. There are several

reasons that trigger application evolution, such as fixing bugs,

changes in business environment, improving security and

reliability, changes in tenant requirements, or new tenant
requirements. Applications should respond to such changes to

maintain tenant satisfaction. In application level multi-tenancy,

changes must be adapted at runtime without affecting availability,

security, and performance of an application for other tenants. A

key problem is implementing and managing required changes in
applications [6].

2.3 SPL
SPL is a software engineering approach that focuses on the
development of software products from reusable core assets [7]. It

promotes feature modeling to analyze and identify the

commonality and variability in applications [5]. Features are

specific characteristics of an application and are classified in

terms of capabilities, domain technologies, and implementation
techniques [7]. Capabilities represent functional and non-

functional characteristics that are provided by an application to

clients. Domain technologies describe how to implement features

regarding an underlying domain, where implementation

techniques comprise commonly used generic approaches in the
development. Features are also grouped as mandatory, optional,

alternative and at-least-one-of (OR). Common features are

mandatory features, while variability features may be optional,

alternative or at-least-one-of. Optional features can be selected or

neglected, only one feature must be selected from alternative
features, and one or more features can be selected from at-least-

one-of features.

2.4 Related work
Several authors have proposed using SPL or MDE techniques for

managing variability in cloud applications to address multi-

tenancy concerns. Moreover, there are some tools and frameworks

for deploying, provisioning or supporting portability of cloud

applications. However, none combined the strength of these two
paradigms to address the multi-tenancy challenges, design

decision variability challenges and evolution complexity.

2.4.1 MDE and SPLs
Mietzner et al. [8] proposed variability management in multi-

tenant SaaS applications and their requirements using explicit
variability models of SPL. Initially, the customer-driven

variability and realization-driven variability were modeled using

Orthogonal Variability Model (OVM). Then, the model was used

to support customizability in applications. The authors also

supported efficient SaaS applications deployment for new tenants
based on the information about already deployed SaaS

applications. Nevertheless, this approach addresses the application

variability and does not support evolution.

Service line engineering (SLE) [9] (i.e., combination of service-

oriented development and SPL) was introduced for customizable

multi-tenant SaaS application development. SLE uses feature

modeling to address engineering complexity and manage
variability caused by application-level multi-tenancy. The main

departure from SPL is that customizations are applied to a single

application instance that is shared across multiple tenants. The

author emphasized that SLE also supports application evolution.

Kumara et al. [11] described an approach for realizing service-

based multi-tenant applications. This approach is also feature-

61

oriented as SLE and it supports evolution by enabling runtime

sharing and tenant-specific variations using Dynamic SPLs.

CloudML [12], CAML [13], and CloudDSL [14] are examples of

modeling languages for cloud applications that exploited MDE

techniques. CloudML automates provisioning for cloud
applications that run on multiple clouds. CloudDSL supports

portability of applications by describing cloud platform entities,

whereas CAML supports deployment and enables migration of

existing applications to cloud. However, none of these modeling

languages addresses multi-tenancy in design decisions or

evolution of applications.

2.4.2 Combining MDE and SPLs
Shahin [10] integrated SPL and MDE to model variability for

customizable SaaS applications. In this approach, SoaML was

extended to model variability in all layers of Service Oriented
Architecture (SOA). OVM from SPL was exploited to model

variability as separate models. These separate models were used

to generate a customization model for SaaS applications.

Cavalcante et al. [15] applied feature modeling to manage

commonality and variability in cloud applications. In addition,

they modeled costs regarding the use of cloud resources to

minimize expenditure. They also used UML class diagram for

features to identify dependencies.

Abu-Matar et al. [4] described a framework for modeling service-

oriented customizable multi-tenant cloud applications. They

exploited SPL for managing variability in services from multiple

views (i.e., service-oriented views and cloud views). They also

applied MDE for modeling multi-tenant aware application
artifacts. In [17], the framework was complemented to support

some evolution scenarios such as onboarding new tenants and

removing tenants. In our approach, we address multi-tenancy

concerns by modeling variability in design decisions that emerges

during the architecting process. Thus, developer can use
variability models for further support throughout the whole

lifecycle of multi-tenant cloud applications.

3. OUR APPROACH
We consider an integration of feature modeling concepts and

MDE techniques to address the design decision variability and

evolution complexity in multi-tenant cloud applications. Our

approach is based on the work of Jayaraman et al. [16]. The main

idea of this approach is maintaining feature separation and
detection of structural dependencies and conflicts between

features during analysis and design modeling. Features or groups

of features are modeled using UML, and a model composition

language, MATA (Modeling Aspects using a Transformation

Approach), detects relationships and conflicts. However, this
approach requires additional work to support cloud application

development and multi-tenancy.

Figure 2 illustrates modeling multi-tenant applications that

consists of the following steps. Initially, common and variable

functional and non-functional features with dependencies are
captured using feature modeling. This helps to define available

implementation options for the design decisions. Next, common

features are used to model the core of the application using an

UML composition language. Each variant feature is modeled in

the MATA language with dependencies to the core UML model
and relations to other features. This allows features to be modeled

independently of each other and enables reuse of models. Further,

a composed UML model is generated from the core UML model

and selected models from models of variant features. At this stage,

conflicts and dependencies of models are checked. Finally, source
code specific to a particular cloud platform is generated.

Figure 2 also describes application evolution which may require

models re-selection, adding new features, or a combination of

both. In the case of model re-selection, developers pick

appropriate features from the models of variant features. When
evolution demands adding new features, developers identify

whether new features are common or variable. The new common

features affect the existing core UML model, whereas for each

variable feature a corresponding model of variant feature is

created. There might be cases when all new features are common
or variable. In the former, only the core UML model is updated.

While in the latter, new models are added to the models of feature

variants and it requires models re-selection. Then, developers

generate a composed UML model and source code.

4. CASE STUDY
To explore our approach, we present a Surveys service [2] case

study by Microsoft. Surveys is a multi-tenant SaaS application for

creating and managing online surveys. Tenants can create, publish
surveys, and analyze results. Three different actors interact with

the application: the application provider administrator, the tenant

administrator, and the survey respondent. The application

provider administrator manages all tenants and their surveys,

whereas the tenant administrator manages its own surveys and

survey results, and the survey respondent completes surveys.

Although multiple tenants use the same application instance with
core functionalities and user interface layouts, each tenant can

view and edit its own data. In addition, the application allows

tenants to apply user interface customization by uploading their

corporate logo, adding tenant name, welcome text, and contact
details. Besides, tenants can customize the business process by

choosing a standard or premium subscription type. With standard

subscription, tenants can publish a limited number of surveys and

cannot export their survey results. Premium subscription tenants

can create and publish any number of surveys, export survey
results for further analysis, and their requests are prioritized by the

application.

Figure 2. Multi-tenant application development and

evolution with MATA

62

4.1 Applying our Approach
As a first step, we constructed a feature model to define
commonalities and potential variabilities in the application. An

excerpt of the feature model is illustrated in Figure 3. As

mentioned in Section 2.3, features were identified and categorized

into three layers. The capability layer comprises the functional

and non-functional features that are available for tenants. The
domain technology layer describes the way of implementing

features from the capability layer, and the implementation

technique layer represents generic techniques to implement

features on a cloud infrastructure. Further, the features were

classified as mandatory, optional, alternative features, and at-
least-one-of (OR). The mandatory features are common features

that represent core components of the application that will alway s

be present in any evolution of the cloud application. Whereas the

optional, alternative and at-least-one-of features are variable

features that describe different possible implementations. Once
the common and variable features are defined, the process (as

defined in Figure 2) would come up with a core UML model from

the common features and models of variant features from the

variable features. As a next step, a composed UML model from

the core UML model and selected models of variant features
would be generated.

Figure 3 shows that various options were modeled in the domain

technologies and implementation techniques for realizing certain

features. These variability models are used to support evolution.

For example, the application uses a single database instance
shared by all tenants. However, as the number of users per tenant

increases, a more isolated approach must be selected from

variability models to meet user requirements. With the MATA

language multi-tenant data architectures are modeled separately

with their dependencies to the core model and can be easily
reused. Hence, developers can select any other multi-tenant data

architecture model at any time during the application evolution.

4.2 Evolution Scenarios
Over the application lifetime, the functionality and quality of

service offered by the application must increase to meet tenants’

requirements. In this section, we consider some evolution

scenarios that affect design decisions in the application structure.

When architecting the application structure, we decided to use a

single database instance shared by all tenants. However, over time
the number of tenants increases. Therefore, the number of

concurrent end users and amounts of data stored by each tenant

increase as well. Moreover, some tenants may require a separate

database due to privacy requirements. These scenarios require a

more isolated data storage approach and entail model re-selection
from models of variant features. Thus, developers select either a

single database instance for each tenant or multiple database

instances for multiple tenants from the available data architecture

models (as depicted in Figure 3).

For maintaining a session state while creating a new survey, we

suggest JavaScript/AJAX technologies. This approach is simple,

easy to maintain, scalable, and secure compare to other available
implementation techniques under the Maintaining Session State

feature. However, it relies on client-side JavaScript that makes it

the least robust solution among available techniques. In the future,

Figure 3. The feature model of the Surveys application.

63

to improve robustness and effectiveness, developers must decide

between default in in-memory session state provider and cache

session. This scenario also requires model re-selection from

existing models of variant features.

Another typical scenario is adding new features. For example,
tenants may want to perform complex analysis on survey results.

Currently, the application stores survey answers in blob storage.

To provide the new feature, an SQL database (from different

models under Storage Type) is the best solution for applying

complex queries and join query. When adding a new feature,
developers must identify whether the new feature is common or

specific to certain clients. If the feature is common, the core UML

model will be updated. If the feature is variable, the core UML

model will remain the same and a model of variant feature for this

variable feature will be generated. At this point, the MATA
language detects relations and dependencies of the new feature to

other features. The SQL Database also needs partitioning to

support multi-tenancy. Thus, the developers must select one of the

different partitioning models for SQL databases. Moreover, a new

interface must be implemented to view and analyze survey data.

5. CONCLUSION
In this paper, we have proposed an integrated SPL and MDE

modeling approach to address design decision variability and
evolution concerns in multi-tenant SaaS cloud applications. We

have applied feature modeling concepts to identify variability in

implementation. The MATA language has been suggested to

manage variability, and to support customization and evolution.

Thus, the proposed approach allows features to be modeled
independently. Furthermore, conflicts in the application structure

and dependencies between models are detected. However, it

requires improvements to enable cloud application development

and multi-tenancy.

In our future work, we plan to enhance our approach by making

the MATA language applicable for multi-tenant SaaS cloud

applications and by developing a model to code transformation

prototype to transform composed models to source code. A case

study will be carried out to illustrate and evaluate the
implemented tool. Moreover, we will compare our approach with

other tools to identify benefits and drawbacks.

6. REFERENCES
[1] P. Mell, et al., “The NIST Definition of Cloud Computing”,

National Institute of Standards and Technology, Special

Publication 800-145, Bethesda, Maryland, 2011

[2] D. Betts, et al., “Developing Multi-Tenant Applications for

the Cloud on Windows Azure”, Microsoft Patterns and

Practices, 2013

[3] J. Guo, et al., “A framework for native multi-tenancy

application development and management”, Proceedings of

the 9th IEEE Conference on E-Commerce Technology and
the 4th IEEE Conference on Enterprise Computing, E-

Commerce and E-Services, pp. 551–558, 2007.

[4] M. Abu-Matar, et al., “Towards Software Product Lines

Based Cloud Architectures”, Proceedings of the IEEE

Conference on Cloud Engineering, 2014

[5] H. Gomaa, “Designing Software Product Lines with UML:

From Use Cases to Pattern-Based Software Architectures”,

Addison-Wesley Professional, 2004

[6] I. Sommerville, “Software Engineering”, Pearson, 2010

[7] K. Lee, et al., “Concepts and guidelines of feature modeling

for product line software engineering”, Proceedings of the

7th Conference on Software Reuse: Methods, Techniques,

and Tools, pp. 62–77, 2002.

[8] R. Mietzner, et al., “Variability modeling to support
customization and deployment of multi-tenant-aware

Software as a Service applications", Proceedings of the 2009

ICSE Workshop on Principles of Engineering Service

Oriented Systems, pp. 18-25, 2009
[9] S. Walraven, et al., “Efficient Customization of Multi-tenant

Software-as-a-Service Applications with Service Lines”,

Journal of Systems and Software, Vol. 91, pp. 48-62, 2014.

[10] A. Shahin, A “Variability Modeling for Customizable SaaS
Applications”, International Journal of Computer Science

and Information Technology, 6(5), pp. 39-49, 2014.

[11] I. Kumara, et al., “Sharing with a difference: Realizing

service-based SaaS applications with run-time sharing and

variation in dynamic software product lines”, IEEE

Conference on Services Computing, pp. 567–574, 2013
[12] A. Bergmayr, et al., “The Evolution of CloudML and its

Manifestations”, Proceeding of the 3rd Workshop on

CloudMDE, 2015

[13] A. Bergmayr, et al., “UML-Based Cloud Application
Modeling with Libraries, Profiles and Templates”,

Proceedings of the 2nd Workshop on CloudMDE, 2014.
[14] G. S. Silva, et al., “Cloud DSL: A Language for Supporting

CloudPortability by Describing Cloud Entities”, Proceedings

of the 2nd Workshop on CloudMDE, 2014.
[15] E. Cavalcante, et al., “Exploiting Software Product Lines to

Develop Cloud Computing Applications,” the 16th Software

Product Line Conference, 2012.

[16] P. Jayaraman, et al., “Model Composition in Product Lines

and Feature Interaction Detection Using Critical Pair
Analysis”, Conference on Model Driven Engineering

Languages and Systems, 2007

[17] F. Mohamed, et al., “SaaS Dynamic Evolution Based on

Model-Driven Software Product Lines”, Proceedings of the

IEEE 6th Conference on Cloud Computing Technology and

Science, 2014

64

