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Abstract. The purpose of this study is to detect project teams in a
group. A key point in considering group’s relationships is the recipro-
cal influence, whereby group’s members influence each other. There was
conducted a survey based on reciprocal nomination method, and then
a social network was constructed. Participants were first-year bachelor
students of Tomsk Polytechnic University. Various social network analy-
sis algorithms were used to cluster network in communities. The results
of analysis were discussed with the teachers and students, and then de-
tected community teams were adjusted within the key actors of group.
The results of the study may be used to create project teams, which can
make successful collective actions in educational projects.
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1 Introduction

A problem arising very frequently is how to identify new teams in an existing
group. Community detection helps to understand the distribution of key social
actors and their interrelations in the network [2]. At present, many community
detection algorithms have been designed [1,3,8,13,15,19]. Much research has been
conducted on social network analysis (SNA) using graph theory [10, 11, 14, 16].
One of the important results is the identification of sociometric features that
characterize a network. However, it is still not clear, which algorithms are reliable
and should be used in applications, because network is a single object, which
cannot be simply splitted into a training and a test dataset [20].

Firstly, we need to define what is meant by a project team. A project team
is a group of people who are able to act in concert and to achieve collectively
the common goal. Team members have specific and unique roles, where the
performance of each role contributes to achievement of the team’s goal. In project
teams members care about the success of other team’s members because their
own goal attainment is often inextricably bound to collective achievement [21].

This study is a part of one-year follow-up research of social network changes
among the members of students group. The purpose of this study is to detect
project teams in a group. We present an approach for project teams creation



based on SNA methodology. This approach includes descriptive analysis, com-
munity structure identification and key actor analysis using graph theory.

The structure of the paper is following. In Section 2, we give short overview
of related works. Then, in Section 3, we introduce the dataset, on which our
approach has been tested. We calculate the measures of our networks, detect
key social actors. In Section 4, we examined an influence of teams’ interactions
over time on the academic performance. A brief summary follows in Section 5.

2 Related Works

Pijl et al. [14] compared two methods for the assessment of students’ friendship
networks: the reciprocal nomination method and social cognitive mapping. In
total, 190 participants took part in the experiment. The authors introduced
types of isolated students in their study: a) a student with no reciprocated links
at all (type 1), and b) a student with one reciprocated link (type 2). A cohesive
subgroup defined as a group of at least three students a) who have more internal
links than external links, b) are connected by some path to each of the group
members and remain connected when up to 10% of the group is removed.

Rienties et al. [18] conducted a set of experiments in order to understand
how students develop and maintain learning and friendship relations over time
in a large classroom setting (200+ students). Students were put in 41 teams of 5
students on average. The results indicate that the instructional design might have
a strong influence on how students work together in teams, how social learning
and friendship interactions develop, and finally increase academic performance.

Pronin et al. [16] suggested grouping method to reorganize student groups us-
ing the SNA methodology. The problem was in reorganizing four existing groups
of students into three new groups. The Girvan-Newman algorithm was used in
order to create three new groups, and then authors adjusted new groups based
on existed relations between students and the modularity score. This method
may be used to create project teams for research classes or scientific labs.

Liu et al. [11] proposed the algorithm to measure the importance of the ac-
tors in network. This algorithm based on in-weighted degree and out-weighted
degree of vertex and on considering the information of the directed edges. In con-
trast, D. Conway [4] introduced the method using the comparison of centrality’s
relative values such as eigenvector centrality and betweenness.

Lomi et al. [12] specified a model that permit estimation of the interdepen-
dent contribution of social selection and social influence to individual perfor-
mance. The proposed stochastic model is based on the direct observation of
connectedness between students. In their study authors focused on the effects of
75 participants on individual performance at the classroom level.

Ertem et al. [7] used SNA metrics in order to predict learning performance in
terms of student’s position in the network. Authors found a positive correlation
between students’ performance and six employed metrics: degree, eigenvector
centrality, betweenness centrality, hub, authority and PageRank.



In contrast with modularity that was proposed by M. Newman [13], there
was an accepted standard for the results of community detection. Yang et al. [20]
found that a conductance and a triangle participation ratio could provide the
best performance in characterizing the communities detection quality.

3 Experimental Evaluation

Research questions. Our one-year follow-up research is aimed to explore the
community organization of the network and the influence of the structural factors
of the network on academic performance of students. We formulated the following
questions concerning the community organization of the network:

Q1. What is the network structure at the classroom level?
Q2. How to use the network structure to increase academic performance of

students?
Dataset. In our experiments, a local social network was built on reciprocal

nomination between 20 first-year bachelor students of Tomsk Polytechnic Uni-
versity during the fall semester of 2015. We used the direct-preference questions.
The 20 students answered the four social network questions:
1. Name classmates with whom you spend free time.
2. Name classmates to whom you are applying for the information, related to

academic activities.
3. Name classmates who could influence your academic performance.
4. Name classmates with whom you don’t want to cooperate in framework of

creative project.
The students were allowed to nominate up to four classmates. Participants

were 20 first-year bachelor students who were 17 to 19 years old (M = 18.5, SD =
0.35; 75% male). Data were collected on-line with the Google forms.

Data Preprocessing. Four square matrices A1, A2, A3, and A4 of size 20
were generated respectively on the basis of the questionnaire. In each adjacency
matrix A1, A2, A3 the element (i, j) is equal to 1 if row student i nominated the
column student j, otherwise the element (i, j) = 0. In matrix A4 the element
(i, j) is equal to −1 if row student i nominated the column student j, otherwise
the element (i, j) = 0. Then each matrix A1, A2, A3 was summarized with
the matrix A4, and the binarization procedure was applied to the result: if the
element (i, j) is less or equal than 0 then it gets set to 0, otherwise it is set to 1.

The social networks are represented by directed graphs Gk = (Vk, Ek), k =
1, 2, 3, where a set of vertices Vk includes n = 20 members of group, and a set
of edges Ek ⊆ Vk × Vk presents the relation «reciprocal nomination» that cor-
responds to k = 1, 2, 3 questions. A key point in considering these relationships
is the reciprocal influence, whereby team’s members influence each other. The
graph Gk is directed, i.e. every edge (i, j) ∈ Ek links the source vertex i and
the target vertex j. The direction of the edges is makes each adjacency matrix
A1, A2, A3 of the each directed graph G1, G2, G3 non-symmetric because the
source vertex defines nomination to the target vertex but not vice versa. The
number of edges mk = |Ek| ≤ n · (n − 1), k = 1, 2, 3.



Fig. 1. Three social networks and the longest path (green)

Fig. 2. Degree distribution: in-degree (red), out-degree (blue), total-degree (green) of
vertices of the graphs G1, G2, G3

Descriptive Network Statistics. To address research question Q1 we cal-
culated descriptive network statistics in order to define network structure at the
classroom level. Figure 1 illustrates the original networks G1, G2, G3, reflecting
the structure of reciprocal nominations in the group. These networks G1, G2, G3

have the identical vertex set V , |V | = n = 20, but different sets of edges E1,
E2, E3: |E1| = m1 = 81, |E2| = m2 = 72, |E3| = m3 = 71 respectively, in
which one vertex represents an actor, and one edge denotes the nomination be-
tween any two actors. To each actor in the student’s group labels were assigned:
A01, A02, . . . , A20. In our experiment, loops and multi-edges are not allowed.

It’s seen that the diameter of graph G2 equal to 6 because the longest path
between actors A15, A06, A12, A19, A11, A08 and A10 takes 6 edges, the diam-
eter of graphs G1 and G3 equal to 5 (Figure 1, green arrows), while the lengthes
of average path between any vertex pairs are {2.166, 2.236, 2.190} respectively.
In our experiment, density range from 18%(0.186) to 21%(0.213) only, it can be
explained by the limitation of the questionnaire, which recommended to nomi-
nate up to four actors. The transitivity range from 0.399 to 0.409 indicates the
low level of intra-group interaction, the reciprocity range from 0.11 to 0.66.

A basic property of the vertices in a graph is their degree. Degree provides
information on the position of actors and how they communicate. The in-degree
din(v) (out-degree dout(v)) of vertex v is equal to the number of incoming (out-
going) edges. The in-, out-, total degree distribution of vertices of the graphs
G1, G2, G3 are shown in Figure 2. As we can see from Figure 2, the modal inter-
val equal to 4, which has frequency more than any other interval.



Table 1. Descriptive Network Statistics

Network
statistics

Definition G1 G2 G3 〈G2〉

Average path Shortest paths between all pairs of
vertices

2.166 2.236 2.19 2.262

Transitivity Fraction of edge pairs (i, j) and
(j, k) in the graph such that (j, k)
is also linked in the graph

0.399 0.409 0.400 0.449

Clustering
coefficient [10]

Indicates how a vertex are embed-
ded with neighbors

0.3763 0.3767 0.248 0.258

Reciprocity Fraction of edges in the graph that
go in both directions

0.666 0.472 0.11 0.166

Average degree Average number of edges incident
with vertices

4.05 3.6 3.55 3.6

SD in-degree Standard deviation of in-degree 2.54 3.23 2.95 3.23
SD out-degree Standard deviation of out-degree 0.94 0.75 2.24 0.75
Density Ratio of the number of edges and

the number of possible edges
0.213 0.189 0.186 0.189

Edges Number of edges 81 72 71 72
Diameter Longest path between pairs of ver-

tices
5 6 5 5

In order to estimate clustering in our networks, we use the clustering coeffi-
cient. This coefficient is defined as the average value over all vertices v, of the
vertex-specific clustering coefficients [10]

cl(v) =
(A + AT )3vv

2((din(v) + dout(v))(din(v) + dout(v) − 1) − 2(A2)vv)
,

where A is the adjacency matrix. In our case, clustering coefficient cl(v) is from
0.248 to 0.377.

To evaluate the significance of the network statistics (Table 1) the simula-
tion of the random graphs was used. Based on topological properties of the each
graph G1, G3, G3 1000 random networks were generated to compute their av-
erage network statistics. Table 1 gives these statistics in the last column 〈G2〉
corresponding to the network G2. The network G2 has approximately the same
average path length than 1000 random graphs of the same size (2.236 and 2.262
respectively), and the network G2 has a clustering coefficient that is higher than
the corresponding value of 1000 random graphs (0.3767 and 0.258 respectively).

Community Detection Algorithms. At present, many community de-
tection algorithms have been designed [1, 3, 13, 15, 19]. In our experiments, we
chose three community detection algorithms: edge betweenness algorithm, walk-
trap algorithm and optimal community algorithm. We used R realization of the
algorithms and igraph software package [5].

Denote by C = {C1, C2, . . . , Cp} a partition of a set of vertices V . We call
C a clustering of a graph G and the Ci, which is required to be nonempty,
community, i = 1, 2, . . . , p. Following to the paper [1] E(C) =

⋃p
i=1 E(Ci) is the

set of intracluster edges, m(C) = |E(C)|, and E \ E(C) is the set of intercluster
edges, m̄(C) = |E \ E(C)|.



Fig. 3. Community structure identification: a) edge betweenness, b) walktrap, and c)
optimal. An intracluster edge denotes a red arrow, an intercluster edge – a black arrow

Let us list major features of these algorithms. The edge betweenness algo-
rithm [13] is based on calculating the betweenness (number of shortest paths
between any two vertices which pass through this edge) of all edges in the graph
and removing the edge with the largest betweenness score. This process is re-
peating on the resulting graph until no edges remain. A partition C of a set of
vertices V can be computed in O(nm2) time. The walktrap algorithm is based
on random walk process on a graph [15]. A walker is on a vertex and moves
to a random vertex each time step. After a few steps (3–5) the walker is more
likely to stay within the same community because there are only a few external
edges. The walktrap algorithm uses the results of this random walk process to
merge separate vertices in communities that minimizes distance from other ver-
tices in the community. Time complexity of the walktrap algorithm is O(mn2)
in the worst case. The optimal community algorithm [1] detects the commu-
nity structure for a graph, by maximizing the modularity score over all possible
partitions. The algorithm starts with the singleton community clustering and
iteratively merges those two communities that yield a clustering with the best
modularity. Time complexity of optimal community algorithm is exponential in
the number of vertices O(2n).

Using algorithms mentioned above each graph G1, G2, and G3 was divided
into communities. Figure 3 shows results of network partitioning G2 into clusters,
which are denoted by different colors. Five communities were detected with edge
betweenness algorithm, while using walktrap and optimal algorithm partitioned
the graph G2 into 4 communities. The numbers of actors in these communities are
different: V (Cb) = {14, 1, 1, 3, 1}, V (Cw) = {3, 8, 5, 4} and V (Cop) = {7, 5, 5, 3}.
We use subscripts {b, w, op} to denote the clustering algorithm that was used.
Figure 4 shows distribution of number communities detected with the edge be-
tweenness algorithm, walktrap algorithm and optimal algorithm for 1000 random
graphs of the same size as the network G2. According to Figure 4, it is clear that
the actual number of communities detected in the original network G2 (4 com-
munities for walktrap and optimal algorithms) would be considered typical from
the perspective of random graphs, while using the edge betweenness algorithm
partitioned 1000 random graphs into number communities from 1 to 14.



Fig. 4. Distribution of number of communities detected with the edge betweenness
algorithm (green), walktrap algorithm (red), and optimal algorithm (blue) for 1000
random graphs

Since modularity was proposed by M. Newman [13], there was an accepted
standard for the results of community detection [10,20]

mod (C) = (m(C) − E(m(C)))/4,

where m(C) = |{(u, v) ∈ E : u ∈ C, v ∈ C}|, E(m(C)) is the expected value of
m(C) under some model of random edge assignment.

The edge betweenness and walktrap algorithms are the hierarchical clustering
algorithms, and the modularity score of the current clustering is stored after each
time step. In the optimal community algorithm the highest modularity is defined
after (n − 1) merges. The algorithms above use the modularity score to decide
where to stop the splitting or merging. Another way to qualify the communi-
ties detection is to compute scoring function based on the internal connectivity,
external connectivity and combination of internal and external connectivity of
vertices set [8, 20]. To each network partitioning Cb, Cw, Cop from Figure 3 the
number of intracluster edges m(C) are given by diagonal elements and the num-
ber of intercluster edges m̄(C) between communities Ci and Cj are given by
(i, j) elements, i 6= j, i, j ∈ {1, 2, . . . , p} for various algorithms are represented
by matrices:

E(Cb) :


39 3 4 13 2
3 0 0 3 1
4 0 0 2 0

13 3 2 4 1
2 1 0 1 0

, E(Cw) :


4 5 1 0
5 21 11 5
1 11 15 4
0 5 4 6

, E(Cop) :


19 9 5 5
9 15 5 2
5 5 7 1
5 2 1 4

.

In the each matrix row and column sums belong to the number of edges inci-
dent on a given community. In the matrixes we bold the number of intercluster
edges. Using data from matrixes we calculated the conductance [20]:

con(C) = m̄(C)/(2 · m(C) + m̄(C)),

where m̄(C) the number of edges on the boundary of community C, m̄(C) =
|{(u, v) ∈ E : u ∈ C, v∈̄C}|. The conductance has a value between 0 (best score)



Table 2. Scoring Function

Partitions
G1 G2 G3

mod (C) con(C) mod (C) con(C) mod (C) con(C)

Cb 0.023 0.603 0.075 0.252 0.015 0.327
Cw 0.311 0.296 0.314 0.220 0.085 0.154
Cop 0.338 0.227 0.323 0.230 0.163 0.352

and 1 (worst score). Table 2 gives the value of scoring function: modularity,
mod (C) and conductance, con(C) for various partitions Cb, Cw, Cop and networks
G1, G2, and G3.

Community Structures Comparison. After getting the communities, the
partitions were compared using various metrics, and results are presented in
Table 3. Normalized mutual information (NMI) measure is based on the fact
that if two partitions are similar to each other, then only a small amount of
additional information is needed to infer one clustering assignment from the
other [6]. The NMI measure, the Rand index (RI) have a value between 0 and 1,
when the two partitions agree perfectly, these measure are 1 [17]. The adjusted
Rand index (ARI) can yield negative values, and adjusted Rand index is more
sensitive that the Rand index to measure agreement between two partitions [9].
As one can see from Table 3, the partitions Cw and Cop are similar to each other,
while the partition Cb differs from the partitions Cw and Cop considerably.

Table 3. Community Structures Comparison Using Various Metrics

Pairs Partitions NMI RI ARI
(Cb, Cw) 0.335 0.500 −0.005

(Cb, Cop) 0.271 0.495 −0.016
(Cw, Cop) 0.717 0.816 0.494

Key actor analysis. Next to the analysis described above, we identified key
social actors. We used the comparison of relative values of eigenvector centrality
and betweenness centrality. The betweenness centrality gives a higher score to
a vertex that sits on many shortest path of other vertex pairs, and it centrality
usually refers to the access to novel information and control benefits. Eigenvector
centrality gives a higher score to a vertex if it connects to many high score
vertices. We calculated the linear regression model, Figure 5 shows a scatter plot
of Eigenvector centrality as a function of Betweenness centrality. The equation
for the line in Figure 5 is y = 0.0102x + 0.2833 (red line), this linear model was
significant (F = 14.118, p-level = 0.0014 < 0.05).

Figure 5 shows each vertex’s relative value of eigenvector centrality and be-
tweeness, scaled by the value of the regression residuals, labels of actors scaled
by the absolute value of residuals. D. Conway [4] has found that people with
low eigenvector centrality but high betweenness centrality are important gate
keepers between teams (actors A08, A11), while people (actors A14, A17) with
high eigenvector centrality but low betweenness centrality has direct contact to
important people (actors A12, A13, and A19).



Fig. 5. Key actor analysis

The results of the community structure identification (Figure 3) and key
actor analysis (Figure 5) were discussed with the teachers and students. A
frequently mentioned disadvantage of the community structure based on the
edge betweenness algorithm was providing more unbalanced partition than walk-
trap and optimal algorithms. The statistical characteristics of community sizes
and their variations are: M = 4.0, SD = 5.65 (edge betweenness algorithm),
M = 5.0, SD = 2.16 (walktrap), M = 5.0, SD = 1.36 (optimal algorithms).

Teachers recommended to separate the key actors A12 and A19 into the dif-
ferent teams. According to the community structure identification the following
options are available: to move a key actor from Cw

2 to Cw
1 or from Cop

1 to Cop
4

(Figure 3). The conducted SNA modelling leads to the next result: the compro-
mise between the modularity and the conductance is to move the actor A19 from
Cw

2 to Cw
1 . In this case, as we expected, the modularity score decreased from

0.314 to 0.304, while the conductance increased from 0.22 to 0.263.

4 Effect of Network Structure on Academic Performance

As a result, four project teams were formed after the midterm (9th week of the
fall semester 2015): T1 = {A08, A10, A11, A19}, T2 = {A04, A05, A07, A09, A12,
A17, A18}, T3 = {A06, A13, A14, A15, A16}, and T4 = {A01, A02, A03, A20}. To
address research question Q2 we examined an influence of teams’ interactions
over time on the academic performance.

In our experiment, during the second period of the term (from 10th to 18th
weeks) students from the experimental group (gexp, n1 = 20) additionally were
meeting with the peers of their team once a week during a 2 hours tutorial in
the classroom, and they worked on a project. It is notable that students cannot
change teams during the experiment. A control group (gcont, n2 = 21) is not
splitted into project teams and does not have any additional meetings.

Measurement of academic performance on the experimental group and the
control group was collected at two time points: a) at the midterm (p1 = 9 weeks),



Fig. 6. Points distribution: a) the experimental (gexp) and control (gcont) groups, b)
project teams (T1, T2, T3, T4) at time points (p1, p2)

b) at the end of term (p2 = 9 weeks). We received this information directly from
the Education Office. In both groups the each student could earn 480 points
during the fall semester of 2015 (50% at the midterm, 50% at the end of the
term). In our experimental group, average overall performance at the midterm
was M = 122.7 points, SD = 26.96, range R = [45, 163].In the control group,
average overall performance at the midterm was M = 140.09 points, SD = 22.14,
range R = [97, 182].

Figure 6 gives descriptive statistics of academic performance (in points) to
the experimental and control groups as well as the each team. There are outlier
points in the dataset, these observations correspond to the points of the actor
A04, who dropped out from the experiment after 11th week.

Firstly, the Shapiro-Wilk test was applied to check whether the distribution of
dependent variable came from a normally distributed population. The dependent
variable is the number of points at time points (at the midterm and at the end
of term). At .05 significance level the null hypothesis was rejected and there
is evidence that the distribution of points in the experimental group (W =
0.87, p-value = 0.017 < 0.05) is not from a normally distributed population,
while the distribution of points in the control group (W = 0.97, p-value =
0.73 > 0.05) is from a normally distributed population. Hence, we decided to
use the non-parametric statistics. It is clear from Figure 6 that the median of
the experimental group (gexp) at the first time point (p1) is less than the median
of the control group (gcont) and vice versa at the second time point (p2). At
the first data point (p1) in the experimental group the median was 128.5 points,
while in the control group the median was 144 points, at the second data point
(p2) the experimental median was 205, the control median was 189.

We applied the Mann-Whitney-Wilcoxon criteria to test of the null hypothe-
sis that students from the control group tend to have the larger value of academic
performance (in points) than students from the experimental group. At the .05
significance level, the null hypothesis (U = 137.5, p-value = 0.058 > 0.05) was
accepted at the first time point. We conducted a randomization test of no dif-
ference in population medians (null hypothesis) against a two tailed alternative,
where the difference in sample medians is the test statistic. We created 5000



randomizations of the n1 +n2 = 20+21 = 41 observations. The two tailed prob-
ability under the null hypothesis is p-value = 0.0376 < 0.05, and 95% confidence
limits are −14.01 and 14.0. The obtained median difference was −15.5 points,
which clearly falls outside the interval. Thus we can reject the null hypothe-
sis, and conclude that the median points of the control group is significantly
greater than the median points of the the experimental group. At the second
data point (p2) we repeated the randomization test for comparing two medians,
95% confidence limits are −16.5 and 16.5. The obtained median difference was
16.0 points, which clearly falls inside the interval. We can not reject the null
hypothesis, and we can expect that the influence of teams’ interactions on the
individual academic performance is positive.

The next set of statistical tests was applied to the experimental group. Firstly,
we need to test that none of k = 4 teams stochastically dominates one another.
The Kruskal-Wallis test was applied to decide whether the population medians
on a dependent variable are the same across all levels of a factor. The factor has
four levels: 1 = T1, 2 = T2, 3 = T3, and 4 = T4. The null hypothesis is that
the medians are equal across the teams. At .05 significance level, we conclude
that the medians are equal across the teams (χ2 = 2.0, p-value = 0.57 > 0.05)
at the midterm. Secondly, for the comparison across repeated measures at the
midterm and the end of the term the Friedman’s test was used. It is used to
test for differences between the two snapshot data when the dependent variable
being measured is ordinal (ranks in our case). The null hypothesis that the
distributions are the same across repeated measures was rejected (χ2 = 16.2,
p-value = 5.7 · 10−5 < 0.05). Hence, the distributions across repeated measures
are different. There is evidence of the influence of teams’ interactions on the
individual academic performance.

5 Summary

Project teams are detected using various social network analysis algorithms.
The key actor analysis allows us to identify individuals who have the strongest
influence on other members of the group. The results of communities detection
can be used in the educational process but require discussions with teachers
and students. According to compromise between the SNA results and semantic
recommendations of teachers and students, we have chosen the basic algorithm,
and project teams were created. We found evidence of peer effects on academic
performance. In the experimental group as a whole, as well as in the detected
teams the academic performance increased in comparison with the control group.

The further research of our longitudinal study can be continued in the follow-
ing directions. At first, it is community detection in terms of motifs, i.e. dyads,
triads (two or three students are only connected to each other) as a subgraph
with a fixed number of vertices and with a given topology. Such description
allows us to identify complexity levels of a project to each team and different
assessment methods of team performance. At second, it is an application of qual-
itative analysis of relations inside and outside project teams and assessment of
potential predictive factors of relations.
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