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Abstract. The problem of consistent aligning of 3D point data is known registration 
task. The most popular registration algorithm is the Iterative Closest Point (ICP) algo-
rithm. One of the main steps of the ICP algorithm is matching. We find a matching in 
at first time on the basis of the geometric similarity of individual groups of points. It 
allows to get a good first approximation of the required transformation, even for big 
angle rotations, translations, scaling and noisy data. The step of the error minimiza-
tion is performed for an arbitrary affine transformation. 
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1 Introduction  

    The ICP (Iterative Closest Point) algorithm has become the dominant method for 
aligning three dimensional models based purely on the geometry. The algorithm is 
widely used for registering the outputs of 3D scanners, which typically only scan an 
object from one direction at a time. The standard ICP starts with two point clouds and 
an initial guess for their relative rigid-body transform, and iteratively refines the trans-
form by repeatedly generating pairs of corresponding points in the clouds and mini-
mizing an error metric. Generating the initial alignment may be done by a variety of 
methods, such as tracking scanner position, identification and indexing of surface 
features [1, 2], “spin-image” surface signatures [3], computing principal axes of scans 
[4], exhaustive search for corresponding points [5, 6], or user input. In this paper, we 
assume that a rough initial alignment is always available. In addition, we focus only 
on aligning a single pair of clouds, and do not address the global registration problem 
[7, 8, 9, 10]. Since the introduction of ICP by Chen and Medioni [11] and Besl and 
McKay [12], many variants have been introduced on the basic ICP concept. We may 
classify these variants as affecting one of six stages of the algorithm: 
 
    1. Selection of some set of points in one or both clouds. 
    2. Matching these points to samples in the other cloud. 
    3. Weighting the corresponding pairs appropriately. 



    4. Rejecting certain pairs based on looking at each pair individually or considering 
the entire set of pairs. 
   5. Assigning an error metric based on the point pairs. 
   6. Minimizing the error metric (variational subproblem of the ICP). 
 
    In this paper, we will look at variants for the categories 2 and 6. Our main focus is 
on the accuracy of the final answer and the ability of ICP to reach the correct solution 
for a difficult geometry. We consider affine transformation in ℝ! that holds the angles 
between lines in the cloud of points. An algorithm of matching is inspirited by the 
recent results of neurophysiology of vision [13]. Also we consider the ICP minimiz-
ing the error metric subproblem for the case of an arbitrary affine transformation. The 
computer simulation section contains results of computational experiments based on 
our matching and error minimizing approaches. 

2 The matching procedure for sets 𝐗 and 𝐘 

    Let 𝑋 = {𝑥!,… , 𝑥!!!} be an set consist of 𝑘 points in ℝ! and  𝑌 = {𝑦!,… , 𝑦!!!}  
be an set consist of 𝑛 points in ℝ!. Here we describe our approach for searching the 
matching between 𝑋 and 𝑌. Denote by (𝑥! , 𝑦!), 𝑥! ∈ 𝑋, 𝑦! ∈ 𝑌 the pair of correspond-
ing points. The goal of our procedure is representation of points from 𝑋 and 𝑌 as sets 
of pairs. The first element of a pair belongs to 𝑋, the second element belongs to 𝑌.  
Note, that each point from 𝑋 and 𝑌 can be included to the set of pairs just one time. 
At the beginning the set of pairs is empty. Let 𝑚 ∈ ℕ be a number such that: 
 
                                                             3 ≤ 𝑚 ≤ min (𝑛, 𝑘).                                      (1) 
 
    Denote by  𝑖 a natural parameter.  
  
    1. Consider the following subset  𝑋! of the 𝑋: 
 
                                                𝑋! = {𝑥!∗ !!! ,… , 𝑥!∗ !!! !!!!}.                               (2)   
 
    2. Let 𝐶 be a closed piecewise linear curve in  ℝ! that consist of 𝑚 line segments. 
The 𝑗-th segment connects points 𝑥!∗ !!! !! and 𝑥!∗ !!! !!!!. If  𝑗 + 1 = 𝑚 then we 
take index 𝑚 ∗ 𝑖 − 1  instead 𝑚 ∗ 𝑖 − 1 + 𝑗 + 1. Denote by 𝛼! a minimal flat angle 
that is constructed by 𝑗-th and (𝑗 + 1)-th segments (with the similar agreement for the 
case 𝑗 + 1 = 𝑚). Let 𝑉! be a vector 
 
                                                         𝑉! = {𝛼!,… ,𝛼!!!},                                                (3) 
 
where elements α!, j = 0,… ,m − 1  are  respective angles.  
 
    3.  Consider all possible combinations of m points in the set Y besides the points 
that already included to the set of pairs. For an each combination we construct the 
vector 𝑉 by the same way as in step 2. 



    4. We choose a vector from the set of vectors of the step 3 such that distance be-
tween them and 𝑉! is minimal relatively the norm 𝐿!. Denote this vector as 𝑉!. 
    5. We construct 𝑚 pairs of the points from 𝑉! and  𝑉!. Add this m pairs to the set of 
pairs. 
    6. If the number of remaining points in 𝑋 or 𝑌 less that 𝑚 then procedure termi-
nates. Else 𝑖 ≔ 𝑖 + 1 and go to step 1. 
 
    We use this procedure only as first iteration on the ICP algorithm. Obtained after 
the first iteration the transformation matrix and the translation vector are used for a 
second iteration. In the next iterations we use the standard nearest neighbor approach 
to find a match between the points. 
    In the practical using of the ICP algorithm very often a set 𝑌 obtained from a set 𝑋 
by a some geometrical transformation. The described above approach can good work 
not for rigid transformation only but for sufficiently wide subset of the affine trans-
formations. 

3 The ICP variational subproblem for an arbitrary affine 
transformation 

 
    Let 𝑋 = {𝑥!,… , 𝑥!!!}  be a source point cloud and 𝑌 = {𝑦!,… , 𝑦!!!}  be a destina-
tion point cloud in ℝ!. Suppose that the relationship between points in  𝑋 and 𝑌 is 
done by such a way that for each point 𝑥! is calculated corresponding point 𝑦!. In 
many works [11, 12, 14] the ICP algorithm is considered as a geometrical transfor-
mation for rigid objects mapping 𝑋 to 𝑌: 
                                                                 𝑅𝑥! + 𝑡,                                                      (4) 
 
where 𝑅 is a rotation matrix,  𝑇 is a translation vector, 𝑖 = 0,… , 𝑛 − 1. The S-ICP 
algorithm [14] is a slightly different geometrical transformation given by  
 
                                                            𝑅𝑆𝑥! + 𝑡,                                                         (5) 
 
where  𝑆 is a scaling matrix.  
    The group 𝐸(3) of affine transformations in the dimension three has 12 generators. 
It means that affine transformation in dimension three is a function of  12  variables. 
Let us consider ICP variational problem for the case of an arbitrary affine transfor-
mation. Let 𝐽(𝐴,𝑇) be the following function: 
 
                                             𝐽 𝐴,𝑇 = ∥  𝐴 𝑥! + 𝑡 −  𝑦!  ∥!!!!

!!! .                             (6) 
 
    The ICP variational problem can be stated as follows: 
 
                                                          arg𝑚𝑖𝑛   𝐽 𝐴, 𝑡 ,                                               (7) 
                                                         A,t 
 



 where  

              𝐴 =
𝑎!! 𝑎!" 𝑎!"
𝑎!" 𝑎!! 𝑎!"
𝑎!" 𝑎!" 𝑎!!

,   𝑡 =
𝑡!
𝑡!
𝑡!

,  𝑥! =
𝑥!!
𝑥!!
𝑥!!

,  𝑦! =
𝑦!!
𝑦!!
𝑦!!

.                  (8)    

      
    One can be seen that 
 
𝐽 𝐴, 𝑡 =        (  𝑎!!𝑥!! +  𝑎!"𝑥!! +  𝑎!"𝑥!! +  𝑡! − 𝑦!!)!!!!

!!! +  
                           + (  𝑎!"𝑥!! +  𝑎!!𝑥!! +  𝑎!"𝑥!! +  𝑡! − 𝑦!!)! +                                        
                            +(  𝑎!"𝑥!! +  𝑎!"𝑥!! +  𝑎!!𝑥!! +  𝑡! − 𝑦!!)!.                                 (9) 
 
    Let new coordinates 𝑥!" be expressed through old coordinates 𝑥!" as follows: 
 
                      𝑥!! = 𝑥!"  − !

!
𝑥!!!!!

!!!  , 𝑘 = 1,… ,3, 𝑖 = 1,… , 𝑛.                             (10)          
 
    Also for the points of the second cloud we can write 
 
                        𝑦!! = 𝑦!"  − !

!
𝑦!!!!!

!!!  , 𝑘 = 1,… ,3, 𝑖 = 1,… , 𝑛.                           (11)          
 
    Let us define coefficients 𝛼!, 𝛽!, 𝛾!, 𝜑! and  𝜓!  for   𝑖 = 1,… , 𝑛 as 
 
                                      𝛼! = 𝑥!! −  !!!

!!!!!
!!!

−  𝑥!!  𝑥!!  !!!
!!! ,                                 (12) 

 
                                      𝛽! = 𝑥!! −  !!!

!!!!!
!!!

−  𝑥!!  𝑥!!  !!!
!!! ,                                 (13) 

 
                                     𝛾! = 𝑦!! −   !!!

!!!!!
!!!

 𝑦!!!!!
!!! 𝑥!!,                                       (14) 

 
                                     𝜑!  =  𝛽!  −     !!

 !
!!!  !!!

  !!!
!!!  𝛽!    𝛼!,                                     (15) 

 
                                     𝜓! = 𝛾! −     !!

 !
!!!  !!!

 !!!
!!! 𝛾!    𝛼!.                                         (16) 

 
    Proposition. The elements of the first row of the matrix 𝐴∗ that minimizes  𝐽 are 
computed as 
 

                                            𝑎!! =
  !!!! !!"!!!! !!"!!!   !!!

!!!
!!!

!!!!!!!
!!!

,                               (17) 

  

                                             𝑎!" =
 !!!

!!! !!   !!!!!"  !!!
!!!  !!   !!

 !!!
!!!  !!!

,                                  (18) 

 

                                                     𝑎!" =
  !!!
!!!  !! !!

 !!!
!!!   !!!

.                                                 (19) 

 



    For the second and third rows of the matrix 𝐴 similar formulas can be easily de-
rived.  

4 Computer simulation 

    Let 𝑋 be the set consists of 80 points. The coordinates of points are randomly gen-
erated (by the uniform distribution). The values of all coordinates belong to the range 
[0, . . . ,100]. The set 𝑌 is obtained from the set 𝑋 by the geometrical transformation 
𝑌 = 𝑅 ∗ 𝑋 + 𝑡, where 𝑅 and 𝑡 are described below: 
 

                                           𝑅 =
0.5 0 0.866025

0.866025 0 −0.5
0 1 0

,                                (20) 

 
 
                                                        𝑡T = 5 6 7 .                                               (21) 
 
    And each component of every point from the set 𝑌 is noised by the following way. 
 
                                                           𝑦!! ≔ 𝑦!! + 𝑛!!,                                                  (22) 
 
    Here 𝑛!! is uniformly distributed real number in the closed interval [0, 1], j is the 
number of point, 𝑖 = {1, 2, 3}. 
    Estimated using the our algorithm matrix 𝑅 and vector 𝑡: 
 

                                    𝑅 =
0.49987 0.00001 0.86612
0.865925 0.00009 −0.500072
−0.000027 0.999896 −0.000021

,                  (23) 

 
 
                                         𝑡T = 5.00281 6.0127 7.00388 .                             (24) 
 
    The standard approach based on nearest neighbor method implemented in the open 
source library LIBICP (C++ Library for Iterative Closest Points Matching) gives the 
following results: 
 

                                  𝑅 =
0.4281353 0.0278281 0.9032861
−0.0109876 0.9996122 −0.0255878
0.9036479 −0.0010301 −0.4282750

,           (25) 

 
 
                                  𝑡T = −36.6521776 30.6680470 9.0428475 .             (26) 
 
 
 
Fig. 1 shows initial sets 𝑋 and 𝑌. 



 
 

 
 
 

Fig. 1. Sets 𝑋 (yellow) and 𝑌 (blue). 
 

 
Fig. 2 shows a set 𝑋 and a set 𝑌 = 𝑋 ∗ 𝑅 + 𝑡. Where 𝑅 and 𝑡 is the result of the stand-
ard approach. 

 
 

Fig. 2. Sets 𝑋 (yellow) and 𝑌 (blue). 



 
Fig. 3 shows a set 𝑋 and a set 𝑌 = 𝑋 ∗ 𝑅 + 𝑡. Where 𝑅 and 𝑡 estimated by our algo-
rithm after the first iteration. 
 
 

 
 

 
 

Fig. 3. Sets 𝑋 (yellow) and 𝑌 (blue). 
 
                                        

5 Conclusion 

In this paper we considered matching and error minimizing steps of the ICP algo-
rithm. On the base of the obtained results, a new efficient algorithm for the sets 
alignment was designed. The obtained results are illustrated with the help of computer 
simulation. 
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