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Abstract. In this work we show how to specifically sample do-
main parameters - for a certain system under test (SUT) - to create
corresponding test data in order to find the system’s limits of oper-
ation and discover its flaws. The SUT is part of an aerial sense and
avoid system that performs aerial object detection in a video stream.
In order to generate synthetic test data, we first define the variability
range of the test data based on real-world observations, as well as the
problem specification as requirements. Then synthetic test data with
explicit situational and domain coverage is generated to show how it
can be used to identify problems within the tested system. Next, we
show how to specifically sample domain parameters to create corre-
sponding test data which allows us to find the operation limits of the
system under test. Finally, we verify the gained insights and there-
fore the methodology in two ways: (i) By comparing the evaluation
results to results obtained with real-world data, and (ii) by identifying
the reasons for certain shortcomings based on tested SUT internals.

1 INTRODUCTION
Nowadays, computer vision (CV) systems are increasingly used in
applications, which can either be potentially harmful to humans or
are a safety measure to prevent accidents. CV systems are considered
as hard to test, due to high complexity of the algorithms, variety of
inputs, as well as large numbers of possible results and internal states.
It is of utmost importance that the CV and testing community settle
on a common standard regarding testing-procedures and concepts to
safely open new application fields.

In our opinion one of the most neglected points in vision testing
is that CV applications have to be tested as a whole: the system and
the environment it is working in. Normally, there are two ways to
improve the result quality of any real-world CV application: (i) to
optimize the vision system, and (ii) to increasingly control the scene.
While the first goal is concerned with camera optics components and
algorithms, the second goal restricts the number of possible inputs
(i.e. the domain) and, thus, reduces applicability. As a result, the re-
quirements that are to be satisfied by a CV application have to include
both: domain aspects as well as functional aspects.

During the course of this work we will focus on the specific ap-
plication of aerial obstacle detection as system to be tested (see Fig-
ure 1): A single camera mounted on a small propeller-driven light
aircraft is producing a continuous image stream. The SUT’s goal is
to detect other planes in this image stream, which are on a potential
impact course. Further detections are the input for a sense and avoid
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Figure 1. The SUT : A sense and avoid algorithm for aerial vehicles

[1] controller. In order to formulate the requirements, it is important
to analyze the system with its full purpose in mind even though this
work is only testing the sense part.

Naturally, a failure of such a system leads to dangerous situations,
hence rigorous testing is obligatory. To follow the idea of test driven
development (see e.g. Boehm et al.[5]), test data is being designed in
an early stage, when a complete system is unavailable (neither hard-
ware nor software). At this early development stage, exists a general
idea and a basic set of requirements about what the system should be
capable of, and some potential internals (used methods of the algo-
rithm) are already determined. To test a system based on such defi-
nitions is called Gray Box Testing, in contrast to White Box Testing,
where the entire code of the system is available, and Black Box Test-
ing, where only the general functionality of the algorithm is available
to the testers.
The research objectives of this work are:
• to design synthetic test data based on the SUT specification to-

gether with domain restrictions in order to reveal possible flaws of
the SUT and to answer system design relevant questions2,

• to analyze the SUT’s performance for certain partitions of this test
data, and derive a number of insights into the SUT’s weaknesses,

• to show how operational limits can be determined by the approach,
• and to verify if the approach is feasible, and if it leads to reason-

able results by comparing the gained insights to real-world exam-
ples and analyzing SUT’s internals.

The paper is organized as follows: Section 2 summarizes the related
work and discusses how the proposed procedure differs from other
approaches. Section 3 presents the approach for designing test data
based on requirements of a concrete system. Section 4 describes the
general procedure to create the actual test data and Section 5 presents
obtained test results. Section 6 shows how the presented approach is
validated while Section 7 summarizes the findings and finally, Sec-
tion 8 concludes the topic and gives an outlook.

2 The concrete formalization of the domain model written in a specific do-
main language, and many details on the creation of test data from this model
are omitted, because it would exceed its scope.



2 RELATED WORK

Many advances in computer vision are closely related to available
labeled data. For example, increasingly difficult test data allowed
the community to analyze new approaches and rate them. Moreover,
training data is constantly growing in variability, which is driving
the currently impressive advances in deep-learning-based vision. In-
creasingly complex and larger real-world test data sets require, de-
pendent on the ground truth type, either a considerable amount of
annotation work or complex vision-independent measurements (e.g.
Light Detection And Ranging (LiDAR)). To manage manual annota-
tion effort, several strategies have been developed: many works ap-
proach the issue by crowd sourcing technologies [8, 20, 10, 16, 19]
and, or semi-supervised methods [3, 29]. Other works fully concen-
trate on synthetic test data, due to the reduced effort in ground truth
generation [27, 13, 12, 24, 4, 6].

There is an ongoing discussion about real-world versus synthetic
test datasets, since it is not entirely clear if synthetic test data can
replace real-world test data. Naturally, on the one hand, testing is
aiming to reflect real-world behavior as close as possible. On the
other hand, today’s demand for test data and especially for training
data often cannot (at least with manageable effort) be fulfilled by
real-world data sets [22]. Biedermann et al. [4] present evaluations
of Advanced Driver Assistance Systems (ADAS) on their fully syn-
thetic, physically accurate rendered COnGRATS dataset and claim
that their synthetic data is not ”simpler” than real-world data.

Ros et al. [27] generate synthetic data for semantic segmentation
of urban scenes that can be used to test and train systems. Their test
data design is based on the requirements of visual ADAS working in
an urban environment. It is especially tailored for training deep con-
volutional neural networks, which need data that is sufficiently di-
verse to learn many parameters. The authors argue, that pixel-based
human-made annotations (e.g. ImageNet [28]) are still a driving fac-
tor in system development, but are also simply too expensive for
more complex applications, such as those required for ADAS.

Regarding the domain of aerial vehicles (AVs), Ribeiro and
Oliveira [26] show a system to test a roll attitude autopilot sys-
tem, by controlling a flight simulator, named X-Planes with Mat-
lab/Simulink, but they do not deal with domain or situational cover-
age.

2.1 Vision Testing Requirements

Konderman [17] first analyzes how ground truth is currently gener-
ated and further elaborates on the current shortcomings of ground
truth data design. He sees the aim of performance analysis in under-
standing, under which circumstances a given algorithm is suitable for
a given task and finds requirements for engineering to be the key for
better suited ground truth and test data. Finally, he presents a require-
ments analysis for stereo ground truth.

Regarding computer vision robustness, an extensive list of situa-
tional requirements has been presented by Zendel et al. [31]. They
perform a risk analysis method called Hazard and Operability Study
(HAZOP) and apply it to CV for the first time. This method is em-
ployed to generate a checklist for test data and includes many poten-
tially performance hampering vision situations (criticalities). There-
fore, the checklist constitutes a robustness coverage metric, which
can be used to validate test data.

Model-based testing is a well established method to generate a
suite of test cases from requirements [7, 9]. It aims at automatically
generating input and expected results (ground truth) for a given sys-

tem or software under test, such that a certain test purpose can be
achieved. This purpose defines the capabilities or properties of the
system to be tested. In order to enable a detailed specification of what
has to be tested and to measure test progress, a test metric or coverage
criterion is introduced.

2.2 Performance Metrics

Figure 2. Multi Object Maximum Overlap Matching Instances (dashed
strokes are the SUT result, solid ones the GT)

In evaluations on computer vision a performance metric has to
be chosen dependent on the application type (e.g. object detec-
tion (OD), object tracking (OT) or event detection (ED)). Several
sets of performance measures were proposed for different applica-
tions: VACE [15] (OD and OT), CLEAR [2] (OD and OT), CLEAR
MOT [2] (OT), and the information theoretic measures [11] (OT) and
CREDS [32] (ED). These metrics consist of different scores evaluat-
ing the performance with respect to the number of true positives, true
negatives, false positives (or false alarms), false negatives (or missed
detections), deviation errors or fragmentation depending on the target
to be evaluated. Examples for more exact pixel-based comparisons
besides the simple bounding box overlap measure include the Hoover
Method [14] as well as the Multi Object Maximum Overlap Match-
ing (MOMOM) of Özdemir et al. [25]. The Hoover Method [14]
was originally proposed to calculate a performance measure for cor-
rect detections, over-segmentation, under-segmentation, missed de-
tections and noise. MOMOM solves the basic problem of finding the
best way to assign target object instances in the GT to detection in-
stances found in the SUT’s output, by modelling this as an optimiza-
tion problem. The underlying assumption is that the best matching is
the one that globally maximizes the overlapping regions of GT and
SUT result. The results of MOMOM are a classification of detec-
tions into correct, under, over, and missed detections (see Figure 2).
It also reports false alarms, i.e. SUT results that do not have over-
lapping pixels with any GT object instance. After classification, the
actual performance measure based on the matches can be calculated.
Özdemir et al. [25] use a performance measure that is sensitive to
object shape and boundary fragmentation errors.

3 TEST DESIGN

To test a vision system, we first specify its objective (the task to be
solved) and its domain (the world it has to operate in) as specific as
possible. Potential sources of input for such design phase are stan-
dards, functional descriptions, requirements for the SUT, and known
issues. In this case study, a group of testers and developers agreed on
such definitions and decided on the type of ground truth, and there-
fore on what constitutes a test case (see Figure 4). Then the group
defined a number of performance influencing questions which are
desired to be answered by the evaluation. The most relevant, and
therefore presented questions are:



• How do different backgrounds influence the number of false de-
tections? (answered in Section 5.1)

• How does the type of an observed approaching aerial object influ-
ence the missed detections? (answered in Section 5.2)

• How do detections depend on the approaching aerial flight path
and distance? (answered in Section 5.3)

One reoccurring key principle in deriving insights from evaluations
is to find equivalence classes (of objects and situations) that can eas-
ily be analyzed. One possible data partition into equivalence classes
of situations are scenarios. In this case, they are based on flight ma-
neuvers (see Section 3.3).

In the following sub sections we show the exemplary definition
of the SUT and its objective respectively (Section 3.1), the domain
it has to operate in (Section 3.2) and the maneuver-based scenarios
(Section 3.3).

3.1 System under Test
The purpose of the SUT to be tested in this work is a collision
avoidance system to assist pilots in order to increase safety in public
airspace (usually referred to as ”Sense and Avoid” see Figure 1). The
role of this collision avoidance system is to identify non-cooperative
airborne objects (gliders, ultralights etc.) which cannot be detected
by existing collision avoidance systems. Before designing the test
data, various general methodologies have been discussed on how to
tackle the problem: Statistical models of sky region intensity can re-
veal anomalous objects in sky regions. Gradient based methods can
hint the detection of initial candidate flight objects. By determining
the ego-motion, objects that move in relation to the camera and back-
ground can be revealed. Finally, also template based trained aerial
object detectors are a possible solution. The results of any of these
methods are regions within the image that can be tracked.

This work concentrates on testing the detector step only, since
evaluations of tracking are more complicated (see e.g. Kristan et
al. [18]), and would exceed the scope of this short paper. The SUT
used for our evaluation is a prototype in development and states one
possible way to solve the problem. The evaluation of this early proto-
type is a good showcase for the testing approach. However, the pro-
posed strategies and methods for test data generation can be applied
to other detectors, as well.

3.2 Domain
A domain definition specifies what is allowed and what is excluded
within the closed world segment the algorithm has to operate in. Vi-
sion systems of today often have to operate in rather uncontrolled
outdoor environments. A closed world description might not be able
to include the entire range of possible situations that can occur. How-
ever, by explicitly defining the closed world, we at least exactly know
the limitations of the test data. Also no coverage estimation is possi-
ble without defining the variables (their number) and their maximum
and minimum bounds.

We define such world by two main ingredients: (i) Rules of exis-
tence and co-existence: which classes (e.g. which objects) exist, and
by what parameters they are described. (ii) Relation rules (between
object classes or instances) are usually represented as constraints on
their parameters.

Part of this definition is that we define limits for parameters. In
this case study we derive the following limits from the requirements
of the SUT itself:
• Altitude range: 200 – 2.000m, hence no takeoff and landing
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Figure 3. Considered entities for the generation of test cases

• Flight speed: 100 - 200km/h
• Good sight: daylight only, no flights during thunderstorms and

rain, no flights within clouds
For the purpose of this work, a rather limited domain was defined: It
constitutes of all possible combinations of
• 0 to 3 aerial objects (out of six possible types, see Figure 3(a))3,
• the sky is characterized by one out of six sky types (see Fig-

ure 3(b)),
• the ground type is one out of three types (see Figure 3(c)).
Every type of aerial object is not only characterized by its appear-
ance, but also by the rules it is subject to (e.g. all planes can only fly
in directions similar to their forward orientation and not backwards4).
They all have speed ranges characteristic to the respective object. Pa-
rameters such as direction, actual speed of flying objects, and speed
of the SUT-plane are free, but bounded within known limits. Finally,
in order to generate each test case, the entities are all integrated into
a scene by combining a skydome (to represent the sky) a more or less
flat ground model and the respective flying objects (see Figure 4).

3.3 Scenarios
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Figure 4. Example synthetically generated input image, scene and image
ground truth of the Head On scenario

A scenario is a definition of how the previously defined closed
world works in a specific situation. As such, a scenario can be em-
ployed to explicitly restrict the scenes (which are generated by it) to

3 The element depicted as single goose is only one representative of the used
swarm of geese.

4 Extreme winds are excluded.



a certain subset of possible scenes.
The scenarios considered in this case study are maneuver-based:
• Head on: AV is on a head-on collision course with SUT-plane
• Converging: flight path of AV and SUT-plane intersect
• Take Over: AV is taking over SUT-plane
• Following: SUT-plane follows AV
• Parallel: AV and SUT-plane have parallel flight paths
• Null: No AVs are visible
Within a scenario, the constraints on entities are constant for all test
cases. For example, in a takeover scenario the starting point of any
AV has to be behind the starting point of the SUT. The flight direc-
tion is limited as well, so that the path of the AV crosses the field of
view of the SUT-plane. The coverage in respect to these situational
aspects is by definition guaranteed simply by defining numerous of
these scenarios such as takeover, crossing, heading etc. and generat-
ing test data for them5.

A scenario only limits the possibilities according to certain con-
straints, but it still contains numerous variable parameters such as:
which AV is used, where it starts exactly, or the exact direction of
movement. All these free parameters span a high dimensional pa-
rameter space. Many of those parameters are continuous; a test case
on the other hand is only a discrete sample of the parameter space.

4 TEST DATA GENERATION
Describing the entire procedure of test data generation from a do-
main description and respective models in detail would exceed the
scope of this work. Some general methodologies are discussed in
the following (for more details see Zendel et al. [30]). The variables
of scene elements (defined in Section 3.2) span a parameter space.
Since some variables are parameters over a continuous range, sam-
pling is required. With the objective of optimal parameter coverage
in mind, a smart sampling is advantageous. Such sampling is accom-
plished by employing low discrepancy (see e.g. Matousek et al. [21])
as a sampling method. The problem is stated as follows: With a given
number of sampling points (=single test cases), how is it possible to
minimize the volumes of untested regions in the multi-dimensional
parameter space while observing varying conditions for each of the
parameters (e.g. minimum/maximum limits and different data types)
with respect to the domain model rules. This is accomplished by ap-
plying the following generation strategy:

1. The domain definition is modeled in description logic as a Sat-
isfiability Modulo Theory (SMT) model. With an SMT model it
is possible to check for satisfiability, find solutions, test solutions,
and evaluate if they fit the model (see e.g. Moura et al. [23]).

2. Samples are taken in the parameter space according to low dis-
crepancy sampling.

3. The samples are evaluated for validity by testing them in conjunc-
tion with the SMT model of the domain.

4. Steps 2 and 3 are repeated until a valid solution is found. If this
fails for a certain number of times, a solution is generated from
the SMT model. If even this fails, the domain model is invalid and
not satisfiable under the requested circumstances.

5. The test case is created with the chosen selection of parameter
values. It represents the initial setup of a scene as well as all vari-
ables needed to simulate its progression within the time frame.
A dedicated rendering and post-processing pipeline generates im-
ages and GT labelings for specified moments in time (e.g. a se-
quence of 100 frames at 20 fps). An example is given in Figure 4.

5 If there is at least one test case for each scenario.

(a) after 5 initialization frames

(b) after 5 frames with atmospheric effects

Figure 5. Percentage of frames with false alarms

5 TEST RESULTS
In order to compare the SUT output and the ground truth we need an
appropriate metric. The choice of metric must be based on the task
and the corresponding requirements. We chose an adaption of Multi
Object Maximum Overlap Matching (MOMOM) of Özdemir et
al. [25] tailored to the needs of aerial object detection applications.
Not all of the detections’ instance classes distinguished by MOMOM
(correct-, missed-, over-, under-detections and false alarms; see Fig-
ure 2) are relevant for sense and avoid. Over-detections are not con-
sidered a problem, only missed detections and false alarms are er-
roneous outputs. Also, in comparison to the original MOMOM, the
actual shape of the detected objects bears no relevance, but position
and size are important.

In the following, evaluations and corresponding datasets for this
case study are presented: the background evaluation (Section 5.1),
the foreground / target object evaluation (Section 5.2), and finally an
example for parametric analysis (Section 5.3).

5.1 Background Dependency Evaluation
To evaluate how the background influences the number of false
alarms, we designed a test data set that does not show any aerial
objects (Null test) and it varies ground and sky types (see Figure
3(c) and Figure3(b)). For each ground-sky combination 5 different
flight paths, each consisting of 40 consecutive frames from a mov-
ing virtual camera with 10 frames per second, are generated. For an
example see Figure 4.

In a first preliminary experiment, the initialization time is deter-
mined by analyzing the false alarm dependency on the frame number.
It reveals that the number of false alarms significantly drops after four
frames. Thus, we decided not to evaluate any frames with an index
lower than five in the following evaluations to avoid overemphasizing
the startup phase.

In a second evaluation (for the same test data), we analyze the
number of false alarms per ground-sky combination, without consid-
ering initialization artifacts (see Figure 5(a)). The following observa-
tions are made:

(O1) In general, the background model of the SUT is capable of
modeling backgrounds with the tested variance.

(O2) False alarms occur mostly in scenarios where the ground
model contains a city scene.



(O3) The number of false alarms is reduced if simulated atmo-
spheric effects are present (see Figure 5(b) versus Figure 5(a)).

(O4) The remainder of the false alarms are located at hard edges of
mountains in the terrain.

The question arising from Observation (O2) is: why does the city
lead to significantly higher false alarms compared to the other terrain
elements? There are two possible reasons: (i) the SUT’s background
model is sensitive to elements of unexpected high frequencies or sig-
nificant change in appearance in the background. (ii) The SUT ben-
efits from two effects, which in real-world data reduce the impact of
the ground on the captured image: Firstly, ground is blurred due to
limited depth of field. And secondly, light-scattering particles in the
atmosphere reduce image saturation. The first reason (i) would mean
that this is a shortcoming of the SUT, while the second reason (ii)
means the test data is in that respect ”harder” than real-world data.

However, to get a less biased test result, the remaining dataset was
computed with a simulated atmospheric effect (results are shown in
Figure 5(b)).

From the perspective of hazard analysis, Observation (O4) exhibits
no problematic behavior, but a positive side effect. Mountains and
their hard edges are definitely dangerous objects for an airplane.

5.2 Flying Object Dependency Evaluation
The influence of the flying object’s shape and characteristics is an-
alyzed by investigating their effect on the number of missed detec-
tions. The therefore synthesized test set is in general comparable to
the previous one, but has a single object within the field of view
(FOV) of the camera in at least one frame of each test sequence. In
each sequence, the object is entering the FOV and leaving the FOV
over time. The variables are the starting and end position of the ob-
jects and their speed. Due to the nature of this test set (objects inside
and outside of the FOV), it must be filtered before analysis: (a) the
frame number must be greater or equal to five (see previous section),
(b) the flying object must cover a minimal amount of pixels. The
corresponding requirements to pass the filter are: a minimal number
of pixels of 152 = 225 which corresponds to 0.062% of the im-
age (image size 752x480), and a frame number larger than 5. Figure
6(a) shows the remaining number of frames after filtering for each
object-scenario combination.

The zeros in the takeover scenario in Figure 6(a) show that not
all scenarios are possible with all flying objects. They have differ-
ent speeds, which approximate their real-world cruising speeds. The
A340 plane is the only one faster than the SUT, hence the only one
that can pass the SUT in a takeover scenario. Furthermore, in order
to analyze the effect of object type on missed detections, we analyze
the relative number of frames with at least one missed detection6 (see
Figure 6(b)). The following observations can be made:

(O5) In general, slower objects are less likely to be detected than
faster ones.

(O6) Thin structures can be missed: The object ”goose”, which actu-
ally consists of several geese flying in a swarm, is not detected
at all. The individual geese are usually very small. The ASW20
states a similar problem: it has a thin wing profile and therefore
its silhouette has thin parts.

(O7) The big and slow balloon confuses the system. It is the slowest
of all these objects.

(O8) The SUT performs much better on converging than on the other
domain models.

6 According to the MOMOM matching optimization results.

(a) Coverage: # of frames per
combination

(b) Relative # of frames with
missed detections

Figure 6. Evaluation results for all scenario-object combinations

Our initial hypothesis defining parallel flights as problematic did
not prove to be correct. There is a minor reduction in performance,
but it is not significant in comparison to the other scenarios. Regard-
ing Observation (O8), it is the least restricted scenario and the most
probable7 (see coverage in Figure 6(a)). It only requires the flight
paths to intersect within the SUT’s field of view.

5.3 Parametric Analysis
Along with coverage of situations and entities (as described in the
previous sections), our tool chain also supports parametric analysis.
Since the head on situation is the most critical, it was decided to do a
parametric evaluation on the flight path for such a scenario. Test data
was generated containing a single plane of the type Airbus A340. It
was set up to fly towards the SUT with constant speed from various
directions (determined by low discrepancy sampling). In Figure 7,
the dependency of missed detections in relation to the flight path is
visualized. Obviously, the missed detections increases with distance;
as can be seen in both XZ-plane and XY-plane projections. One can-
not draw reliable conclusions from the YZ-plane, but the XY-plane
clearly shows decreased detection rates close to the Y=0 line.

(O9) Planes heading directly towards the SUT-AV state an addi-
tional difficulty for the SUT.

6 VALIDATION OF THE APPROACH
In the previous section, we established a list of 9 observations about
the system’s behavior in the defined domain. The question remains,
whether those results are only valid for the synthetic test cases or do
they generalize to real-world situations. In the following, we show
two methods of evaluating the testing approach for the applicabil-
ity to the SUT at hand: (i) Find similar situations in real-world data
recorded from an actual aerial vehicle and compare the results, (ii)
find out details in the SUT’s algorithm that undermine the validity of
the observations.

Regarding the general observation judging the background as suf-
ficient (Observation (O1)): the available real-world data contains var-
ious cloud formations that did not influence the performance signifi-
cantly.

Regarding Observation (O2) and (O4), where mountains and cities
have been detected as flying objects: Unfortunately the available cap-
tured test data does not contain any sequences with mountains, but

7 At least within our definition of the domain.
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it contains houses (see Figure 8(b)), which state a similar problem
in low height flights. The SUT reacted with false positives for those
scenes.

Observing that low speed AVs are a potential problem (Observa-
tion (O5)), a real-world situation was sought out in captured video
material. The phenomenon could be found in a video segment show-
ing a hovering drone (see Figure 8(a)). This video material was not
annotated since the segment was not considered critical before the
synthetic test run. It would have been difficult to find the segment of
some hundred frames in a couple of gigabytes of data.

The problem with thin and/or disconnected silhouettes (Observa-
tion (O6)) can be explained by the internals of the SUT: in order to
make it more robust, the SUT has a filtering step for small noise,
which ignores such small elements. Therefore the goose swarm,
which is not connected, and where each individual goose is too small
to lead to detection on its own, is considered to be noise. This is sim-
ply a camera resolution dependent effect, hence the testers recom-
mended to the system developers to increase the camera resolution.

Observation (O7), huge slow objects like the balloon can confuse
the system, can be explained by the general approach of the SUT
treating the task as foreground background segmentation. If an object
covers the majority of the pixels of the camera image, it is assumed
to be background. This causes a missed detection as well as a number
of false alarms in the background.

Observation (O9), where one plain flies toward the SUT on head-
on collision course, could not be found in the real-world data, but it
can be explained similarly to the previous Observation (O6).

Observation (O3), concerning the atmospheric effects was already
discussed in the previous section. Observation (O8) establishing that
the system performs best in the converging scenario, could not be
verified by any of the two means, which made even more evident

why synthetic test data is needed.

7 LESSONS LEARNED

Whenever we test with synthetic test data we initially have to make
sure that the data is ”sufficiently realistic”, meaning that the behavior
of the algorithm with synthetic data is similar to real world behavior.
We propose to compare results for synthetic and real-world data in
an initial phase and adapt the synthetic data until similar behavior is
reached (See Figure 5(b)).

We also have to ensure that we measure performance fairly and
according to the test objectives (e.g. do not measure initialization
phases).

What became clear during the evaluation of the approach is, that
is time-consuming, often infeasible, and sometimes even impossible
(without risk to human life) to find specific situations in real-world
data. Even if the data is available, it can mean that one has to sift
through gigabytes of mostly unannotated video material.

8 CONCLUSION & OUTLOOK

During the course of this work we depicted a case study on how to
design test data based on SUT requirements and a definition of the
environment the tested system has to operate in. One key element was
to identify several performance-influencing questions that allow for
deep insights into the shortcomings of SUT. For each of these ques-
tions test data was created, evaluations have been performed, and ob-
servations on the tested system’s behavior have been made. Finally,
the validation of this testing approach could verify 8 of 9 observa-
tions with either real-world examples that cause the same erroneous
behavior, or explanations based on the SUT’s internals. Therefore
this test case generation procedure, combined with an appropriate
evaluation method, leads to interpretable and valid results. During
the course of this work the completeness of the generated test data
could not be determined. The question remains: how many erroneous
behaviors have not been found by this synthetic-test-data-based eval-
uation?

In our opinion, carefully planned test data (that includes functional
and domain aspects) is vital to any complete assessment about a CV
application and synthetic test data was the most feasible solution for
the application at hand.

9 The original image can not be published for legal reasons, therefore the
image Figure 8(b) shows an exemplary similar scene.
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