
Testing Computer Vision Applications
An Experience Report on Introducing Code Coverage

Analysis in the Field
Iulia Nica and Franz Wotawa1 and Gerhard Jakob and Kathrin Juhart2

Abstract. In this paper we present our work in progress in defining
a suitable testing and validation methodology to be used within com-
puter vision (CV) projects. Typical quality assurance (QA) measures,
targeting the applicability in real-world scenarios, are meant here
to complement the research on specific computer vision methods.
While inspecting the existing literature in the domain of CV perfor-
mance evaluation, we first identified the main challenges the CV re-
searchers have to deal with. Second, as every vision algorithm even-
tually takes the form of a software program, we followed the classic
software development process and performed an in depth code cov-
erage analysis in order to assure the quality of our test suites and
pinpoint code areas that need to be reviewed. This further leaves us
with the questions of which test coverage tool to prefer in our situa-
tion and whether we can introduce some specific evaluation criteria
for identifying the right tool to be used within a CV project. In this
article we also contribute to answering these questions.

1 Motivation
Computer vision (CV) is used today in a wide range of real-world
applications, from industrial inspection and safety relevant vehicle
functions to 3D model generation by photogrammetric methods,
medical imaging and fingerprint recognition. Although a vast vari-
ety of literature covering evaluation techniques in subfields of the
whole topic is available, still no study reports on testing a complete
vision system, i.e., comprising hardware, software, data communica-
tion and control. Obviously the high quality of CV applications has a
great impact on their usability in real world scenarios. Hence beside
traditional CV evaluation techniques such as using test data sets as
input and comparing the algorithms output against a manually estab-
lished ground truth - we have to control the quality of the involved
applications by means of applying a more generic evaluation strategy.
In this context, quality assurance (QA) activities like peer reviews,
coding guidelines, or the usage of software quality tools (static and
dynamic analyzers) offer many benefits, from being able to track the
CV projects progress and estimate its relative complexity to helping
us realize when we have achieved the desired state of quality [4].

Still, what is different about testing CV applications and why is it
so difficult to test whether computer vision algorithms can live up to
their claims?

Regarding algorithmic correctness on one side, it is often very hard
to get a consistent and exact definition of the desired output for a
specific input. Especially in classification tasks, it is tough to decide,

1 Technische Universität Graz, Austria, email: {inica,wotawa}@ist.tugraz.at
2 JOANNEUM RESEARCH, email:{gerhard.jakob,Kathrin.Juhart}@joanneum.at

when the obtained results are still correct and when we are dealing
with an abnormal behavior.

Regarding the evaluation of the complete, often very complex vi-
sion system on the other side, the QA team has to manage and run a
high amount of tests on all levels - from unit tests, to integration,
function and system tests. Therefore one needs to understand the
system as a whole, as well as all of its components and their in-
terdependencies. Furthermore we have to cover also possible hard-
ware faults when identifying use cases, based on the defined system
requirements and specifications. Fortunately, today there are well-
established QA practices and many quality management tools avail-
able on the market, meant to ease the generic evaluation of products
and processes, that the only challenge is to find a proper manner to
integrate them in the vision project.

The remainder of this paper is organized as follows. In Section 2
we review the existing literature in the domain of CV performance
evaluation and introduce some basic quality assurance terms. After-
wards, in Section 3, we identify and discuss the requirements a code
coverage tool has to fulfill in order to be used in the CV domain.
Further on, we give a short overview of our four best ranked tools.
In Section 4 we first introduce the case study and compare the tools
based on their integration with the example application. Additionally,
we present the first success story in improving our code coverage.
With Section 5 we conclude this paper.

2 Related Research

In our work, we have first inspected the existing literature in the
domain of performance evaluation in computer vision. General
overviews of empirical evaluations were found in [5], [2], [3], and
[11] and will be further presented here in a chronological order. They
all review the commonly used techniques for performance character-
ization of algorithms in different subfields of CV.

In the early 90s, [5] was discussing the evident lack of perfor-
mance evaluation in the literature on vision algorithms. In the au-
thor’s opinion, this situation has been tolerated because the ability to
perform a CV task was interesting enough, so that the performance
of the new algorithm became a secondary issue. In order to quickly
design a machine vision system, which works efficiently and meets
requirements, [5] suggests an analogy with a system’s engineering
methodology. Thus, a well-defined protocol containing a modeling
component, an experimental component and a data analysis compo-
nent was envisioned. The modeling component would describe the
ideal input image population (real or synthetic images), the random
perturbation model (by which non-ideal images arise), the random

perturbation process (that characterizes the output random pertur-
bation as function of input random perturbation) and the criterion
function (by which one can quantify the difference between the ideal
output and the computed output). The experimental component de-
scribes the performed experiments, whilst the data analysis deter-
mines the performance characterization based on the experimentally
observed data.

In the absence of acknowledged methods for the evaluation of al-
gorithmic performance, [2] proposed the definition of performance
as function of mathematical sophistication. However, as the number
and specificity of assumptions made in the mathematics underlying a
vision algorithm increase (i.e., the sophistication of an algorithm in-
creases), the performance of the CV application not necessarily does.
This is the case when the assumptions made do not match the appli-
cation characteristics. Furthermore, the need of standard databases,
evaluation protocols and scoring methods/performance metrics avail-
able to researchers was identified by the authors.

Regarding the typology of test data, [3] differentiate first between
data without noise and data with noise. Moreover, they mention three
types of empirical testing: testing using real data with full control,
empirical testing with partially controlled test data and testing in an
uncontrolled environment. Depending on the distribution of the avail-
able data into training and testing sets, test protocols have been pro-
posed. Another discussed issue in [3] is again the necessity to define
a metric, which can be used to quantify performance. The authors
associate such performance metrics with the failure modes of an al-
gorithm. For each type of vision algorithm, specific evaluation met-
rics were defined according to the function performed by the given
algorithm. Some examples are the ROC (Receiver Operating Char-
acteristic) curve in case of a feature detector, the confusion matrix in
case of object recognition, or the true and false matches when deal-
ing with matching algorithms, such as those used in stereo or motion
estimation.

Similarly to [3], the authors of [11] outline two different levels of
analysis for vision systems:

• technology evaluation, which concerns the characteristics of the
algorithms using generic metrics, such as ROC curves. Standard-
ized data sets are used and the results are therefore repeatable
and depend on the size and scope of the test data sets. Generally,
this evaluation stage requires simple metrics related to the fulfilled
function- detection, estimation, classification.

• scenario evaluation, which concerns the system’s behavior in par-
ticular situations - for a specific functionality with its sets of vari-
ables (e.g, number of users, type of lighting). The test data is
based on a controlled real world and is therefore only partly re-
producible. More complex metrics are to be used here, e.g., sys-
tem reliability expressed as mean time between failures.

[11] takes the topic of technology evaluation a step further by
defining a set of eight key questions, thought to highlight the best
practices and the state of evaluation methodology in several repre-
sentative areas of computer vision discipline: sensor characterization,
feature detection, shape- and grey-level-based object localization,
shape-based object indexing: recognition, lossy image and video
compression, differential optical flow, stereo vision, face recognition,
measuring structural differences in medical images. From the guid-
ing questions formulated in [11], we selected those, which are in our
opinion first to be answered in algorithmic testing:

1. Is there a data set for which the correct answers are known?
2. Are there data sets in common use?

3. Are there any known algorithms that can be used as benchmarks
for comparison?

4. What should we be measuring to quantify performance? What
metrics are used?

Though the analysis in [11] touches also other aspects of build-
ing a complete vision system, it excludes testing the hardware. Fur-
thermore, the mentioned software validation is limited to ensuring
that the software implementation of an algorithm correctly instanti-
ates its mathematical foundation [11]. Hence, the collected answers
for each of the considered visual tasks indicate the fact that perfor-
mance characterization techniques are mostly application/algorithm
specific and that currently they do not refer to the integrated system
as a whole, i.e., comprising hardware, software, data communication
and control.

More currently published research like [13], [14] emphasizes the
role of test data generation and test data validation in vision testing.
For the purpose of evaluating CV algorithms, there are today some
publicly available data sets, such as the FERET database [9] for face
recognition algorithms, Middlebury [10] and KITTI [7] test data sets
for stereo vision, or VOT datasets [6] for visual tracking. The us-
age of this large amount of test images brings yet some problems.
One of them is that the test data sets are not specially designed for
a particular vision application, but for a class of algorithms. Hence,
a 100% coverage of the possible scenarios can not be guaranteed.
As introduced in [13] and further elaborated in [14], a solution to
this problem would be the automatic generation of datasets, so that
they contain all the typical scenes and hazards, without including too
much redundancy, so that the testing effort could be manageable.

For a change, as the vision algorithm will take eventually the form
of a software program, we see no reason why we should not take ad-
vantage of the great progress in the domain of quality assurance and
software testing in particular. The usage of standardized QA meth-
ods, metrics and tools can ease the work of any CV developer and
quickly improve the overall process, especially in terms of system’s
resilience and end user’s satisfaction.

”Quality control activities determine whether a product conforms
to its requirements, specifications, or pertinent standards”[12]. In ad-
dition to the traditional testing practices, QA activities encompass
peer reviews, coding guidelines, and also the usage of software qual-
ity tools, like static analyzers that examine source code for possible
errors or code coverage analysis tools, that can measure the actual
coverage of the software with the available test data sets. For more
information on software testing and other QA techniques we refer
the interested reader to [8], [1], [12].

3 Code Coverage Analysis
Among the first quality assurance metrics invented for systematic
software testing, code coverage is used to describe the degree to
which the source code of a program is tested by a particular test
suite. Test coverage can be used in unit testing, regression testing,
for test case order optimization, test suite augmentation or test suite
minimization.

The code coverage analysis process is generally divided into code
instrumentation, data gathering, and coverage analysis. Code instru-
mentation consists in inserting some additional statements, that mon-
itor the execution of the source code. The instrumentation can be
done basically at code level in a separate pre-processing phase or at
runtime.

In order to be self-contained, we briefly introduce here the most
commonly used code coverage metrics, as they might be new to the

computer vision community. We further refer to the following small
code snippet to quickly highlight their major advantages/ disadvan-
tages in practice:

if (x>1 && y==0) {
z=z+1;

}
if (x==2 || z>1) {

z=z+2;
}

As already mentioned, several kinds of instrumentation are possi-
ble. The most common are for:

• line or statement coverage: where the tool instruments the execu-
tion of every executable source code line; this coverage criterion
is a rather poor one, as it is completely insensitive to some control
structures and logical operators.
For instance, one could execute every statement (reaching a 100%
line coverage) from our example by writing a single test case:
T1(x=2, y=0, z=4). Now, let us assume that the second de-
cision should have stated z>0. If so, this error would not be de-
tected. Or perhaps in the first decision should be an or rather than
an and. This error would also go undetected.

• decision or branch coverage: it reports whether each decision has
a true and a false outcome at least once; this criterion is
stronger than line coverage, but it is still rather weak.
For instance, with our previous test-case inputs T1(x=2, y=0,
z=4) and a new one T2(x=3, y=1, z=1), we can reach full
decision coverage. However, if in the second decision we should
have had z<1 instead of z>1, the mistake would not be detected
by the two test cases.

• condition coverage: in this case, one has to write enough test cases
to ensure that each condition in a decision takes on both true and
false outcomes at least once; this metric is similar to decision
coverage, but has better sensitivity to the control flow. However,
full condition coverage does not guarantee full decision coverage.
For instance, the following test cases: T3(x=1, y=0, z=4)
and T4(x=2, y=1, z=1) cover all conditions’ outcomes, but
they cover only two of four decisions’ outcomes.

• function coverage: reports whether each function is called (and
how many times); it is useful during preliminary testing to quickly
find coarse deficiencies in a test suite.

3.1 CV tailored Evaluation Criteria
Following the classic software development process depicted in Fig-
ure 1, we first learned that code coverage analysis does not exist in
most of the CV projects. As a result, we tried to identify the must-
have and nice-to-have features of a code coverage tool to be used in
the CV application domain. Like in any tool selection process, one
has to clarify first the user’s requirements. We will further present
only those particular requirements related to computer vision soft-
ware, and neglect general questions such as: what platforms can the
tool run on, what is the target application’s language or which are the
supported compilers. We will not mention here requirements com-
ing from the quality assurance team, which are to be discussed in the
next section.

The following list ranks the priorities of these specific features, as
discussed with CV software developers:

1. working with templates: due to the great variety of data types
(pixel and parameter types), there is a tremendous number of tem-

Figure 1. One-to-one correspondence between development and testing
processes.

plates defined in CV applications and which have to be taken into
consideration when analyzing the code coverage. Tools that can-
not handle templates appropriately are dismissed.

2. unit testing support: in our case, CPPUnit unit testing framework
support is needed, as this is the most frequently used framework
in C/C++ CV applications.

3. excluding 3rd party libraries from the coverage analysis: as most
of the CV applications make use of third party libraries, whose
analysis is obviously not desired, the tool has to provide a simple
way to hook/instrument only certain files.

4. automated testing/non-interactive testing: taken into considera-
tion the high complexity of the currently developed CV software,
an easy automation of the test coverage analysis is essential.

5. performance under big test data amounts: There is no doubt that
the insertion of instrumentation will increase the code size and
affect the instrumented applications performance, i.e., it will use
more memory and run slower. A low performance overhead is of
course desired, however, considering the complexity of the target
programs, our requirement is that the analysis tool does not crash.

3.2 Four state-of-the-art Code Coverage Tools
Identifying the right tool for code coverage analysis in vision appli-
cations can lead to major productivity improvements and implicitly
to increases in the release quality of the overall computer vision sys-
tem. Hence, various free and commercial coverage analyzers have
been inspected and compared. As a large variety of coverage metrics
exist (see the preceding summary), the QA team imposed as require-
ment that the code coverage tool should be able to measure at least
condition coverage. This requirement together with the previously
presented CV tailored evaluation criteria have led to limiting our
comparative evaluation to the following four state-of-the-art com-
mercial coverage tools: C++ coverage validator1 , Squish Coco code
coverage tool2 , BullseyeCoverage tool3 , Testwell CTC++ analyser4

.

4 Case Study: Dibgen and Dibgiom Libraries
Dibgen is a collection of basic C++ libraries used particularly,
but not exclusively, in computer vision applications implemented

1 http://www.softwareverify.com/cpp-coverage.php
2 http://www.froglogic.com/squish/coco/index.php
3 http://www.bullseye.com/measurementTechnique.html
4 http://www.verifysoft.com/de cmtx.html

by JOANNEUM RESEARCH (JR). Included libraries cover ba-
sic, mostly matrix based mathematical operations, color handling
and evaluation, as well as generic parameter storage, progress in-
formation handling, different types of basic file IO methods often
used in computer vision, and value-to-string conversion (and back-
conversion). All the libraries are implemented using template-heavy
C++ code allowing the usage of different data types (pixel types,
parameter types) for most of the operations. In terms of volume,
Dibgen consists of approximately 100000 LOC.

The other partially analyzed collection was Dibgiom. Seen as
OpenCV counterpart and based on Dibgen, it contains 15 libraries,
which are all used for image processing tasks. The library consists
of approximately 9 MB of source code and approximately 255000
LOC. We further provide a brief description of those Dibgiom li-
braries, which were yet analyzed:

• Band: Various representations of image data in the memory (tiled
with FileIO for huge satellite data, pure memory-based for rapid
CPU access, specially aligned memory layout for acceleration us-
ing Intel Performance Primitives, special layout for CUDA accel-
eration), transparently accessible via the same interface to both
user and algorithms.

• BandIterator: Generic access iterators for bands regardless
of memory layout (see above)

• Calibration: Simple radiometric calibration methods
• Convolve: Image filter based on convolution (Gauss, Laplace,

etc.)
• Detect: Various detectors (Extrema, Bright Spot, Corner, etc.)
• Filter: General image-filter (arithmetic, logic, etc.,), that con-

vert, in principle, a pixel in the source image(s) to a pixel in the
target image

• KernelFilter: Core-based image filters (mean, median, etc.),
which do not calculate any convolution

• KeyPoint: Description of key points for various detectors
• Operation: Operations on images whose result, or whose

source is not an image (source no image: filling images, etc., or
target no image: the sum of all the pixels in the image)

• Pyramid: Generation of pyramid representations (Gauss, etc.)
• Segmentation: Image-based operations that compute segmen-

tations from arbitrary source images (Watershed, RegionGrowing,
etc.)

• Sift: Special version of a Sift detector.

For the Dibgen experiments we used the same unit test suites
and the same configuration for all the four coverage tools. Although
each tool features more than just decision and function coverage, we
will merely present the comparison of these two types of coverage
measurements, as only they are computed by all the four tools.

The tests carried out for the Dibgiom experiments are also unit
tests, in which the source data is generated either directly by means of
using unit-test programs (usually only for very simple algorithms), or
by reading the image data from files. In the latter case, the expected
outcome is generated with other reference implementations chosen
from the literature (like MATLAB, OpenCV, etc.) and it is further
compared with the outcome produced by Dibgiom.

In Table 1 we list the global results for the whole Dibgen test
application, while in Table 2 and Table 3 we present the coverage re-
sults per directory. It is worth noting that with Testwell CTC++, the
coverage results are extremely low, while the other three tools com-
pute comparable coverage results. Table 4 depicts the running times
for the normal, uninstrumented program and for the instrumented
programs. Note that the tests were run on a notebook with Intel(R)

Core(TM) i7-4500U CPU 1.80 GHz and 8 GB of RAM running un-
der Windows 10 Pro. Although the running time for the program
invoked by Coverage Validator is approximately six times higher, we
have no source code instrumentation involved, i.e., there is no need to
recompile or relink the target program. The only requirement is the
existence of PDB files with debug information and/or MAP files with
line number information. Therefore we chose to further use the Cov-
erage Validator tool for the first Dibgiom experiments. The results
can be seen in Table 5.

Table 4. Running Times for the unit tests defined for the Dibgen Solution

For non-instrumented programs 68,44 sec
For programs invoked by Coverage Validator 475,68 sec
For CTC++ instrumented programs 74,16 sec
For Bullseye instrumented programs 68,97 sec
For Squish Coco instrumented programs 70,81 sec

Table 5. Dibgiom Coverage Results computed with C++ Coverage
Validator

Library Decision Coverage Function Coverage
Band 36,84% 53,55%
BandIterator 13,94% 67,12%
Calibration 73,58% 13,33%
Convolve 14,52% 34,77%
Detect 56,25% 41,72%
Filter 30,02% 73,66%
KernelFilter 40,08% 48,86%
KeyPoint 86,99% 70,64%
Operation 54,53% 68,21%
Pyramid 2,01% 12,71%
Segmentation 87,72% 87,27%
Sift 78,10% 66,34%

4.1 First Success Stories
One of the most complex and frequently used basic libraries in
the JR’s CV applications is the library ParameterPool from the
Dibgen collection. With about 17.000 LOC, the library is used to
store any kind of parameters of arbitrary types in one container. Each
parameter can be combined with validity information, access level
permission for user interface based parameter modifications, as well
as several kinds of descriptive text (unit, help text). Additionally, pa-
rameters can be grouped together and it is possible to define several
types of parameter dependencies. Since this library is used heavily in
nearly every JR CV application, the JR developers particularly paid
attention to test it thoroughly from the very start of development.

However, first code coverage analysis showed dissenting results,
especially in branch, function and line coverage, while at least file
coverage could reach nearly acceptable results (see Figure 2). More
detailed analysis showed that only 12 out of 36 source code files
had a line coverage better than 90%, while 9 files were not tested
at all (see Figure 4). Although the remaining 15 files were tested at
least partially from the line coverage point of view, especially their
branch coverage showed very poor results. After particular review of
the tested source code, the used test code as well as the used test data,
the test code has been adapted in some places and some test data sets
have been slightly modified.

Additionally, some new test functions were developed, especially
for previously untested files or functions. One meanwhile unused

Table 1. Overall Dibgen Coverage Results

C++ Coverage Validator Testwell CTC++ BullseyeCoverage Squish Coco
Decision Coverage 31,27% 9% 40% 45,30%
Function Coverage 39,86% 8% 52% 51,95%

Table 2. Dibgen Coverage Results per Library (Decision Coverage)

C++ Coverage Validator Testwell CTC++ BullseyeCoverage Squish Coco
Color 52,91% 9% 75% 78,65%

Exception N.A. 30% 12% 40%
Fileio 15,15% 15% 44% 39,65%

Internationalisation 55,81% 77% 61% 70,89%
Math 62,36% 3% 30% 39,54%

ModuleInterface 14,05% 5% 23% 28,54%
ParameterPool 12,39% 6% 46% 58,95%

ParameterPoolDocumentation N.A. 0% 0% N.A.
ProgramOptions 0% 0% 59% 0%

Progress 55,07% 12% 47% 54,51%
ResultDataPool 5,31% 1% 20% 29,51%
Serialization 10,14% 11% 86% 76,31%

Strings 45,50% 36% 44% 50,66%
Types 70% 1% 8% 20,28%

UserDataBase 10,94% 77% 77% 81,51%
Utilities 0% 3% 0% 23,18%

Table 3. Dibgen Coverage Results per Library (Function Coverage)

C++ Coverage Validator Testwell CTC++ BullseyeCoverage Squish Coco
Color 59,41% 6% 81% 81,17%

Exception 32,50 36% 45% 45,45%
Fileio 16,81% 26% 60% 56,52%

Internationalisation 77,67% 95% 94% 94,44%
Math 74,22% 3% 47% 47,08%

ModuleInterface 23,49% 4% 37% 35,68%
ParameterPool 36,13% 6% 72% 69,17%

ParameterPoolDocumentation N.A. 0% 0% N.A.
ProgramOptions 0% 0% 50% 0%

Progress 14,30% 9% 63% 68,46%
ResultDataPool 8,60% 2% 37% 34,69%
Serialization 11,22% 6% 86% 86,20%

Strings 49,46% 37% 65% 64,66%
Types 51,87% 1% 22% 22,88%

UserDataBase 10,45% 80% 86% 86,20%
Utilities 0% 7% 26% 30,76%

Figure 2. Coverage Validator’s summary tab before improvements.

Figure 3. Coverage Validator’s summary tab after improvements.

Figure 4. Coverage Validator’s Files and Lines tab before improvements.

Figure 5. Coverage Validator’s Files and Lines tab after improvements.

source code file could be entirely removed. Two of the untested
source code files contained only source code that is used to dis-
able default class behavior (make default constructor, copy con-
structor and/or assignment operator private), which makes this code
untestable by design. Altogether, all of these mentioned modifica-
tions did not touch more than 10% of the test code, but resulted in a
huge improvement in all code coverage measures (see Figure 3). As
one can see in Figure 5, now from the remaining 35 source code files,
32 reach a line coverage above 90% (23 of which even reach 100%
- compared to only 9 before the modifications were made). The 2
still remaining untested files contain the above mentioned disabling
source code.

By improving the test code and the test data for the exemplarily
chosen library, 3 implementation errors were found and corrected, 2
of which can be considered to potentially cause major problems in
applications. Spending some effort in QA and improving the cover-
age of the tested source code will already pay off in the near future
in several stages of the testing process; especially in regression and
integration tests.

5 Conclusions

In this paper we presented our first steps in the direction of construct-
ing a generic testing and evaluation protocol for CV applications. In
our view, the performance characterization methodology in the do-
main can successfully be complemented with well known techniques
borrowed from a typical quality assurance process.

The conducted experiments on JR’s source code demonstrated that
with little effort, by means of using a code coverage analysis tool for
the available unit tests, the CV developers can considerably improve
their code, and implicitly the release quality of the overall CV sys-
tem.

After finishing unit/module-testing the program, we have to per-
form higher-order testing, as for instance integration and system tests
(see Figure 1), in order to complete the testing process. Therefore,
together with JR, we analyzed the requirements and possible use
cases/hazards of one CV application, which was chosen as repre-
sentative candidate in the Vision+ project3. We paid particular at-
tention to the process of test case definition, with focus on: require-
ment(s)(from the requirements specification) related to a particular
test case, its prerequisites (any conditions that must be fulfilled prior
to executing the test), its detailed setup and preferred execution pro-
cedure (automated/manual). However, as usually a test management
tool is used to accomplish the task, we further encourage CV devel-
opers to consider the integration of such a tool in their projects. Our
colleagues from JR have already started out on analyzing the test
management tools available for managing functional software and
hardware testing in agile development projects. Some of the benefits
one gains are the assurance of the complete test cycle, the repeata-
bility of tests as well as the automatic generation of statistics and
reports.

Finally, we would like to summarize the main ideas, which will
further lead our work presented in this paper. On one hand, as re-
sources are always limited, we have to find the right mixture of QA
techniques and to focus towards specific CV pain points. In order to
do this, it is important to determine the desired quality attributes for
CV applications. On the other hand, we have to find a way to derive
applicability rules for certain sets of CV algorithmic classes. Due to
the vast diversity of CV algorithms, these tasks are rather difficult,

3 http://comet-visionplus.at/

however, the classical hierarchy of vision systems, which groups the
them into low-, mid- and high-level processing levels, could serve as
a starting point. At low-level vision, code structure and data represen-
tation are still in close correlations (in other words, every pixel has to
be treated by some kind of operation/code), thus code improvement
by QA directly affects the data quality. For example, filtering oper-
ations by convolutions (as those contained in our Dibgiom library)
are many simple code snippets executed many times sequentially or
in parallel, thus even small code discrepancies produce a large effect,
which easily propagate further to higher processing levels. Mid- and
high-level vision algorithms on the other hand, are more difficult to
tackle, because the representations fall into one of the exponentially
many branches of different meta-data types, where often the same
meta-data can be produced by fundamentally different code pieces.

ACKNOWLEDGEMENTS
This work was partly funded by BMVIT/BMWFW under COMET
programme, project no. 836630, by ”Land Steiermark” trough SFG
under project no. 1000033937, and by the Vienna Business Agency.

REFERENCES
[1] B. Beizer, Black-box testing: techniques for functional testing of soft-

ware and systems, NY, USA, 1995.
[2] Kevin Bowyer and P. Jonathon Phillips, Empirical Evaluation Tech-

niques in Computer Vision, IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1st edn., 1998.

[3] Patrick Courtney and Neil A. Thacker, ‘Imaging and vision systems’,
chapter Performance Characterisation in Computer Vision: Statistics
in Testing and Design, 109–128, Nova Science Publishers, Inc., Com-
mack, NY, USA, (2001).

[4] Robert B. Grady, Practical Software Metrics for Project Management
and Process Improvement, Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1992.

[5] Robert M. Haralick, ‘Performance characterization in computer vision’,
CVGIP: Image Underst., 60(2), 245–249, (September 1994).

[6] Matej Kristan, Jiri Matas, Ales Leonardis, Tomas Vojir, Roman P.
Pflugfelder, Gustavo Fernández, Georg Nebehay, Fatih Porikli, and
Luka Cehovin, ‘A novel performance evaluation methodology for
single-target trackers’, CoRR, abs/1503.01313, (2015).

[7] Moritz Menze and Andreas Geiger, ‘Object scene flow for autonomous
vehicles’, in Conference on Computer Vision and Pattern Recognition
(CVPR), (2015).

[8] G. J. Myers, The Art of Software Testing, New Jersey, Second Edition
edn., 2004.

[9] P. Jonathon Phillips, Hyeonjoon Moon, Syed A. Rizvi, and Patrick J.
Rauss, ‘The FERET Evaluation Methodology for Face-Recognition Al-
gorithms’, IEEE Trans. Pattern Anal. Mach. Intell., 22(10), 1090–1104,
(October 2000).

[10] Daniel Scharstein, Heiko Hirschmller, York Kitajima, Greg Krathwohl,
Nera Nesic, Xi Wang, and Porter Westling, ‘High-resolution stereo
datasets with subpixel-accurate ground truth.’, in GCPR, eds., Xiaoyi
Jiang, Joachim Hornegger, and Reinhard Koch, volume 8753 of Lec-
ture Notes in Computer Science, pp. 31–42. Springer, (2014).

[11] N. A. Thacker, A. F. Clark, J. Barron, R. Beveridge, C. Clark, P. Court-
ney, W. R. Crum, and V. Ramesh. Performance characterisation in com-
puter vision: A guide to best practices, 2005.

[12] K. Wiegers, Peer Reviews in Software: A Practical Guide, Addison-
Wesley, 2002.

[13] Oliver Zendel, Wolfgang Herzner, and Markus Murschitz, ‘VITRO -
vision-testing for robustness’, ERCIM News, (97), (2014).

[14] Oliver Zendel, Markus Murschitz, Martin Humenberger, and Wolfgang
Herzner, ‘CV-HAZOP: introducing test data validation for computer
vision’, in 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 2066–2074,
(2015).

