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Abstract. Identifying the most influential spreaders is an important
issue for the study of the dynamics of information diffusion in complex
networks. In this paper we analyze the following spreading model. Initially,
a few nodes know a piece of information and are active spreaders of it.
At subsequent rounds, spreaders communicate the information to their
neighbors. Upon receiving the information, a node becomes aware of it
but does not necessarily become a spreader; it starts spreading only if
it gets the information from a sufficiently large number of its neighbors.
We study the problem of choosing the smallest set of initial spreaders
that guarantee that all the nodes become aware of the information. We
provide hardness results and show that the problem becomes tractable
on trees. In case of general graphs, we provide an efficient algorithm
and validate its effectiveness (in terms of the solution size) on real-life
networks.

1 Introduction

During the past decade spreading processes in complex networks have experienced
a particular surge of interest. A large part of research activity in the area deals
with the analysis of influence spreading in social networks. There are many
situations where members of a network may influence their neighbors’ behavior
and decisions, by swaying their opinions, by suggesting what products to buy,
or simply by passing on a misinformation [7,23,30]. A key research question,
related to understand and control the spreading dynamics, is how to efficiently
identify a set of users that can diffuse information within the network. This is the
problem addressed in this paper. Our scenario posits a population consisting of
n individuals that, with respect to the information, are subdivided into ignorant,
aware, and spreading. Initially, all individuals are ignorant. Then an initial set of
spreaders is selected. When a spreader informs an ignorant node v, the ignorant
node v becomes aware; as soon as the individual v is informed by a number of
spreaders greater than a threshold t(v), it starts spreading the information itself.
The motivations that lead us to consider such a scenario come from experimental
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studies of how information spread in social networks. Indeed, information doesn’t
flow freely in the network but it requires active sharing which, in turn, depends
on individual conviction to pass it on. We refer to [2] for a study of how exposure
to social signals affects diffusion.

We model the network as an undirected graph G = (V,E), where V is the
set of individuals and the set of edges E represents the relationships among
members of the network, i.e., (u, v) ∈ E if individuals u and v can directly
communicate. We posit a threshold function t : V → {0, 1, 2, . . .}, and we denote
by N(v) the neighborhood of v ∈ V . An active diffusion process starting at
S ⊆ V is a sequence of node subsets: SpreaderG[S, τ ], τ = 0, 1, . . . , such that
SpreaderG[S, 0] = S and

SpreaderG[S, τ ] = SpreaderG[S, τ − 1] ∪
{
u s.t.

∣∣N(u) ∩ SpreaderG[S, τ − 1]
∣∣ ≥ t(u)

}
,

for τ ≥ 1. The process terminates when SpreaderG[S, ρ] = SpreaderG[S, ρ − 1]
for some ρ > 1. We denote by SpreaderG[S] = SpreaderG[S, ρ]. Hence, when the
process stops the set of aware nodes is

AwareG[S] = SpreaderG[S] ∪
{
u s.t.N(u) ∩ SpreaderG[S] 6= ∅

}
.

Given G, a threshold function t(·), we aim to identify a small node set S ⊆ V
such that AwareG[S] = V .3 Namely, we consider the following problem,

Perfect Awareness (PA).
Instance: A graph G = (V,E), node thresholds t : V −→ N0.
Question: Find a seed set S ⊆ V of minimum size such that Aware[S] = V .

We refer to the set S for which Aware[S] = V as a perfect seed set and to the
nodes in S as seeds.

1.1 Related Work and Our Results

The above algorithmic problem has its roots in the area of the spread of influ-
ence in Social Networks. Maximizing the spread of viral information across a
network naturally suggests many interesting optimization problems (see [7,17]
and references quoted therein). The first authors to study spread of influence
in networks from an algorithmic point of view were Kempe et al. [19,20,21].
Chen [6] studied the following minimization problem: given a graph G and fixed
thresholds t(v), for each vertex v in G, find a set of minimum size that even-
tually influences all (or a fixed fraction of) the nodes of G. This problem is
usually referred as the Target Set Selection Problem (TSS). He proved a strong
inapproximability result that makes unlikely the existence of an algorithm with
approximation factor better than O(2log1−ε |V |). Chen’s result stimulated a series
3 In the rest of the paper we omit the subscript G whenever the graph is clear from
the contex.
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of papers [1,3,5,8,9,10,11,12,18,27,28] that isolated interesting cases in which the
problem (and variants thereof) become tractable. Heuristics for the TSS problem
that work for general graphs have been proposed in the literature [13,16,29].

However, the papers appeared in the scientific literature considered the basic
model in which any node, as soon as it is influenced by its neighbors, it immedi-
ately starts spreading influence. In this paper we consider a more refined model
that differentiates among spreaders and plain aware node. This model has been
first considered in [14], where the Awareness Maximization Problem in which
one asks for a set S, with |S| ≤ β, that achieves the maximum awareness in the
network has been studied.

In Section 2, we study the computational complexity of the PA problem and
extend the TSS problem hardness result to the PA problem. In Section 3, we give
an algorithm that outputs a perfect seed set for any input graph. Experimental
evaluation of the proposed algorithm is given in Section 4; it shows that the
proposed algorithm outperforms some heuristics developed for related problems.
Finally, we show that our problem becomes tractable if the graph is a tree (Section
5).

We would like to remark that if the threshold t(v) is equal to the node degree
d(v), for each v ∈ V , then a perfect target set for G is, indeed, a dominating
set for G. Hence, the proposed algorithm outputs a dominating set for G and
computational experiments suggest that it performs very well in practice.

2 Complexity

We prove the hardness of the PA problem by constructing a gap-preserving
reduction from the TSS problem. We recall that the TSS problems, given G =
(V,E) with threshold function t : V → N , asks to identify a minimum size S ⊆ V
such that Spreader[S] = V . Our Theorem 1 follows from the inapproximability
results for the TSS problem given in [6].

Theorem 1. The PA problem cannot be approximated within a ratio of O(2log1−εn),
for any ε > 0, unless NP⊆DTIME(npolylog(n)).

Proof. We give a reduction from the Target Set Selection problem.
Consider an instance of the TSS problem consisting in a graph G = (V,E) with
threshold function t(·). Let V = {v1, . . . , vn}, we build a graph G′ = (V ′, E′) as
follows:

– Replace each vi ∈ V by a triangle in which the node set is V ′i = {vi,0, vi,1, vi,2}.
Formally,
– V ′ =

⋃n
i=1 V

′
i = {vi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ 2}

– E′ = {(vi,0, v`,0) | 1≤i<`≤n, (vi, v`) ∈ E }
⋃

{(vi,j , vi,`) | i = 1, . . . , n, 0≤j<`≤2 };
– the thresholds are t′(vi,0) = t(vi) and t′(vi,1) = t′(vi,2) = 2, for i = 1, . . . , n.
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Notice that G corresponds to the subgraph of G′ induced by the set {vi,0|1 ≤
i ≤ n}. We show that there exists a target set S ⊆ V for G iff there exists a
perfect seed set S′ ⊆ V ′ for G′ such that |S′| = |S|.
Assume first that S ⊆ V is a target set for G. Since SpreaderG[S] = V , then all
the nodes vi,0 ∈ V ′i will become spreaders in G′ when the seed set is S′ = {vi,0 ∈
V ′|vi ∈ S}. Once a node vi,0 becomes a spreader the nodes vi,1, vi,2 are aware in
the next round. Hence, S′ is a perfect seed set for G′, that is AwareG′ [S′] = V ′.
Assume now that S′ ⊆ V ′ is a perfect seed set for G′. Let S′′ = {vi,0 ∈ V ′ | S′ ∩
V ′i 6= ∅}. It is easy to observe that AwareG′ [S′′] = AwareG′ [S′] = V ′. Let V ′0 =
{vi,0 | 1 ≤ i ≤ n}. A node in V ′0 can influence at most 2 nodes in V ′ − V ′0—the
other vertices of the triangle its belongs to. Hence, in order to influence all the
nodes in V ′−V ′0 all nodes in V ′0 must be spreaders, that is, SpreaderG′ [S′′] = V ′0 .
As a consequence, recalling that G is isomorphic to the subgraph of G′ induced
by V ′0 , we get SpreaderG[{vi | S′ ∩ V ′i 6= ∅}] = V . ut

We notice that the Target Set Selection problem remains hard when each
node has threshold upper bounded by a constant; in particular, it was proved
in [6] that approximating it when each node has threshold at most 2 is as hard
as approximating the problem in the general setting, even for constant degree
graphs. Our reduction allows to extend this result as well, namely one has that
the PA problem remains hard to approximate even if all nodes have threshold
at most 2.

3 A general algorithm for the PA problem

In this section we propose an algorithm for the PA problem in case of arbitrary
graphs and thresholds. The algorithm PA(G, t), given in Algorithm 1, works
greedily by iteratively deprecating nodes from the input graph G unless a certain
condition occurs which makes a node be added to the seed set S; it stops when
all nodes have either been discarded or selected as seed.

The algorithm maintains five sets of nodes: S that represents the current
seed set; U that represents the set of nodes in the surviving graph (i.e., nodes
not removed from the initial graph); Temp which is a set of nodes moved into
a temporary waiting state (such nodes still belong to U but their neighbors will
not count on them for being influenced); R that represents a set of nodes that
must become spreaders (but will not do so with the current seed); A is the set
of aware nodes (assuming that all the nodes in R will be indeed spreaders).

The algorithm proceeds as follows: As long as there exists at least a non-aware
node or there is a node in R, a node v is selected according to a certain function
(see Case 3) and is moved into a temporary waiting state, represented by the set
Temp. As a consequence of being in Temp, all the neighbors of v will not count
on v for being influenced (for each u ∈ N(v) the value δ(u), which denotes the
degree of u restricted to the nodes in the U − Temp, is reduced by 1).

Due to this update, some nodes in the surviving graph may remain with less
“usable” neighbors (if a node v /∈ A has δ(v) = 0 or v ∈ R has δ(v) < t(v)); in
such a case (see Case 2) the nodes are added to the seed set and removed from
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the graph, while the thresholds of their neighbors are decreased by 1 (since they
receive v’s influence).

If (see Case 1) the surviving graph contains a node v whose threshold has
been decreased down to 0 (which means that the nodes which have been already
added to the seed set S – see Case 2 – suffice to make v a spreader), v is deleted
from the graph and the thresholds of its neighbors are decreased by 1 (since once
v becomes a spreader, they will receive its influence). Notice that Case 1 can also
apply to nodes in Temp.

Algorithm 1: PA(G, t) //G = (V, E) is a graph with thresholds t(v) for v ∈ V

1 S = ∅; Temp = ∅; U = V ; R = ∅; A = ∅;
2 foreach v ∈ V do
3 k(v) = t(v);
4 δ(v) = |N(v)|;
5 while A 6= V OR R 6= ∅ do
6 if ∃v ∈ U s.t. k(v) = 0 then // Case 1): v is a spreader, thanks to its

neighbors outside U

7 foreach u ∈ N(v) ∩ U do
8 k(u) = max(k(u)− 1, 0); A = A ∪ {u};
9 if v /∈ Temp then δ(u) = δ(u)− 1;

10 U = U − {v}; R = R− {v}; A = A ∪ {v};
11 else
12 if ∃v ∈ (U−Temp) ∩R s.t. δ(v)<k(v) OR ∃v /∈ A s.t. δ(v) = 0

then
// Case 2): v must be a seed

13 S = S ∪ {v};
14 foreach u ∈ N(v) ∩ U do
15 k(u) = k(u)− 1;
16 δ(u) = δ(u)− 1;
17 U = U − {v}; R = R− {v}; A = A ∪ {v};
18 else
19 if U − Temp−R 6= ∅ then // Case 3): v is moved in the

temporary repository
20 v = argminw∈U−Temp−R {δ(w)}
21 if v /∈ A then
22 R = R ∪ {u} where u = argmaxw∈N(v)∩(U−Temp){δ(w)}
23 foreach z ∈ N(u) ∩ U do A = A ∪ {z};
24 else
25 v = argmaxw∈R

{
k(w)

δ(w)(δ(w)+1)

}
;

26 foreach u ∈ N(v) ∩ U do δ(u) = δ(u)− 1;
27 Temp = Temp ∪ {v}; R = R− {v}; A = A ∪ {v};

28 return S
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In such a case the value of δ() of the neighbors of the selected node v were already
reduced by 1—when v moved to Temp—and, therefore, it is not reduced further.
By construction, once a node is moved to Temp, then it will be removed from the
graph only by Case 1; indeed, Case 2 and 3 only apply to nodes outside Temp.
In other words, nodes moved to Temp will never belong to the seed set.

When Case 3 applies the idea is to identify nodes that will never belong to
the initial seed set. Two cases are considered, if the surviving graph still contains
nodes which do not belong to the set R, then one of such nodes having minimum
δ() is moved to the set Temp. Otherwise all the nodes in the surviving graph
must spread and the choice of the node to be deprecated is made according to a
metric first studied in [15]. We notice that the metric used to choose which node
to deprecate, that is to pose in the temporary repository when Case 3 applies,
does not influence the correctness of the algorithm but it is the hearth for its
effectiveness in terms of solution size.

Example 1. Let G be a complete graph, the algorithm PA(G, t) optimally returns
a single seed: At the first iteration of the while loop, Case 3) applies and a node
v1 is selected; then a node v2 is marked as required while all the others—being
neighbors of v2—are marked aware; during the successive iterations, |V |−t(v2)−1
nodes are removed from U ; finally Case 2) holds for v2 which is added to S and
the algorithm returns S = {v2}.

In the rest of the paper, we use the following notation. We denote by n the
number of nodes in G, that is, n = |V | and by λ the number of iterations of
the while loop of algorithm PA(G, t). Given a subset V ′ ⊆ V of vertices of G,
we denote by G[V ′] the subgraph of G induced by nodes in V ′. Moreover, with
respect to the iterations of the while loop in PA(G, t), for each i = 1, . . . , λ we
denote:

– by vi the node selected during the i-th iteration;
– by Ui, T empi, Si, Ri, Ai, δi(u), and ki(u), the sets U, Temp, S,R,A and the

values of δ(u), k(u), respectively, as updated at the beginning of the i-th
iteration.

When i = 1, the above values are those of the input graph G, that is: U1 = V ,
G[U1] = G, δ1(v) = |N(v)| and k1(v) = t(v), for each node v of G.

The following properties will be useful for the algorithm analysis.

Fact 1 For each iteration i of the while loop in PA(G, t),
1. V − Ui ⊆ Ai 2. Tempi ⊆ Ai 3. Ri ⊆ Ui − Tempi

Fact 2 For each iteration i of the while loop in PA(G, t) and u ∈ Ui, it holds

δi(u) = |N(u) ∩ (Ui − Tempi)|
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Lemma 1. Algorithm PA(G, t) executes at most 2n iterations of the while loop
(i.e., λ ≤ 2n).

Proof. First of all we prove that, at each iteration i ≥ 1 of the while loop of
PA(G, t), a node vi ∈ Ui is selected. If Ri = ∅ then Ai 6= V (otherwise the
algorithm terminates). Since by 1. of Fact 1 V − Ui ⊆ Ai we have that there
exist u ∈ Ui such that u /∈ Ai. Then using 2. of Fact 1 we have that u /∈ Tempi
and consequently Ui−Tempi−Ri 6= ∅. Hence a node is selected by Case 1 or by
Case 2 or at line 20 of the algorithm. Otherwise (Ri 6= ∅) and a node is selected
by Case 1 or by Case 2 or at line 25 of the algorithm. We conclude the proof
noticing each v ∈ V can be selected at most twice: Once v is eventually inserted
in Temp (if Case 3 applies) and once v is removed from U (if either Case 1 or
Case 2 apply). Indeed by 3. of Fact 1, Case 3 only applies to nodes in Ui−Tempi.

Theorem 2. For any graph G = (V,E) and threshold function t(·), the algorithm
PA(G,t) returns a perfect seed set for G in O(|E| log |V |) time.

Proof. In order to show that the set S provided by the algorithm PA(G,t) is a
perfect seed set for G, we first show that for each i = 1, . . . , λ the set Si is able
to make all the nodes in

Ri =
λ⋃
j=i

(Ri ∪ {u /∈ Ai such that δi(u) = 0})

a spreader, that is Ri ⊆ SpreaderG[Ui][Si]. We show it by induction with i going
from λ back to 1.

Consider first i = λ. Let vλ a node in G[Uλ]. Since λ is the last step and at
most one node is removed from R at each step, we have that Rλ = ∅ or Rλ = {vλ}
. We distinguish three cases on the selected node vi.
– (Case 1 holds). In this case kλ(vλ) = 0 and vλ is immediately spreader in
G[Uλ] and the statement is clearly satisfied.

– (Case 2 holds). In this case (Rλ = {vλ} and kλ(vλ) > δλ(vλ)) or (vλ /∈ Aλ
and δλ(vλ) = 0) and consequently Sλ = {vλ} and Rλ ⊆ SpreaderG[Uλ][Sλ].

– Finally we show that case 3 cannot hold at the last iteration of the algorithm.
Indeed if Rλ = ∅ then vλ /∈ Aλ (otherwise the algorithm cannot terminate at
round λ). In this case a new node is added to R at the line 22 of the algorithm
and the algorithm cannot terminate at round λ. We notice that this node
must exists, otherwise δλ(vλ) = 0 and Case 2 holds. On the other hand, if
Rλ = {vλ} then Uλ − Tempλ − Rλ = ∅ and we have Uλ − Tempλ = {vλ}
and consequently δλ(vλ) = 0. Since we are in case tree we also know that
kλ(vλ) > 0 and Case 2 holds.

Consider now i < λ and suppose the algorithm be correct on G[Ui+1], that is,
Ri+1 ⊆ SpreaderG[Ui+1][Si+1]. We show that the algorithm is correct on G[Ui]
with thresholds ki(u) for u ∈ Ui.
By the algorithm PA, for each u ∈ Ui we have

ki+1(u)=
{

max(ki(u)−1, 0) if Case 1 or 2 hold and u ∈ N(vi) ∩ Ui
ki(u) otherwise,

(1)
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where vi is the node selected at iteration i.
We distinguish three cases on the selected node vi.

– (Case 3 holds). In this case Ui = Ui+1 and Si+1 = Si. Moreover by (1),
ki+1(u) = ki(u) for each u ∈ Ui+1. If vi /∈ Ri then Ri ⊆ Ri+1 and conse-
quently Ri = Ri+1 ⊆ SpreaderG[Ui+1][Si+1] = SpreaderG[Ui][Si].
Otherwise (vi ∈ Ri) we have Ri ⊆ Ri+1 ∪ {vi}, Ui − Tempi −Ri = ∅ and by
3. of Fact 1 , we have Ui − Tempi = Ri. Hence,

(N(v) ∩ (Ui − Tempi)) ⊆ Ri+1 (2)

Since we are in Case 3 and vi ∈ Ri then δi(v) ≥ ki(v). Using this, Fact 2 and
equation (2), we have that since Ri+1 ⊆ SpreaderG[Ui+1][Si+1] then Si+1 = Si
is able to make vi a spreader in G[Ui] and we have Ri ⊆ SpreaderG[Ui][Si].

– (Case 2 holds). In this case Ui+1 = Ui − {vi}, Ri ⊆ Ri+1 ∪ {vi} and Si =
Si+1 ∪ {vi}. Hence vi ∈ Spreader[Si]. Moreover by (1), it follows that for
any u ∈ N(vi) ∩ Ui, if u ∈ Spreader[Si+1] then u ∈ Spreader[Si]. Hence
Ri ⊆ Spreader[Si].

– (Case 1 holds). In this case we have ki(vi) = 0, Ui+1 = Ui−{vi}, Ri ⊆ Ri+1∪
{vi} and Si = Si+1. Since ki(vi) = 0, node vi is immediately spreader in G[Ui].
Hence by (1), each neighbor u of vi in G[Ui] is influenced by vi and its thresh-
old is updated according to (1). Therefore, sinceRi+1 ⊆ SpreaderG[Ui+1][Si+1],
we have that Ri ⊆ SpreaderG[Ui][Si].

The statement follows since G[U1] = G.
The theorem follows by observing that a node is moved to the set A only if

(v ∪N(v))∩R1 6= ∅ and that the algorithm terminates when all nodes are aware
(A = V ) and the set R is empty.

The PA algorithm can be implemented to run in O(|E| log |V |) time. Indeed
we need to process the nodes v ∈ V—each one at most two times (see Lemma
1)—according to the metrics δ(v) and k(v)/(δ(v)(δ(v) + 1)), and the updates,
that follows each processed node v ∈ V involve at most |N(v)| neighbors of v.

4 Experimental Results

Due to Theorem 1, we cannot aim to any significant performance guaranteed
on the seed set size for general graphs and threshold functions. Nonetheless,
extensive experiments show that our algorithm performs very well on large real
networks, both in terms of efficiency of the solution and of the running time.

We conducted experiments on 12 real networks of various sizes from the
Stanford Large Network Data set Collection (SNAP) [24], the Social Computing
Data Repository at Arizona State University [31] and Newman’s Network data
[26]. The main characteristics of the studied networks are shown in Table 1.

The active information diffusion problem is a novel model of information
diffusion and, to the best of our knowledge, no heuristic is known for the PA
problem. For this reason we decided to evaluate the effectiveness of our algorithm
(PA) with two heuristics that respectively solve two problems related to the PA
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Name # of nodes # of edges Max Size of Clust. Modularity
degree the LCC Coeff.

BlogCatalog3 [31] 10312 333983 3992 10312 0.4756 0.2374
Ca-AstroPh [24] 18772 198110 504 17903 0.6768 0.3072
Ca-CondMath [24] 23133 93497 279 21363 0.7058 0.5809
Ca-GrQc [24] 5242 14496 81 4158 0.6865 0.7433
Ca-HepPh [24] 10008 118521 491 11204 0.6115 0.5085
Ca-HepTh [24] 9877 25998 65 8638 0.5994 0.6128
Cit-HepTh [24] 27770 352807 64 24700 0.3120 0.7203
Douban [31] 154907 327162 287 154908 0.048 0.5773
Facebook [24] 4039 88234 1045 4039 0.6055 0.8093
Jazz [26] 198 2742 100 198 17899 0.6334
Karate [26] 34 78 17 5 45 0.5879
Power grid [26] 4941 6594 19 4941 0.1065 0.6105

Table 1. The networks.

problem. The first heuristic, named MTS [15], is devoted to the minimum target
set selection (TSS) problem where the aim is to have each node become a spreader.
We have chosen this TSS heuristics since it experimentally outperforms the other
known algorithms [13,22,29] for the TSS problem, see [15].

The rationale of this comparison is to show that by relaxing the goal of the
TSS model for the new model (which only aims to make each node aware) we
are able to identify significantly smaller seed sets.
On the other hand, when all the thresholds t(v) are equal to the node degrees
d(v), the PA problem is equivalent to the well known Dominating Set problem.
For this reason we will compare our algorithm with the (best known) heuristic
[4], named DOM, for the Dominating Set problem.
Thresholds values. We tested the three algorithms using two categories of
threshold function:
– Random thresholds where t(v) is chosen uniformly at random in the interval

[1, d(v)]. Since the random thresholds test settings involve some randomiza-
tion, we executed each test 10 times. The results were compared using means
of target set sizes (the observed variance was negligible);

– Proportional thresholds, where for each v the threshold t(v) is set as α ×
d(v) with α = 0.1, 0.2, . . . , 1. Notice that for α = 0.5 we are considering
a particular version of the activation process named “majority” thresholds,
while for α = 1 we are considering the Dominating Set problem.

4.1 Test Results

Random Thresholds. Table 2 depicts the results of the Random threshold test set-
ting. Each number represents the average size of the perfect seed set generated by
PA and MTS algorithms on each network using random thresholds (for each test
setting, the same thresholds values have been used for both the algorithms). The



158 G. Cordasco, L. Gargano, and A. A. Rescigno

Name PA MTS
BlogCatalog3 10 12 (20%)
Ca-AstroPh 919 1157 (25.9%)
Ca-CondMath 1573 1810 (15.07%)
Ca-GrQc 636 661 (3.93%)
Ca-HepPh 790 901 (14.05%)
Ca-HepTh 964 945 (-1.97%)
Cit-HepTh 955 1045 (9.42%)
Douban 2374 2343 (-1.31%)
Facebook 9 213 (2267%)
Jazz 4 7 (75%)
Karate 3 3 (0%)
Power grid 352 340 (-3.41%)

Table 2. Random Thresholds Results: For each network and each algorithm, the average
size of the perfect seed set is depicted.

value in bracket represents the overhead percentage of MTS algorithm compared
to the PA algorithm.

Constant and Proportional thresholds. Figures 1 and 2 report the results for
the proportional thresholds settings. For each network the plot depicts the size
of the perfect seed set (Y-axis), for each value of α ∈ [0.1, 1] (X-axis) and for
each algorithm (series). We present the results only for 4 networks because of
space limits; the experiments performed on the other networks exhibit similar
behaviors.
The results in Fig. 1 and 2 confirm our hypothesis. The size of the initial seed
set provided by our PA algorithm is in general significantly smaller than the size
of the set provided by the other strategies. We notice that the gap between the
PA and the MTS algorithms increase with the value of the node thresholds (this
result was expected: the larger the value of t(), the larger the difference between
the models). The PA algorithm is always better than the DOM algorithm, when
t(v) < d(v). Moreover when t(v) = d(v) (that is, when the PA problems becomes
the Dominating Set Problem), the two algorithms provide comparable results,
hence the PA algorithm could be considered as an effective alternative heuristics
for the dominating set problem.

5 Trees.

Let T = (V,E) be a tree rooted at any node r, and let T (v) the subtree rooted
at v, for any v ∈ V . We can prove that the algorithm PA outputs an optimal
perfect seed set whenever the input graph is a tree.

Theorem 3. PA(T, t) returns an optimal perfect seed set for any tree T .
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Fig. 1. Proportional Thresholds Results: CA-GrQc network and Power grid network

Fig. 2. Proportional Thresholds Results: Douban network and Ca-HepTh network.

Fig. 3. Numbers inside circles are the node thresholds, double–circled denote seeds,
dashed–circled lines denote aware nodes, solid–circled nodes denote spreaders.
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If T is the tree in Fig. 3 one can see that the algorithm PA(T, t) returns a optimal
seed set—consisting of the three double-circled nodes in the figure.

In order to evaluate the time complexity for trees, we report as TREE-PA
the rewriting of the general PA algorithm in Section 3 in case the input graph
is known to be a tree. One can see that the algorithm essentially computes the
seed set while performing a visit (in BFS reverse order) of the tree. We can then
show that

Theorem 4. The PA problem can be solved in linear time for any tree.

Algorithm 2: TREE-PA(T , t), T = (V, E) is a tree with thresholds t(v) for
v ∈ V

1 S = ∅; A = ∅; P = ∅;
2 foreach v ∈ V in a BFS reverse order do
3 if v 6= r then // v is not the root node
4 if t(v) = 0 then
5 t(fv) = t(fv)− 1; // fv denotes v’s father
6 A = A ∪ {fv}
7 else
8 if v ∈ P AND t(v) ≥ 2 then
9 S = S ∪ {v};

10 t(fv) = t(fv)− 1;
11 A = A ∪ {fv}
12 else
13 if v /∈ A OR (v ∈ P AND t(v) = 1) then
14 P = P ∪ {fv} // fv must spread

15 if v = r AND t(v) > 0 AND v /∈ A− P then S = S ∪ {v}
16 return S

6 Conclusion and Open Problems

We have studied some algorithmic aspects of a recently introduced information
diffusion model, that differentiates among spreaders and aware nodes [14]. Many
interesting questions related to this model remain open and might be interesting
to study:
- Real life social networks are characterized by the existence of highly connected
communities and it was observed that in real networks, having high modularity
[25], it is often difficult for information to flow from one community to another.
This suggests that one should consider each (dense) community separately. From
a result in [14], we know that it is possible to relate the minimum graph degree
to the size of a perfect seed set. Namely, in any graph G with t(v) ≤ t and
d(v) ≥ |V |+t−3

2 , for each v ∈ V , any independent set which is either maximal
or has size 2t − 2 is a perfect seed set for G. Establishing a significant lower
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bound on the size of the seed set of a dense graph has (so far) eluded our efforts.
However, we recall that deciding if there exists a perfect seed set of size less than
t is a hard problem in general. It would be interesting to establish to what extent
such an hardness result still holds for dense graphs.
- More generally, are there class of graphs, other then trees and cliques, for which
the problem can be either efficiently solved or admits a small approximation
factor?
- It would also be interesting to determine a significant upper bound on the size
of a perfect seed set in terms of node degree and threshold, in the spirit of the
bound derived in [1] for the TSS problem.
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