
Types for Immutability and Aliasing Control

Paola Giannini1, Marco Servetto2, and Elena Zucca3

1 Università del Piemonte Orientale, Italy
giannini@di.unipmn.it

2 Victoria University of Wellington, New Zealand
marco.servetto@ecs.vuw.ac.nz

3 Università di Genova, Italy
elena.zucca@unige.it

1 Introduction

In mainstream languages with state and explicit mutations, unwanted aliasing
relations are common bugs. This is exasperated by concurrency mechanisms,
since unpredicted aliasing can induce unplanned/unsafe communication points
between threads.

For these reasons, a massive amount of research, see, e.g., [16,9,11,6], has been
devoted to make programming with side-effects easier to maintain and understand,
notably using type modifiers to control state access. In this paper, we will use five
type modifiers (mut, imm, capsule, lent, read) to obtain a fine-tuned control of
immutability and aliasing properties.

Let us consider the store as a graph, where nodes contain records of fields,
that may be references to other nodes. Each node determines a subgraph, that
of all the nodes reachable from it. Let x be a reference to a node in the graph.
Is x is mutable, then it can be freely used, and we cannot make any assumption
on it. If x is immutable, then x.f=e is not allowed, and we can assume that the
subgraph reachable from x will not be modified through any other reference. An
immutable reference can be safely shared also in a multithreaded environment.
If x is a capsule, then we can assume that the subgraph reachable from x is
an isolated portion of store, that is, all its (non immutable) nodes cannot be
reached through other references. Capsule references can be used only once, as
both mutable or immutable, e.g., to initialize a mutable/immutable reference. In
other words, a capsule reference can be seen as a reference whose destiny has
not been decided yet. Moreover, if a capsule reference x is assigned to a mutable
one y, then (in that moment) no part of this subgraph can be updated through a
reference different from y. This allows to identify mutable state that can be safely
handled by a thread. If x is lent, then it can be used in a restricted way, so that

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 62–74
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

Types for Immutability and Aliasing Control 63

no aliasing can be introduced that would make possible to reach the subgraph
of x. Finally, readable references can neither be modified nor aliased. These last
two modifiers ensure intermediate properties used to derive the immutable and
capsule properties.

Whereas (variants of) such modifiers have appeared in previous literature
(see Sect.4 for a discussion on related work), there are two key novelties w.r.t.
similar proposals. First, the expressivity of the type system is greatly enhanced.
Indeed, modifiers restrict, as described above, the use of a reference in a context,
but this restriction can be escaped by promotion, at the price of restricting the
use of other references. Second, it is possible to express and check aliasing and
immutability property directly on source terms, without introducing invariants
on an auxiliary structure which mimics physical memory. Indeed, we adopt an
innovative execution model [12,4,14] for imperative languages which, differently
from traditional ones, is a pure calculus.

In this extended abstract, due to space constraints, we focus on the type
system, and only illustrate the calculus by simple examples. We refer to the full
paper [8] for reduction rules, more examples and proofs of results.

The rest of the paper is organized as follows: we provide syntax and an
informal introduction in Sect.2, formalize the type system and state results in
Sect.3, discuss related work, paper contribution and further work in Sect.4.

2 Informal introduction

Syntax and types are given in Fig.1. We assume sets of variables x, y, z, . . . ,
class names C, field names f, and method names m. We adopt the convention
that a metavariable which ends by s is implicitly defined as a (possibly empty)
sequence, for example xs is defined by xs ::= ε | x xs, where ε denotes the empty
sequence.

cd ::= class C {fds mds} class declaration
fd ::= imm C f | mut C f | int field declaration
md ::= T m µ (T1 x1, . . . ,Tn xn) {return e} method declaration
e ::= x | e.f | e.m(es) | e.f=e | new C(es) | {ds e} expression
d ::= T x =e; variable declaration

T ::= µC | int type
µ ::= imm | mut | capsule | lent | read type modifier
dv ::= T x =v; evaluated declaration
u,v ::= x | new C(xs) | {dvs x} | {dvs new C(xs)} value

Fig. 1: Syntax and types

The syntax mostly follows Java and Featherweight Java (FJ) [10]. A class
declaration consists of a class name, a sequence of field declarations and a sequence

64 Paola Giannini, Marco Servetto, and Elena Zucca

of method declarations. A field declaration consists of a field type and a field
name. A method declaration consists, as in FJ, of a return type, a method name,
a list of parameter names with their types, and a body which is an expression.
However, there is an additional component: the type modifier for this, which is
placed after the method name. As in FJ, we assume for each class a canonical
constructor whose parameter list exactly corresponds to the class fields, and we
assume no multiple declarations of classes in a class table, fields and methods in
a class declaration.

For expressions, in addition to the standard constructs of imperative OO
languages, we have blocks, which are sequences of variable declarations, followed
by a body which is an expression. Variable declarations consist of a type, a
variable and an initialization expression. Types are class names decorated by a
type modifier. We also include int as an example of primitive type, but we do not
formally model related operators used in the examples, such as integer constants
and sum. We assume no multiple declarations for variables in a block.

Values are references x, object states, that is, constructor invocations where
arguments are references, or blocks in which declarations are evaluated, that is,
initialization expressions are values, and the body is a reference or an object state.

 B	
	f=	

x	
=

 B	
	f=	

y	
=

z	
=

 D	
	f=0	

 D	
	f=1	

x	
=

 D	
	f=2	

y	
= =

 C	
f1=	
f2=	
f3=	

w	
=

(a) (b)

Fig. 2: Graphical representation of the store

Blocks are a funda-
mental construct of
our language, since se-
quences of local vari-
able declarations, when
evaluated, are used
to directly represent
store in the language
itself. For instance4,
assuming that class B
has a mut field of type
B:
mut B x= new B(y); mut B y= new B(x); x
the two declarations can be seen as a store where x denotes an object of class B
whose field is y, and conversely, as shown in Fig.2(a). The whole block denotes a
store with an entry point (graphically represented by a thick arrow), that is, an
object.

Moreover, store is hierarchical, rather than flat as it usually happens in models
of imperative languages. For instance, assuming that class C has two mut and
one imm D fields, and class D has an integer field, the following is a store:
imm D z= new D(0);
imm C w= {mut D x= new D(1); mut D y= new D(2); new C(x,y,z)}
Here, the value associated to w is a block introducing local declarations, that is,
in turn a store, as shown in Fig.2(b). The advantage of this hierarchical shape
is that it models in a simple and natural way constraints about aliasing among
objects, notably:
4 In the examples, we omit for readability the brackets of the outermost block.

Types for Immutability and Aliasing Control 65

– the fact that an object is not referenced from outside some enclosing object
is directly modeled by the block construct: for instance, the objects denoted
by x and y can only be reached through w

– conversely, the fact that an object does not refer to the outside is modeled by
the fact that the corresponding block is closed, that is, has no free variables5:
for instance, the object denoted by w is not closed, since it refers to the
external object z.

In the graphical representation, variables circled in red are mutable references,
whereas the ones circled in green are immutable. Note that the reference corre-
sponding to new C(x,y,z) is anonymous. Note also that, in this example, mutable
variables in the local store of w are not visible from the outside. This models in a
natural way the fact that the portion of store denoted by w is indeed immutable,
as will be detailed in the sequel.

We illustrate now the meaning of the modifiers mut, imm, and capsule. A
mutable variable refers to a portion of store that can be modified during execution.
For instance, the block
mut B x= new B(y); mut B y= new B(x); x.f = x

reduces to
mut B x= new B(x); mut B y= new B(x); x

We give a graphical representation of this reduction in Fig.3. In the graphical
representation, we highlight in grey expressions which are not values. So in (a)
the body of the block is the expression x.f=x, whose evaluation modifies the field
f of x, and returns x. The result of the reduction is shown in (b).

 B	
	f=	

x	
=

 B	
	f=	

y	
=

 B	
	f=	

x	
=

 B	
	f=	

y	
=

x.f=x	

(a) (b)

Fig. 3: Example of reduction (1)

Variables declared
immutable, instead, once
they have an associ-
ated value, cannot be
modified. Immutabil-
ity is deep, that is, all
the nodes of the reach-
able object graph of
an immutable refer-
ence are immutable
themselves. Therefore, in the enclosing scope of the declaration
imm C w= {mut D x= new D(1); mut D y= new D(2); new C(x,y,z)}

the variable z must be declared imm, and we cannot have an assignment to a field
of w.

A variable declared capsule refers to an isolated portion of store, where local
objects can freely reference each other but for which the current variable is the
only external reference. For instance:
capsule B z = { mut B x= new B(y); mut B y= new B(x); x }

5 In other words, our calculus smoothly integrates memory representation with shad-
owing and α-conversion.

66 Paola Giannini, Marco Servetto, and Elena Zucca

The internal objects denoted by x and y can be only be accessed through z. A
capsule variable is a temporary reference, to be used once and for all to “move”
an isolated portion of store to another node in the store. To get more flexibility,
external immutable references are freely allowed. For instance, in the example
above of the declaration of w, the inizialization expression has a capsule type. In
our type system, capsule types are subtypes of both mutable and immutable types.
Hence, capsule expressions can initialize both mutable and immutable references.
However, to preserve the capsule property, we need a linearity constraint: in
well-formed expressions capsule references can occur at most once in their scope.

Consider the term
mut D y=new D(0);
capsule C z={ mut D x=new D(y.f=y.f+1); new C(x,x)}

In Fig.4(a) we have a graphical representation of this term, where the variable
circled in blue is a capsule reference.

new	D(y.f=y.f+1)	

 D	
	f=0	

y	
=

z	
=

x	
=

 C	
f1=	
f2=	

=

 D	
	f=0	

y	
=

z	
=

x	
=

 C	
f1=	
f2=	

=

 D	
	f=1	

y	
=

z	
=

x	
=

 D	
	f=1	

 C	
f1=	
f2=	

=

 D	
	f=0	

y	
=

z	
=

x	
=

 C	
f1=	
f2=	

=
new	D(y.f=1)	

new	D(y.f=0+1)	

(a) (b)

(c) (d)

Fig. 4: Example of reduction (2)

The evaluation of
the expression on the
right-hand side of x
starts by evaluating
y.f+1, which triggers
the evaluation of y.f.
The result is shown
in (b), then the sum
0+1 is evaluated, re-
turning 1, as shown
in (c). The evalua-
tion of the field assign-
ment y.f=1, updates
the field f of y to
1, and 1 is returned.
Since new D(1) is a
value, the whole term
is fully evaluated, and
it is shown in (d).

To be able to typecheck more expressions as capsule or imm, we introduce
the lent and read modifiers. References with such modifiers can be used in a
restricted way. Notably, they can be used to access fields, but cannot be used
either on the left or the right-hand side of an assignment or in an object creation.
For lent references this restriction is not permanent, in the sense that it is
possible to freely use a lent reference in a subexpression at the price of restricting
other references, as will be detailed in the following section. Clearly, wherever
a lent reference is required we could use a mutable one, so there is a subtyping
relation between lent and mut modifiers. In some cases it is possible to move
the type of an expression against the subtype hierarchy, that is, to promote an
expression. Notably, a mut expression can be promoted to capsule, and a read
expression can be promoted to imm, provided that some of the free variables in

Types for Immutability and Aliasing Control 67

the expression are used in a restricted way. The situation is graphically depicted
in Fig.5. Promotions will be described in the next section.

M

C

I

L

R Nodes:

M Mutable: alias, write

I Immutable: alias, no write

C Capsule: unique access
Reference used only once

L Lent: no alias, write

R Readable: no alias, no write

Arrows: Subtype
Promotion

The subtyping relation on
types is the reflexive and tran-
sitive closure of the relation
induced by

µC ≤ µ′ C if µ ≤ µ′

capsule ≤ mut ≤ lent ≤ read
capsule ≤ imm ≤ read

Fig. 5: Type modifiers and their relationships

3 Type system and results

A type context ∆ = Γ ; xss; ys consists of a usual assignment of types to variables
Γ = x1:T1, . . . , xn:Tn, and two additional components xss and ys. Accordingly
with our convention, xss is a sequence xs1 . . . xsn of sequences of variables, and
ys is a sequence of variables. All such sequences are assumed to be sets (that is,
order and repetitions are immaterial).

Sets xs1 . . . xsn are pairwise disjoint, and their elements are variables of mut
type in Γ , hence they describe a partition of such variables in n+ 1 sets, called
groups, the last being the set of those not belonging to any xsi, called the current
group. Elements of ys are variables of mut, lent or read type in Γ . The sets xss
and ys model restrictions on the variables in Γ , as motivated below.

The type system must assure that, if for an expression e we derive type T, then
the evaluation of the expression produces a value with the property expressed
by T. For instance, if the following two variable declarations are well-typed
capsule B z1 = e1; imm B z2 = e2; then the evaluation of the expressions e1
and e2 in the context of a well-typed program should produce values which are
capsule and immutable, respectively, in the sense introduced in the previous
section.

Let us discuss, for instance, when an expression could be safely typed capsule.
Obviously, this is safe for an expression with no free variables, or where all the free
variables are immutable. However, this requirement is too strong. For instance,
consider the following sequence of declarations:
mut D y=new D(0); capsule C z={ mut D x=new D(y.f); new C(x,x)};

The inner block (right-hand side of the declaration of z) can be typed capsule,
even though there is a mutable free variable y, since this variable is only used in
a field access. However, if we had y instead of new D(y.f), the declaration would
not be well-typed, since through the variable y we would refer to the reachable
graph of z.

68 Paola Giannini, Marco Servetto, and Elena Zucca

Formally, the inner block can be typechecked in a type context where xss
consists of only one singleton group containing variable y. This means that this
variable, which was originally mut, is restricted to lent when typechecking the
inner block, hence no aliasing can be introduced between y and the final result
of the block.

In general, in the typing judgment Γ ; xss; ys ` e : T, the sets xss and ys model
restrictions on aliasing which could be possibly introduced by the evaluation
of the expression. That is, if xs and xs′ are two different groups in xss, and if
their reachable graphs were disjoint before the evaluation of the expression, then
after the evaluation they would be still disjoint. Analogously, no aliasing can be
introduced between the reachable graph of any group xs in xss and that of the
result. The same constraint holds for the portion of store reachable from the
variables in ys. These restrictions are achieved as follows:

– a mut variable in Γ which belongs to a group in xss is lent-restricted, that is,
can only be used as lent

– a read, lent or mut variable in Γ which belongs to ys is strongly-restricted,
that is, cannot be used at all.

Variables become restricted as an effect of applying promotion rules (t-
capsule) and (t-imm), and restricted variables can be temporarily unrestricted
by applying (t-swap) and (t-unrst) rules, as will be explained in detail later.

Typing rules are given in Fig.6. In the rules we use information extracted
from the class table, which is modelled, as usual, by the following functions:

– fields(C) gives, for each declared class C, the sequence of its fields declarations
– method(C,m) gives, for each method m declared in class C, the tuple
〈T, µ,T1 x1 . . .Tn xn, e〉 consisting of its return type, type modifier for this,
parameters, and body.

We assume method bodies to be well-typed w.r.t. the type annotations in the
method declaration. Formally, if
method(C,m) = 〈T, µ,T1 x1 . . .Tn xn, e〉, then it should be Γ ; ∅; ∅ ` e : T, with
Γ = this:µC, x1:T1, . . . , xn:Tn.

Rules (t-capsule) and (t-imm) model promotions, that is, can be used to pro-
mote an expression from a more general to a more specific type, under the
conditions that some free variables in the expression are restricted. There are
two kinds of promotion:

– mut⇒ capsule
As shown in rule (t-capsule), an expression can be typed capsule in Γ ; xss; ys
if it can be typed mut by lent-restricting the current group of mutable variables
(xs). Formally, this group is added to xss.

– read⇒ imm
As shown in rule (t-imm), an expression can be typed imm in Γ ; xss; ys if it
can be typed read by strongly-restricting, rather than ys only, all currently
available mutable, lent, and readable variables (dom≥mut(Γ)). The current
group of mutable variables (xs) is also added as a new group to xss.

Types for Immutability and Aliasing Control 69

Note that set difference in the side conditions makes sense since xss is assumed
to be a set.

(t-capsule)
Γ ; xss xs; ys ` e : mut C
Γ ; xss; ys ` e : capsule C

xs = dommut(Γ)\xss

(t-imm)
Γ ; xss xs; dom≥mut(Γ) ` e : read C

Γ ; xss; ys ` e : imm C
xs = dommut(Γ)\xss

(t-swap)
Γ ; xss xs′; ys ` e : µC
Γ ; xss xs; ys ` e : µ′ C

xs′ = dommut(Γ)\(xss xs)

µ′ =
{

lent if µ = mut
µ otherwise

(t-unrst)
Γ ; xss; ∅ ` e : µC
Γ ; xss; ys ` e : µC

µ ≤ imm (t-sub)
∆ ` e : T
∆ ` e : T′

T ≤ T′

(t-var)
Γ ; xss; ys ` x : T′

Γ (x) = T ∧ x /∈ ys

T′ =
{

lent C if T=mut C ∧ x ∈ xss
T otherwise

(t-field-access)
∆ ` e : µC
∆ ` e.fi : T′i

fields(C) = T1 f1 . . .Tn fn
T′
i =

{
µCi if Ti = mut Ci
Ti otherwise

(t-meth-call)
∆ ` ei : Ti ∀i ∈ 0..n

∆ ` e0.m(e1, . . . , en) : T
T0 = µC
method(C,m) = 〈T, µ,T1 x1 . . .Tn xn, e〉

(t-field-assign)
∆ ` e : mut C ∆ ` e′ : Ti

∆ ` e.fi=e′ : Ti

fields(C) = T1 f1 . . .Tn fn

(t-new)
∆ ` ei : Ti ∀i ∈ 1..n

∆ ` new C(e1, . . . , en) : mut C
fields(C) = T1 f1 . . .Tn fn

(t-block)

Γ [Γ ′]; xss′; ys ` ei : Ti ∀i ∈ 1..n
Γ [Γ ′]; xss′; ys ` e : T

Γ ; xss; ys ` {T1 x1 =e1; . . .Tn xn =en; e} : T

Γ ′ = x1:T1, . . . , xn:Tn
xss = xss′

|dommut(Γ)

Fig. 6: Typing rules

Along with promotion rules, we have two rules which make it possible to
temporarily unrestrict some of the restricted variables. In the detail:

– (t-swap) an expression can be typed in Γ ; xss xs; ys if it can be typed by
unrestricting some group (xs) of lent-restricted variables, by swapping this
group with the current group of mutable variables (xs′). The type obtained
in this way is weakened to lent, if it was mut.

70 Paola Giannini, Marco Servetto, and Elena Zucca

– (t-unrst) an expression can be typed in Γ ; xss; ys if it can be typed by unre-
stricting all strongly-restricted variables ys, provided that the type obtained
in this way is capsule or imm.

We illustrate in more detail typing rules (t-capsule) and (t-swap) for capsule
promotion. Since in the premises of rule (t-capsule) all the mutable variables in
Γ are lent-restricted, the reachable graph obtained by evaluating e will contain
mutable references only to local variables, which cannot be accessed from outside
their scope. So the modifier of the expression can be promoted to capsule. Note
that, if, for the expression e, we derive a type with a lent modifier, then the
result of the evaluation of e could be an external mutable reference, therefore
the value would not be a capsule.

Consider now the case in which, in the evaluation of a capsule expression,
we need to perform some field assignment, as in the example of Fig.4. Typing
rule (t-capsule) can be applied if the initialization expression of z can get type
mut C in a context with type assignment y:mut D,z: capsule C and the group y
of lent-restricted variables. However, the assignment y.f=y.f+1 is not well-typed
in this type context, since the variable y has type lent D. However, intuitively, we
can see that the assignment does not introduce any alias between y and the final
result, since it involves only variables which are in the same group (the singleton
y), and produces an immutable result (of type int). So, it should be possible to
promote the expression to a capsule.

To allow such typing, we introduce rule (t-swap), that removes the (lent)
restriction on the variables of one of the groups, say xs, so that the variables in
xs can be used as mutable, adding to xss a group xs′, containing all the mutable
variables in Γ which are not lent-restricted yet. In this way, we know that the
evaluation of the expression will not introduce any alias between the variables
in the swapped group and the current group of mutable variables. Moreover, if
we derive, in this new context, an immutable or capsule type, we know that the
result of the expression will be a value that can be freely used. In our example,
we can apply rule (t-swap) when deriving the type for y.f=y.f+1, swapping the
group y with x. Instead, if we derive a mutable type, then this type is weakened
to lent, since the result could contain references to the variables in group xs′,
which were lent-restricted in the original context. This is shown by the following
example:
mut D y=new D(x1 ,x2); mut x1=new A(0); mut x2 = new A(1);
capsule C z={ mut A x=(y.f1=y.f2); new C(x,x)};

If we apply rule (t-swap) when deriving the type for y.f1=y.f2, therefore swapping
the group y with x, then we derive type mut A, and rule (t-swap) would assign
type lent A to the expression. Therefore, the declaration mut A x=(y.f1=y.f2)
and the whole expression would be ill-typed. Indeed, the expression reduces to
mut D y=new D(x2 ,x2); mut x1=new A(0); mut x2 = new A(1);
capsule C z={ mut A x=x2; new C(x,x)};

in which the value of z is not a capsule.
In rule (t-block), we write Γ [Γ ′] for the concatenation of Γ and Γ ′ where,

for the variables occurring in both domains, Γ ′ takes precedence. Moreover,

Types for Immutability and Aliasing Control 71

xss|xs denotes the sequence obtained from xss by keeping (in each element of the
sequence) only the variables in xs. A block is well-typed if the right-hand sides
of declarations and the body are well-typed w.r.t. a type context consisting of:
– the type assignment of the enclosing scope Γ , updated by that of the locally
declared variables Γ ′

– groups of lent-restricted variables xss, where a locally declared (mutable)
variable can belong to any group, however preserving the partition in groups
of the enclosing scope, as imposed by the second side condition

– the strongly-restricted variables ys of the enclosing scope.
Typechecking a block with some local variables lent-restricted in the same group
of some variables of the enclosing scope can be necessary. Consider the following
example
mut D z=new D(0); mut C x=new C(z,z);
capsule D y={ mut D z1=new D(1); lent D z2=(x.f1=z1); new D(1)};
Since we need to apply the promotion to capsule to the block on right-hand
side of the declarations of y, the context of the typing of the block must be
z : mut D, x : mut C, y : capsule D; z x; ∅, that is, z and x are in the same group of
lent-restricted variables. However, to apply rule (t-field-assign) to the expression
x.f1=z1, both x and z1 have to be mutable6. Therefore, we have to apply rule
(t-swap), and it must be the case that both x and z1 are in the same group of
lent-restricted variables. This is possible, with rule (t-block), by adding z1 to the
group x z, in typing the right-hand sides of the declarations.

Other rules are mostly standard, except that they model the expected be-
haviour of type modifiers.

In rule (t-var), a variable is weakened to lent if it belongs to some group in
xss, and cannot be used at all if it belongs to ys.

In rule (t-field-access), in case the field is mut, the type modifier of the
receiver is propagated to the field. For instance, mutable fields referred through
a lent reference are lent as well. If the field is immutable, instead, then the
expression has type imm, regardless of the receiver type.

In rule (t-field-assign), the receiver should be mutable, and the right-hand
side must have the field type. Note that this implies the right-hand side to be
either mut or imm (or of a primitive type). Hence, neither the left-hand nor the
right-hand sides can be lent or read, thus preventing the introduction of aliases.

In rule (t-new), analogously, expressions assigned to fields cannot be lent.
Note that an object is created with no restrictions, that is, as mut.

Finally, note that primitive types are used in the standard way. For instance, in
the premise of rule (t-new) the types of constructor arguments could be primitive
types as well, whereas in rule (t-meth-call) the type of receiver could not.

Results The type system is sound for the operational semantics, that is, subject
reduction and progress hold. Note that, since our operational model is a pure
calculus, in the statements and proofs we do not need invariants on auxiliary
structures such as memory.
6 Assuming that field f1 is mutable.

72 Paola Giannini, Marco Servetto, and Elena Zucca

The reduction relation e −→ e′ is defined in the full paper [8]. We write
` e : T for ∅; ∅; ∅ ` e : T.

Theorem 1. Let ` e : T. Then, either e is a value or e −→ e′ for some e′ such
that ` e′ : T is derivable.

In addition to the standard soundness property, the capsule and imm modifiers
have the expected behaviour, that is, in the evaluation of a well-typed expression,

– initialization expressions of capsule variables reduce to values whose free
variables are immutable, and

– values associated to immutable variables are not modified by the evaluation.

The formalization and proof of these properties can be found in the full paper
[8].

4 Related work and conclusion

A first, informal, version of our type modifiers has been presented in [13]. In [14]
were introduced the capsule and lent modifiers, and a preliminary version of
the promotion from mutable to capsule. The main novelties w.r.t. [14] are the
introduction of the immutable and readable modifiers, the readable to immutable
promotion, the formalization of the type system, and the proof of its properties.

Our type system combines in a novel and powerful way different features
existing in previous work. Notably, the capsule notion has many variants in the
literature, such as external uniqueness [5], balloon [1,13], island [7], recovery [9],
and the fact that aliasing can be controlled by using lent (borrowed) references
is well-known [11].

However, in our type system the lent notion is used in a novel way to achieve
capsule promotion, since external mutable references are not forbidden once and
for all as in recovery [9] but only lent-restricted, as illustrated by the last example
in Sect.2.

Moreover, uniqueness is guaranteed by linearity, that is, by allowing at most
one use of a capsule reference, rather than by destructive reads as in [9,3].
Destructive reads allows isolated fields, but has a serious drawback: an isolated
field can become unexpectedly not available, hence any object contract involving
such field can be broken.

Our read modifier is different from readonly as used, e.g., in [2]. An object
cannot be modified through a readable/readonly reference. However, read also
prevents static aliasing.

Javari [15] is a working backward-compatible extension of Java which also
supports the readonly type modifier, and makes a huge design effort to support
assignable and mutable fields, to have fine-grained readonly constraints. The need
of such flexibility is motivated by performance reasons. In our design philosophy,
we do not offer any way to a programmer of breaking the invariants enforced by
the type system. Since our invariants are very strong, we expect compilers to

Types for Immutability and Aliasing Control 73

be able to perform optimization, thus recovering most of the efficiency lost to
properly use immutable and readable objects.

Finally, the Pony language [6], providing an implementation as well, builds
on the capabilities/recovery mechanisms of [9] as we do, but goes in a different
direction, by distinguishing six different reference capabilities: isolated (similar
to our capsule, but allowed in fields with destructive reads); value (similar to
our immutable); reference (similar to our mutable); box (similar to readonly);
tag (only allows object identity checks) and finally transition (a subtype of box
that can be converted in value: a way to create values without using isolated
references).

The key contributions of the paper are:
– A powerful type system for tracing mutation and aliasing in class-based
imperative languages, providing: type modifiers for restricting the use of
references; rules for promoting references to a less restrictive type at the price
of restricting other references; rules for temporarily unrestricting references
for typing subexpressions.

– A non standard operational model of the language as a pure calculus, relying
on the language ability to represent cyclic object graphs.
This work is part of the development of L42, a novel programming language

designed to support massive use of libraries, see the web site L42.is. The current
L42 prototype is important as proof-of-evidence that the type system presented
in this paper can be smoothly integrated with features of a realistic language. The
prototype implements an algorithmic version of the type system which, roughly,
attempts at applying promotions in all the possible ways, which are finitely many
and, in practice, very few. A theoretical counterpart of such algorithmic version
will be subject of further work. As a long term goal, we also plan to investigate
(a form of) Hoare logic on top of our model. Finally, it should be possible to use
our approach to enforce safe parallelism, on the lines of [9,13].

Acknowledgments. We are grateful to the anonymous reviewers for their useful
suggestions, which led to substantial improvements.

References

1. Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types.
In ECOOP’97 , volume 1241 of LNCS, pages 32–59. Springer.

2. Adrian Birka and Michael D. Ernst. A practical type system and language for
reference immutability. In OOPSLA 2004, pages 35–49. ACM Press.

3. John Boyland. Semantics of fractional permissions with nesting. ACM TOPLAS,
32(6), 2010.

4. Andrea Capriccioli, Marco Servetto, and Elena Zucca. An imperative pure calculus.
In ICTCS’15, ENTCS 322, 87–102, 2015.

5. David Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
ECOOP’03, volume 2473 of LNCS, pages 176–200. Springer.

6. Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny
capabilities for safe, fast actors. In AGERE! 2015, pages 1–12. ACM Press.

74 Paola Giannini, Marco Servetto, and Elena Zucca

7. Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In
ECOOP’07, volume 4609 of LNCS, pages 28–53. Springer.

8. Paola Giannini, Marco Servetto, and Elena Zucca. Transparent aliasing and mu-
tation control. http://people.unipmn.it/giannini/papers/ICTCS16-complete.
pdf.

9. Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe
Duffy. Uniqueness and reference immutability for safe parallelism. In OOPSLA
2012, pages 21–40. ACM Press.

10. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

11. Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system
for borrowing permissions. In POPL 2012, pages 557–570. ACM Press.

12. Marco Servetto and Lindsay Groves. True small-step reduction for imperative
object-oriented languages. In FTfJP’13, pages 1–7. ACM Press.

13. Marco Servetto, David J. Pearce, Lindsay Groves, and Alex Potanin. Balloon types
for safe parallelisation over arbitrary object graphs. In WoDet 2013.

14. Marco Servetto and Elena Zucca. Aliasing control in an imperative pure calculus.
In APLAS 15, volume 9458 of LNCS, pages 208–228. Springer.

15. Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability
to Java. In OOPSLA 2005, pages 211–230. ACM Press.

16. Yoav Zibin, Alex Potanin, Paley Li,Mahmood Ali, andMichael D. Ernst. Ownership
and immutability in generic Java. In OOPSLA 2010, pages 598–617. ACM Press.

http://people.unipmn.it/giannini/papers/ICTCS16-complete.pdf
http://people.unipmn.it/giannini/papers/ICTCS16-complete.pdf

	Types for Immutability and Aliasing Control
	Introduction
	Informal introduction
	Type system and results
	Related work and conclusion

