
Merging Frequent Summaries

M. Cafaro, M. Pulimeno

University of Salento, Italy
{massimo.cafaro, marco.pulimeno}@unisalento.it

Abstract. Recently, an algorithm for merging counter-based data sum-
maries which are the output of the Frequent algorithm (Frequent sum-
maries) has been proposed by Agarwal et al. In this paper, we present
a new algorithm for merging Frequent summaries. Our algorithm is fast
and simple to implement, and retains the same computational complex-
ity of the algorithm presented by Agarwal et al. while providing better
frequency estimation.

1 Introduction

In 2011, we presented an algorithm [1] for merging in parallel counter-based data
summaries which are the output of the Frequent [2] algorithm. Recently, we also
designed a parallel algorithm for merging Space Saving summaries [3] and an
algorithm for mining frequent items in the time fading model [4]. In 2012, a new
algorithm for merging counter-based data summaries which are the output of
the Frequent algorithm has been proposed by Agarwal et al. [5].

Given a data set A of n items t1, t2, . . . , tn, the frequency of an item i is
fi = |{j |tj = i} |. Let f̃i be the frequency reported by the algorithm for item i.
The absolute error of item i is defined as the difference |fi − f̃i|. The (absolute)
total error is then the sum of the absolute errors related to the items reported
by an algorithm.

In this paper, we present a new algorithm for merging Frequent summaries
(based on our previous algorithm) which is fast and simple to implement, and
retains the same computational complexity of the algorithm presented in [5] while
providing better frequency estimation. We briefly recall notations and definitions
used in the sequel.

Definition 1. Given a multiset N , with |N | = n, and 2 ≤ k ≤ n, a frequent
item (or k–majority element) is an element x ∈ N whose frequency fN (x) is
such that fN (x) ≥

⌊
n
k

⌋
+ 1. The frequent items (or k–majority) problem takes

as input an array N of n numbers (a multiset), and requires as output the set
S =

{
x ∈ N : fN (x) ≥

⌊
n
k

⌋
+ 1
}

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 280–285
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

281

Definition 2. Merged summary.
Given k, the k-majority parameter, let A1 and A2 be respectively the data sets
from which the data summaries S1 and S2 are derived by an application of the
Frequent algorithm, and let n = |A1| + |A2|. The merged summary M is the
multiset which contains all of the k-majority elements, i.e., all of the elements
whose frequency in A1

⊎
A2 is greater than or equal to

⌊
n
k

⌋
+ 1. Moreover, all of

the guarantees assured by Frequent on its output continue to hold for the summary
M with reference to the input A1

⊎
A2.

Definition 3. 2-way merging problem.
Input: k, the k-majority parameter; two summaries S1 and S2 derived by an
application of the Frequent algorithm.
Output: The merged summaryM.

The paper is organized as follows. We present in Section 3 our algorithm. In
Section 4, the proposed algorithm is analyzed in terms of correctness, computa-
tional complexity and total error committed. Full details and proofs will appear
in a forthcoming extended version. We draw our conclusions in Section 5.

2 Related Work

In [5], Agarwal et al. introduced an algorithm for merging two data summaries
S1 and S2 outputted by the Frequent algorithm. In the following, given a counter
Ci, the notation Ce

i refers to the item monitored by the i–th counter, whilst Cf
i

refers to its estimated frequency.

Algorithm 1 Merging Algorithm by Agarwal et al.
Require: S1; an array of counters; S2; an array of counters; k, k-majority parameter

(the number of counters is k − 1);
Ensure: an array containing k–majority candidate elements
1: procedure merge(S1,S2, k) . a merged summary of S1 and S2
2: S ← combine(S1,S2);
3: if S.nz > k − 1 then . prune counters in S
4: for i = k to 2k − 2 do
5: Cf

i ← Cf
i − Cf

k−1;
6: end for
7: end if
8: return S[k . . . (2k − 2)]; . return the last k − 1 counters
9: end procedure

The algorithm works as follows. It starts combining as usual the two data
summaries, by adding the frequencies of counters monitoring the same item. This
could entail, for Frequent summaries, the use of up to 2k−2 counters in the worst
case, when S1 and S2 share no item. Let S be the combined summary, and S.nz
the number of nonzero counters. Moreover, assume, without loss of generality,

282

that the total number of counters in S, denoted by S.length, is exactly 2k − 2
and they are stored in sorted ascending order. Indeed, it is always possible to pad
the first S.length− S.nz positions in S with dummy counters whose frequency
is zero.

If S.nz ≤ k− 1 the algorithm returns the last k− 1 counters of S. Otherwise,
a pruning operation is required. Then, the algorithm subtracts from the last k−1
counters the frequency of the Ck−1-th counter and returns the pruned counters.
The algorithm requires in the worst case time linear in the total number of
counters, i.e., O(k) if implemented as described in [5] using an hash table.

We now analyze the total error committed by this algorithm. Clearly, combin-
ing the two data summaries can be done without any additional error. However,
the pruning operation occurring when the size of S is greater than k− 1 induces
a total error ET = (k − 1)Cf

k−1, i.e., k − 1 times the frequency of the Ck−1-th
counter in S. The authors proved that the additional error introduced by the
merge is within the error bound guaranteed by Frequent.

3 New Merging Algorithm

In this Section we present our algorithm, shown in pseudo-code as Algorithm 2
for merging two Frequent summaries.

Algorithm 2 Merging Algorithm for Frequent summaries.
Require: S1; an array of counters; S2; an array of counters; k, k-majority parameter

(the number of counters is k − 1);
Ensure: an array containing k–majority candidate elements
1: procedure merge(S1,S2, k) . a merged summary of S1 and S2
2: S ← combine(S1,S2);
3: if S.nz ≤ k − 1 then
4: return S[k . . . (2k − 2)]; . return the last k − 1 counters
5: else. build the merged summaryM, consisting of counters monitoring item ei

with frequency fi, i = 1, . . . , k − 1, as follows:
6: e1 ← Ce

k

7: f1 ← Cf
k − Cf

k−1;
8: M[1]← (e1, f1);
9: for i = 2 to k − 1 do
10: ei ← Ce

k−1+i

11: fi ← Cf
k−1+i − Cf

k−1 + Cf
i−1;

12: M[i]← (ei, fi);
13: end for
14: return M;
15: end if
16: end procedure

Algorithm 2 starts by combining the two input summaries into a combined
summary S. Then, if the number of nonzero counters in S is less than or equal

283

to k − 1, the algorithm returns as merged summary the last k − 1 counters of
S. Otherwise, the last k − 1 counters are first updated using exact closed-form
equations and then reported as output. Actually, these determining equations
produce the same merged summary that we would obtain applying the Frequent
algorithm to the combined summary S, a procedure we described and proved to
be correct in [1]. Indeed, in [1] a slightly modified version of Frequent is used
on S, in which the update step is carefully modified so that each update still
requires O(1) time in the worst case. These modifications simply consist in one-
shot updates: for each item in S to be processed, we increment one-shot the
counter in charge of monitoring it by a number of occurrences equal to the item’s
counter in S. In the next Section, we shall show the determining equations, state
the correctness of the algorithm and analyze its complexity in the worst case and
the total error committed. The main result of the paper is the proof that the
following properties hold for our algorithm: (i) it retains the same complexity of
the Algorithm proposed by Agarwal et al [5], and (ii) its total error committed
is smaller or equal.

4 Analysis

4.1 Complexity Analysis
Lemma 1. The computational complexity of our Algorithm 2 is O(k) in the
worst case.

4.2 Correctness of Algorithm 2
By construction, the combine step producing S preserves the frequent items
in S1

⊎
S2 since no item is discarded and no occurrences are lost. Therefore,

it suffices to show that our closed-form equations produce the same merged
summary which would be outputted by an application of Frequent (the one-shot
update version) to the combined summary. Let S.length = 2k − 2 and assume
k ≤ S.nz ≤ 2k−2. We denote by Cj the j–th counter in S, j = 1, . . . , 2k−2, and
by ei

j and mi
j , respectively, the item monitored by the j–th counter of Frequent

(denoted as Mj) and its value at the end of the i–th update step, i = 0, . . . , k− 1
and j = 1, . . . , k − 1. We define e0

j = Ce
j and m0

j = Cf
j , j = 1, . . . , k − 1. Indeed,

the step zero reflects the situation in which we have already filled the first k − 1
counters in the Frequent data structure with the corresponding initial k − 1
counters in S. This is correct owing to the following facts: (i) the counters in
S are stored in ascending sorted order with respect to the frequencies, (ii) the
items in S are distinct and (iii) Frequent works by assigning an item which is not
currently monitored to a new counter if available and maintaining the ascending
sorted order with respect to the frequencies.

Theorem 1. For each update step i = 1, . . . , k− 1 and position j = 1, . . . , k− 1,
the values ei

j and mi
j can be defined as follows:

ei
j = Ce

i+j j = 1, . . . , k − 1 (1)

284

mi
j =

{
Cf

i+j − Cf
i j = 1, . . . , k − i

Cf
i+j − Cf

i + Cf
i+j−k j = k − i + 1, . . . , k − 1

(2)

4.3 Total Error Committed By Algorithm 2

In what follows, we assume that after the combine step we are left with a data
summary S consisting of more than k−1 nonzero counters. Otherwise, both algo-
rithms do not commit any additional error, owing to the fact that the combine step
obviously does not incur any error. Therefore, assuming that S consists of more
than k − 1 nonzero counters, the total error committed by our algorithm is the
total error committed by Frequent when applied to S. The counters’ frequencies
at the end of the (k−1)–th update step are mk−1

j , j = 1, . . . , k−1. Consequently,
since Frequent underestimates the frequencies, the total error committed is

ET =
k−1∑
j=1

Cf
k−1+j −mk−1

j (3)

We claim that the total error committed by Algorithm 2 is less than or equal
to the total error committed by algorithm [5].

Theorem 2. The following inequality holds

k−1∑
j=1

(Cf
k−1+j −mk−1

j) ≤ (k − 1)Cf
k−1. (4)

5 Conclusions

In this paper we have introduced a new algorithm for merging Frequent summaries
and compared it to the algorithm proposed by Agarwal et al. from a theoretical
perspective. Our algorithm uses exact closed-form equations for determining
the outputs; we have shown that it retains the same computational complexity,
whilst providing better frequency estimation. Future work includes designing
and carrying out several numerical experiments in order to compare the two
algorithms we have discussed from a quantitative perspective.

References

1. Cafaro, M., Tempesta, P.: Finding frequent items in parallel. Concurr. Comput. :
Pract. Exper. 23 (2011) 1774–1788

2. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet
streams with limited space. In: ESA. (2002) 348–360

3. Cafaro, M., Pulimeno, M., Tempesta, P.: A parallel space saving algorithm for
frequent items and the hurwitz zeta distribution. Information Sciences 329 (2016)
1 – 19

285

4. Cafaro, M., Pulimeno, M., Epicoco, I., Aloisio, G.: Mining frequent items in the time
fading model. Information Sciences 370 - 371 (2016) 221 – 238

5. Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J., Wei, Z., Yi, K.: Mergeable
summaries. In: Proceedings of the 31st Symposium on Principles of Database
Systems. PODS ’12, New York, NY, USA, ACM (2012) 23–34

	Merging Frequent Summaries
	Introduction
	Related Work
	New Merging Algorithm
	Analysis
	Complexity Analysis
	Correctness of Algorithm 2
	Total Error Committed By Algorithm 2

	Conclusions

