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Abstract—Self-adaptation is a promising technique to manage 

software systems maintainability and evolution. A self-adaptive 

system is able to adapt its structure and behavior autonomously 

at run-time in response to changes in the context in which it is 

actually running to achieve particular quality goals. However, 

designing and verifying quality-aware self-adaptive systems 

remains a challenging task. In this paper, we propose a formal 

approach  that  combines  the  advantages  of both component-

based  modeling  (e. g.,  reduces  model  complexity),  MDE (e. g., 

facilitates the development process) and Maude (a formal 

language) to define a development process for quality-aware self-

adaptive software. We particularly focus on the specification of 

quality-aware adaptation strategies required to ensure 

continuous satisfaction of non-functional requirements (Quality 

of service). 

Index Terms— Self-adaptive systems; QoS; Component-Based 

Software Engineering; Model-Driven Engineering; Maude. 

I. INTRODUCTION  

    Nowadays, users extensively rely on software systems 

quality, especially in the presence of parametric and variable 

execution contexts. However, ensuring the required qualities 

of software systems that might operate in dynamic 

environments, poses severe engineering challenges, since they 

must become more versatile, flexible, resilient, dependable, 

energy-efficient, recoverable, customizable, configurable, and 

self-optimizing by adapting themselves to changes that may 

occur in their operational contexts, environments and system 

requirements. Self-adaptation [1] is generally considered as a 

promising solution to manage the complexity of such software 

systems since it enables the system to adapt itself to internal 

dynamics and changing conditions in the runtime environment 

to achieve particular quality goals automatically.  

   A key characteristic of self-adaptive systems engineering is 

to provide guarantees about the required runtime quality 

properties. Nevertheless, the central role of QoS requirements 

has to be considered at the early stages of design. Hence, the 

emergence of the software system architecture provides the 

right level of abstraction, sets the basis to achieve both 

functional and non-functional requirements, and needs to be 

supported by methodologies and tools to capture these two 

dimensions of the product at the same time which generally can 

deal with the challenges of self-adaptation [3]. The component-

based approach can provide an appropriate level of abstraction 

to describe dynamic changes in a system structure and increase 

the reusability and portability of software pieces. However, a 

key issue to be faced concerns the assessment of self-adaptive 

systems effectiveness, in terms of their ability to meet the 

required QoS under different context conditions. In particular, 

this assessment should take into account the cost of the 

adaptation process itself. Since, adapting a system can require 

time and system resources to be carried out, and this cost could 

even outweigh the potential benefit [3]. In addition to 

component-based software engineering (CBSE) [4], Model-

driven engineering (MDE) [5] is an emerging approach to 

address these and other challenges.   

MDE advocates the use of models, not only for capturing 

high-level design ideas and documenting the final product, but 

as key artefacts throughout the development process. The goal 

is to reduce the development time  and  efforts,  and to  

increase  product  quality  by  raising the level of abstraction 

and automating some time consuming and error prone 

activities, e.g., by generating code directly from detailed 

models instead of implementing it manually [6]. 

One major advantage of MDE is the opportunity to 

automatically transform design models into analytical ones, 

thus enabling formal verification of system properties; 

including non-functional ones. A largely adopted approach is 

the combination of MDE and formal methods to ensure and 

guarantee functional correctness of the adaptation logic. This 

provides a rigorous means for modeling, specifying and 

reasoning about self-adaptive systems’ behavior, both at design 

time and at runtime.  

A variety of research work has been realized and significant 

efforts invested to propose models for QoS-aware self-adaptive 

systems. However, existing techniques for non-functional 

properties analysis rely on very specific quality-related 

formalisms such as Petri Nets (PNs), or Markovian models, but 

software systems are rarely represented in these terms [3]. 

Besides, most of these approaches do not take into account the 

separation of concerns between user requirements in terms of 

QoS contract and system QoS parameters. Moreover, 

designers, who usually lack sufficient experience in 

requirements engineering, prefer design-oriented formalisms 

such as UML [7] which reflects more the modeling intent.   

In this paper, we present a component-based contractual 

approach to define a model for designing, specifying and 

verifying self-adaptive systems with respect to QoS contracts. 

To address this problem, we define a model for QoS contracts 

as a natural and effective way for user requirements.  



    The remainder of the paper is organized as follows. Section 

2 discuses some models for self-adaptive systems that are 

relevant to our work. Section 3 is dedicated to the presentation 

of our model and the generation of the corresponding formal 

specification. Section 4 illustrates our proposal via a case 

study to validate our model. Finally, Section 5 rounds up the 

paper. 

II. RELATED WORK 

A variety of models for Self-adaptive systems have been 

proposed and various modeling methodologies have been 

adopted, including MDE [7, 8], requirements engineering [9] 

and component-based development [12]. 

Vogel and Giese [8] propose a MDE-based model for Self-

Adaptive Software with EUREMA approach that realizes self-

adaptation using the so-called executable runtime mega-

models. In [7], a UML-based modelling language called Adapt 

Case Modeling Language (ACML) is presented. The language 

allows a separate and explicit specification of self-adaptivity 

concerns using the concept of the MAPE-K loop. Based on 

formal semantics, they apply quality assurance techniques to 

the modeled self-adaptive system. 

Brown and Cheng [9] adopt a Goal-Oriented Requirements 

Engineering to present the Awareness-Requirement and 

propose a way to elicit and formalize such requirements using 

the OCL language. A methodology for generating feedback 

from such requirements, as well as fragments of a prototype 

implementation founded on an existing requirements 

monitoring framework is proposed. Elkodary et al. present an 

approach, named FUSION [10], which uses feature diagrams 

as a system model where self-adaptation is realized by 

switching between different system configurations. The self-

adaptation in FUSION is goal-driven, i.e., relying on 

predefined functional or non-functional goals. Each goal 

consists of a metric and a utility. While the metric is a 

measurable entity as response time, a utility is a feature which 

has influence on the metric, and is triggered when FUSION 

detects that a goal is violated. The violation of a goal is 

detected via defined monitoring functions. 

DYNAMICO [11] is a reference model for engineering 

adaptive software aligned with the vision of self-adaptive 

systems, where dynamic adaptation is necessary to ensure the 

continuous satisfaction of their functional requirements while 

preserving the predefined conditions on Quality of Service 

levels. These QoS levels are usually represented in the form of 

Service Level Agreements (SLAs), and their enforcement 

mechanisms are based on contracts and policies. Castaneda 

Bueno designs a component-based reference architecture [12] 

with distribution and extensible capabilities for self-adaptive 

systems according to the reference model DYNAMICO. 

In the present work, we propose a component-based 

contractual approach for quality-aware self-adaptive software 

systems specification that supports system and QoS contracts 

modeling together with the corresponding adaptation logic. The 

proposed approach defines QoS constraints in an independent 

way from system QoS parameters.  This separation  of  

concerns  reduces  system  modeling complexity  and  increases  

model  reusability  and  maintainability. Our model for quality-

aware self-adaptive systems provides a clear satisfaction of 

QoS contacts by applying adaptation strategies in case of 

violation of QoS constraints. 

III. A COMPONENT-BASED CONTRACTUAL 

APPROACH FOR SELF- ADAPTIVE SYSTEMS 

    We adopt a component-based contractual approach to 

define a model for designing and formally specifying self-

adaptive systems with respect to QoS contracts CBSE can help 

in the development of self-adaptive software in two ways. 

First, it is easier to design and implement adaptable software 

relying on component models. Second, the adaptation engine 

needs to be modular and reusable. Additionally, CBSE can 

also be adopted in the development phase of the self-adaptive 

system. However, the Component-oriented paradigm still 

requires comprehensive and sound QoS contract-aware self-

adaptation theories, models and mechanisms further 

trustworthy, extensible and reusable in order to realize its 

contract. Moreover, in the CBSE vision, contracts play a 

fundamental role, as they must capture the functional and 

extra-functional user requirements. 

    We define a QoS-aware component-based model for self-

adaptive systems where context and functional entities are 

viewed as components that interact via adaptation strategies, 

and designed in an entirely independent manner and only 

relationships between them are specified, thereby simplifying 

the adaptation mechanisms. To achieve this goal, we model an 

adaptation strategy as a pair of elements: an action associated 

with the notification of events that violate their contracted 

QoS constraints. The adaptation strategy adapts system 

functionalities according to context changes in terms of 

variations on system structure and/or behavior.   

    The model is designed with a focus on the separation of 

concerns between the specification of QoS parameters; 

defining user quality requirements, and software components 

quality parameters (see Figure 1). The first ones are specified 

in the QoS contract while the second ones are directly defined 

of the component specification.  

 

Figure. 1. An Overview of the proposed model. 

QoS contracts comprise a number of quality of service 

constraints that might be satisfied and preserved by a managed 

system. These QoS constraints are specified for each of the 

different context conditions that the managed system is faced 

with while it is running. Thus, the continuous satisfaction of a 



QoS contract (i.e., its preservation) implies satisfying each of 

the QoS constraints that the user expects, under each of the 

corresponding varying conditions of execution contexts. At 

runtime, once these conditions actually occur in the execution 

context of the managed application, the respective QoS 

constraints must be monitored, and their fulfillment enforced.  

To be able to automatically ensure QoS contracts, a 

component-based self-adaptive system requires (i) to maintain 

a structural representation of itself (ii) to have a representation 

of the contracted QoS constraints under the different context 

conditions; (iii) to be self-monitoring, that is, to identify and 

notify events on the QoS constraints violations; and (iv) to 

apply the dynamic reconfiguration in response to events 

notifying imminent violation of QoS constraints, as specified in 

the QoS contracts.    

Based on the previous considerations, we build our 

component-based QoS-aware model for self-adaptive systems. 

We first present our meta-model-based definitions for 

component-based self-adaptive software structure and QoS 

contracts respectively. Then, we define transformation rules to 

be applied to generate automatically a Maude formal 

specification of models instantiating the already defined meta-

model. 

3.1.  Model-based self-adaptive systems design 

Our model exploits the MDE techniques to provide a 

solution for self-adaptation via meta-models which describe 

concepts that can be used for constructing models that conform 

to its definition, and describes in an abstract way, the possible 

structure of the underlying models. The meta-model of Figure 

2, specifies the various concepts that intervene to define the 

structure of quality-aware self-adaptive systems together with 

their pertinent relationships. It is structured in four parts: 

A. The first part contains four meta-classes representing a 

quality of service contract. A QosContract is defined by its 

name and a set of QoS properties.  A QoS property denotes a 

specific non-functional characteristic of the considered system 

such as its performance, reliability, and cost. A QoSproperty 

is defined by a name and a weight reflecting the relative 

importance of the QoSproperty with regards to the user 

preferences. To facilitate the specification of user preferences, 

three weight values are predefined in the Weight Enumeration 

(high, low, medium). Each QosProperty needs one or more 

metrics to be quantitatively measured. A QosMetric, defined 

by its idMetric, represents a non-functional property which 

belongs to a domain of values as response time. Finally, we 

associate a QosConstraint to the entire or a subset of QoS 

properties in different conditions of context. In general, a 

QosConstraint consists of a relational operator (e.g., <, >, =) 

and a value representing a threshold. 

B. The second part contains two meta-classes 

representing context sensors used to model context sources and 

values. The ContextSensor meta-class is defined by its 

SensorID and sensor type. Three types of sensors are identified 

in [13] : Physical, Virtual and Logical sensors. Sensor types are 

represented via the SensorTypes Enumeration.  The Context 

meta-class defines anything that interacts and affects the target 

or functional system. The Context is defined by its ContextID 

and the corresponding possible values. 

C. The third part contains the AdaptationStrategy meta-

class, which represents scenarios of adaptation that will be 

applied in the case of violation of the QoS Constraints. These 

scenarios are defined by a set of adaptation rules that can be 

of the following types: (i) add a component to the actual system 

configuration, (ii) remove a component, and (iii) replace one 

component  by another. 

D. The last part of the meta-model contains necessary 

concepts to define the functional system configuration, viewed 

as a set of components which require or provide services to 

each other through specific interfaces. These components are 

represented by the Component meta-class and defined by a 

name specified in the CName attribute. A component 

comprises a set of Quality attributes (quality attributes of the 

running service), and a set of provided interfaces 

(ProvidedInterface) and Required ones (RequiredInterface). 

Each interface exposes a set of services that are required or 

provided by the component. Connections in our model are 

dynamic and only established whenever one component is 

providing the service and the other one is requesting it.  

3.2. Model Transformation for Generating Maude 

specifications  

    Albeit, MDE tries to facilitate software development and 

simplify the design process by specifying meta-models 

focusing on the structural and static semantics of software 

systems, it lacks necessary concepts to define the semantics or 

behavior of software systems and thus verification 

mechanisms that are among the major issues in specifying 

self-adaptive systems. A reasonable and desirable formal 

method to be adopted for this scope should be powerful 

enough to capture the principal models of computation and 

specification methods, and endowed with a meta-model-based 

definition conforming to the underlying meta-modeling 

framework. Additionally, the formal approach should allow 

working at different levels of abstraction, and be executable, 

in order to validate the meta-model semantics. Rewriting logic 

[14] via its implementation language Maude [15] is an 

adequate candidate for the definition of the semantics basis of 

our meta-model for many reasons. First, the versatility of 

rewrite theories can offer the appropriate level of abstraction 

for addressing the specification, modelling and analysis of 

self-adaptive systems and their environment within one single 

coherent framework. Second, since Maude is a rule-based 

language, the adaptation logic can be naturally expressed as a    

subset of the available rules, and the meta-programming 

capability of Maude can be exploited to enforce the execution 

of a given adaptation rule to maintain QoS parameters via 

Maude strategies. Third, the formal analysis toolset of Maude 

can support simulations and analysis over the self-adaptive 

system.  



Figure 2.Self-adaptive system meta-model. 

    The bridge between MDE and formal methods is 

established via model transformation techniques, realized via a 

set of transformation rules. A model transformation consists in 

general of a computation that applies repeatedly a set of 

transformation rules to a model, where the model represents 

the structure of a sentence in a given formal language, defined 

by a meta-model. EMF (Eclipse Modeling Framework) [16] 

and specially Acceleo [17] are used in our case as a modeling 

framework and code generator implementation of the OMG’s 

Model-to-text specification for building tools and applications 

based on models defined in the Ecore meta-model.  This tool 

provides the capability to define advanced code generators for 

transforming models to a target code by defining 

transformation templates.  

    Table 1 illustrates some results of transformation rules 

defined between the self-adaptive meta-model and the formal 

semantics. The meta-model and the imposed constraints 

provide the capability to achieve a formal specification 

generation through template models. Our goal is to transform 

EClass, EAttribute, EReference and EOperation of the self-

adaptive model to Maude constructs to facilitate self-adaptive 

systems specification.  

    Since Maude offers two possible representations, the 

algebraic and the object-oriented ones, we have adopted an 

object-oriented representation in order to reflect the 

hierarchical structure of self-adaptive systems and avoid the 

flat structure while adopting algebraic terms. In addition, all 

structural concepts are transformed to Maude classes while 

behavioral concepts as Adaptation Rules and Adaptation 

Strategies are transformed to rewriting rules and Maude 

Strategies respectively. The first mapping of Table 1 concerns 

structural concepts that can be defined as an Acceleo template 

as follows: 

[template public generateElement(Package : EPackage)] 
[comment @main/] 
[file (Package.name.concat('.maude'), false, 'UTF-8')] 
  (omod [Package.name.toUpperFirst()/] is  
      for (c: EClass | Package.eAllContents(EClass)) 
separator('\t')] 
    [if c.name.equalsIgnoreCase('AdaptationStrategy')= 
false)] 
     [if(c.name.equalsIgnoreCase('AdaptationRule')= 
false)] 
    class [c.name.toString()/] | [for (a: EAttribute 
|c.eAttributes ) separator(',')] [a.name/] :  
[if (a.eAttributeType.name='EString')]String [/if] 
[if (a.eAttributeType.name<>'EString')] 
[a.eAttributeType.name/] [/if] [/for]  
[if (c.eReferences<>null)] ,  
[c.eReferences->first().name/] [/if] : OidList. 
     [/if]  
     [/if] 
     [/for] 
endom) 
[/file] 
[/template] 
 

    The template for structural concepts generates a Maude file, 

using a tag [file] to specify the output file, that contains the 

various classes and their attributes as specified in Table 1. It 

begins by testing if the considered element is not a behavioral 

concept, i.e., neither an adaptation rule nor an adaptation 

strategy. Such verification is realized via the conditional 

statement [if]. Then, it generates a class from each EClass of 

the meta-model via the [for] bloc, together with the 

corresponding attributes.   

A B 
C D 



TABLE 1. Transformation results. 

IV. MOTIVATING ADAPTATION SCENARIO 

The scenario of a firefighting system [18, 19] is used as 

an example. Fire fighters often work in dangerous and 

dynamic environments. Moreover, a fire accident is one of 

the most frequent incident types. The early detection and 

timely preventive measures are effective methods for 

limiting fire damage and reducing casualties. In this 

example, the firefighting system is a component-based 

software system designed to detect fire signals and make 

effective fire-management strategies. When fire danger 

occurs, these components dynamically restructure into a 

firefighting plan by choosing appropriate firefighting 

resources from the component library. These well-

restructured components then drive the corresponding fire-

extinguishing installations to perform the firefighting plan.  

The Firefighting System automatically takes effective 

measures to prevent the fire disaster (Goal). This goal can be 

further decomposed into: (G1) detect fire signals in the early 

stage and (G2) assemble a set of fire-fighting devices in 

response to a real-time fire situation. To achieve these self- 

adaptation objectives, we should identify detectable contexts 

reflecting the software running state or physical 

environment, and then identify adaptive actions that can be 

performed at runtime to change the system behavior. In this 

example, the detectable fire signals (contexts) are various, 

such as CO, CO2, along with high temperature, and strong 

flame. Therefore, the context to be chosen depends on the 

occurring place and the fire disaster type.  

    Self-adaptive Firefighting System is used to monitor 

indoor fire disasters. It is composed of two essential parts, 

see Figure 3: context layer and functional one. We identify 

Temperature, Smoke Concentration, CO Concentration and 

Infrared Wavelengths as different contexts. The 

corresponding Maude specification of the available contexts 

is given by the following fragment of code: 

< 'CTXS1 : ContextSonsor | SonsorID : "FireMonitor_TEM" , Type : 

PhysicalSonsor , context : 'CTX1 > 

< 'Temperature : Context | ContextID : "Temperature" ,ContextValue : "65" >  

 < 'CTXS2 : ContextSonsor | SonsorID : "FireMonitor_CO" , Type : 

PhysicalSonsor , context : 'CTX1 > 

< 'CO-Con : Context | ContextID : "CO-Con" , ContextValue : "70%" > 

Structural concepts 

Eclass Maude specification 

QosContract 

QosProperty 

QosMetric 

QosConstraint 

class QosContract | name : String , QosProperties : OidListe . 
class QosProperty | name : QosPropertyName , Weight : Weight , Qosmetrics : OidListe .  
class QosMetric | idMetric : String , QosContraints : OidListe . 
class QosConstraint | value : Float , operator : String , contextValue : Oid. 

FonctionnelSys 

Component 

 

ProvidedInterface 

RequiredInterface 

Service 

class FonctionnelSystem | Components : OidListe . 
class Component | Cname : String , QualityAttribute : Oid , ProvidedInterfaces : OidListe , 
RequiredInterfaces : OidListe . 
class ProvidedInterface | ProvidedServices : OidListe . 
class RequiredInterface | RequiredServices : OidListe . 
class Service | Servicename : String ,QualityAttribute : Oid , isActive : Bool ,Parameters : 
OidListe.   
class QualityAttribute | name : String , value : Float . 

Behavioral concepts 

AdaptationRule crl [ReplaceComponent] : 
< F : FonctionnelSystem | Components : C CL > 
< C : Component | Cname : name , QualityAttribute: Q1 ,ProvidedInterfaces: I PIL ,RequiredInterfaces 
: RIL > 
< C' : Component |Cname: name2 ,QualityAttribute: Q2 ,ProvidedInterfaces: IL ,RequiredInterfaces: L > 
< Q1 : QualityAttribute | name : QN , value : V1 > 
< Q2 : QualityAttribute | name : QN , value : V2 > 
=>  
< F : FonctionnelSystem | Components : (del(C, (add(C' , CL )) )) > 
< Q2 : QualityAttribute | >  
< C' : Component |Cname: name2 ,QualityAttribute: Q2 ,ProvidedInterfaces: IL , RequiredInterfaces: L 
>  
if V2 < V1 . 

AdaptationStrategy (fmod SelfAdapt-STRA is 
pr REW-SEQ . 
op SelfAdaptStrat : -> List{Tuple{Qid, Substitution}} [memo] . 
eq SelfAdaptStrat = ('ReplaceComponent, 'F:Oid <- ''F.Qid ; 'C:Oid <- '' FireManComp.Qid ;  
'C':Oid <- '' FireEngComp.Qid ) . 



Figure 3. Self-adaptive Firefighting System model.

    We also identify three types of components: Fireman, 

Fire Engine and Extinguisher. In the example, fire-

prevention measures are made by dynamically restructuring 

the firefighting components. The corresponding Maude 

specification of these components is given by the following 

fragment of code: 

< 'F : FonctionnelSystem | Components : 'FireManComp 'ExgComp > 

< 'FireManComp : Component | Cname : "FireMan" , QualityAttribute : 'Q1 , 

ProvidedInterfaces : 'FM_Interface >  

< 'FireEngComp : Component | Cname : "FireEngineComp" , QualityAttribute 

: 'Q2 , ProvidedInterfaces : 'FE_Interface > 

< 'ExgComp : Component | Cname : "Extinguisher_Comp" , QualityAttribute : 

'Q3 , ProvidedInterfaces : 'EX_Interface  > 

< 'FM_Interface : ProvidedInterface | ProvidedServices : 'StartCompFM  >  

< 'FE_Interface : ProvidedInterface | ProvidedServices : 'StartCompFE  > 

< 'EX_Interface : ProvidedInterface | ProvidedServices : 'StartCompEX  > 

< 'StartCompFM : Service | Servicename : "StartCompFM" , QualityAttribute : 

'Q1 , isActive : true , Parameters : 'PL >     

< 'StartCompFE : Service | Servicename : "StartCompFE" , QualityAttribute : 

Q2 , isActive : false , Parameters : 'PL >  

< 'Q1 : QualityAttribute | name : "ResponseTime" , value : 50.0 >  

< 'Q2 : QualityAttribute | name : "ResponseTime" , value : 20.0 > 

    The “FireManComp” component has “Q1” as a quality 

attribute which represents the response time of 50 sec and a 

Provided Interface “FM_Inerface” that proposes a unique 

running service “StartCompFM”.    

      In the firefighting system, we are concerned with the 

analysis of the performance quality parameters in terms of 

the response. For this reason, we identify the 

Firefighting_Contract which comprises the Performance 

as a QosProperty and ResponseTime, see Figure 3, as a 

metric that is used to evaluate the performance. We propose 

two QosConstraint in this example: The response time in the 

Temperature context must not exceed 30 sec. But, in the 

context of CO-Concentration, the response time might not 

exceed 20 sec. The corresponding Maude specification of 

this QosContract is given by the following fragment of 

code:  

< 'QosContract : QosContract | name : "FireFighting" , QosProperties : 'P1 >  

< 'P1 : QosProperty | name : "Performance" , Weight : hight , Qosmetrics : 

'M > 

< 'M : QosMetric | idMetric : "ResponseTime" , QosContraints : 'C1 'C2 >  

< 'C1 : QosConstraint | value : 30.0 , operator : "<" , contextValue : 

'Temperature > 

< 'C2 : QosConstraint | value : 20.0 , operator : "<" ,contextValue : 'Co-Con > 

    As an example of adaptation strategies application, we 

consider the case of a violation of the response time in the 

Temperature context by the actually running component 

"FireManComp". In this case, the system detects a violation 

of QoS Constraint and applies the adaptation strategy that 

replaces the "FireManComp" by "FireEngineComp" 

component. Figure 4 shows the result of the adaptation 

strategy. "FireEngineCom” component that respects the 

QosConstraint “C1” (reponse time of FireEngineComp = 

20ms), is added to the list of components in the functional 

system and its service “StartCompFE” becomes running 

(isActive : true). It replaces “FireManComp” which does 

not meet the quality requirements.   

Maude> …    
Introduced module SelfAdapt-STRA 
 
result Configuration : …  
< 'F : FonctionnelSystem | 
    Components :('ExgComp 'FireEngComp)> < 
'FE_Interface : ProvidedInterface | ProvidedServices : 
'StartCompFE >  
< 'FireEngComp : Component | Cname : 
    "FireEngineComp",ProvidedInterfaces : 
'FE_Interface,QualityAttribute : 'Q2 >  
< 'StartCompFE : Service | Parameters : 'PL, 
QualityAttribute : 'Q2, Servicename : "StartCompFE", 
isActive : true > < 'StartCompFM : Service | Parameters 
: 'PL, QualityAttribute : 'Q1,Servicename : 
“StartCompFM",isActive : false > 

Figure. 4. A strategy application result. 



V. Conclusion 

    In this paper, we have proposed a component-based 

contractual approach for designing and specifying self-

adaptive systems with respects to Quality of Service 

contracts. The approach establishes a clear separation of 

concerns between the specification of user definable QoS 

quality parameters and quality parameters of the software 

components. To implement the proposed approach, we have 

combined the MDE techniques and a formal method in 

order to provide an intuitive modeling notation, supporting a 

graphical view, but still having a rigorous syntax and 

semantics. Such combination also facilitates the use of 

formal methods in many stages of the development process 

including the analysis phase that includes validation and 

verification techniques.   

As future work, we intend to exploit main characteristics of 

formal methods to rigorously verify the behaviors of model-

based self-adaptive systems, formal specifications are 

automatically generated. We will mainly adopt a stochastic 

model-checking technique to ensure quality properties of 

self-adaptive systems. Besides, we plan to develop a 

modeling tool that facilitates the creation and the 

implementation of quality-aware self-adaptive systems. We 

aim to integrate formal techniques within the MDE ones. 

The role of MDE is the definition of system graphical 

models and formal methods serve to validate and verify the 

self-adaptive system in order to guarantee that system model 

satisfies global properties and particularly quality ones. 

Furthermore, we aim to apply our approach on 

supplementary case studies in the goal of optimizing the 

existing quality properties modeling, the verification and 

implementation capabilities of the self-adaptive systems 

modeling framework.  
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