
Tsmart-BIPEX: An Integrated Graphical Design
Toolkit for Software Systems

Huafeng Zhang1, Yu Jiang1, Han Liu1, Ming Gu1, and Jiaguang Sun1

School of Software, Tsinghua University, China

Abstract. To help build reliable software systems efficiently, the com-
ponent based model-driven design approach is widely used, and lots of
modeling languages have been designed. In this paper, we propose an in-
tegrated graphical development toolkit Tsmart-BIPEX 1 in support of
building complex systems in the BIP modeling language, which features
a rich semantics for composing sub-systems. First, we build a graphical
interface for model construction and simulation, which is more intuitive
than the command-line based toolchain. Furthermore, to enhance the
original BIP verification tool RTD-Finder, we translate the graphical
model to a labeled transition system for a thorough verification in veri-
fier VCS. Finally, we can generate executable C++ code directly from
the graphical model. Tsmart-BIPEX has been successfully applied in
the development of a real-world train network controller.

1 Introduction

As embedded devices gain more and more computing power, the systems on
these platforms are expected to accomplish much more sophisticated tasks, which
brings new challenges to ensure the correctness of embedded softwares in the tra-
ditional development approaches [11]. According to the report from National In-
stitute of Standards and Technology, 70% of faults are introduced in the forepart
of the life-cycle, and 80% of them are not discovered until integration and system
test or later, which leads to 10X or higher repair cost [14].

A promising way to alleviate the pain of detecting design defects in later
phases is the component-based model-driven design approach [9, 10]. The key
idea is to build a structural model that decompose a complex system into sub-
systems with independent functions, then provide coordination semantics to as-
semble these sub-systems together, and finally synthesize executable code from
the verified model. During the last decades, lots of component based modeling
languages such as safety state machine[1], stateflow[6], and BIP[2] have
been proposed and widely used with their corresponding supporting toolkits.

Among them, BIP features its semantics with the support of complex in-
teraction and dynamic priorities which can be further used to express complex
scheduling policies. It brings BIP strong expressiveness that cannot be matched
by other modeling languages, but also results in the limited verification support

1 Demo Video: https://youtu.be/xNd6N7DJC-s
Tool Download: https://github.com/ronhuafeng/tsmart-bipex

2

of the tool RTD-Finder [3], where lots of temporal properties can not be ver-
ified. More complex semantics is harder to be formalized for a comprehensive
verification. Furthermore, during the real engineering practice, we found that
BIP is a textual modeling language based on a command-line based toolchain
for model simulation and synthesis, which is inconvenient for model construction
and interactive debugging.

In this paper, we improve the convenience and verification efficiency of BIP
by developing an integrated graphical design toolkit Tsmart-BIPEX. The over-
all structure of the toolkit is shown in Fig. 1. First, graphical model editor and
simulator are implemented to assist the engineers according to the BIP syn-
tax and semantics. Then, a translator is developed to translate the model to an
equivalent labeled transition system, which can be directly verified by the VCS
model checker. Finally, the original code generator is seamlessly integrated for
C++ code generation. While the original supported compiler and engine are only
provided on Linux with a command-line interface for textual model construction,
Tsmart-BIPEX can be installed on Mac-OSX, Linux, and Windows.

Graphical
Models

Simulation
Visualization

Safety Critical
Properties

Executable Code
on Devices

Graphical Model
Editor

Interactive
Simulator Model Checker Code Generator

Tsmart-BIPEX Platform

Fig. 1. Structure of the integrated graphical design toolkit Tsmart-BIPEX.

Related work is presented in Section 2. Some backgrounds on the computa-
tion model BIP are presented in Section 3. The implementation of Tsmart-
BIPEX is introduced in Section 4. A case study of a real-world system design
is presented in Section 5, and we conclude with Section 6.

2 Related Work

During the last decades, lots of component based modeling languages such as
safety state machine, statechart, stateflow, and BIP have been proposed
for the modeling of complex systems. Based on those modeling languages, many
design toolkits have been implemented, such as SCADE[5], Statemate[7],
Simulink Stateflow[4] and RTD-Finder. These toolkits have been success-
fully applied in both academic and industrial applications.

For example, SCADE is a development suite for building safety-critical em-
bedded systems based on the synchronous modeling language safe state ma-
chine, and is widely used in safety-critical applications such as avionics and train
control. Simulink Stateflow is a modeling and simulation platform based on
the event-driven modeling language Stateflow, which highlights its tight inte-
gration with Matlab computing environment. It also provides numerous tool-
boxes such as Design Verifier and Polyspace for model construction and syn-
thesized code analysis. Statemate developed by IBM is a working environment
for the development of complex reactive software based on the reactive modeling

3

language Statechart, where the software can be modeled and synthesized from
a set of parallel and synchronized automata.

Except for those famous but expensive industrial tools, there are also many
academical prototypes for system design such as Ptolemy, LabView, BIP and
ForSys. They add new modeling and analysis features to the original industrial
tools. For example, Ptolemy supports the design of heterogenous systems. BIP
features its semantics with the support of complex interaction and dynamic
priorities which can be further used to express complex scheduling policies, which
cannot be matched by other modeling languages. In our work, we try to improve
the convenience and verification efficiency of BIP by developing an integrated
graphical design toolkit Tsmart-BIPEX.

3 Background

In BIP, a system is specified in textual description with the composition of com-
ponents and the interaction between components. There are two types of com-
ponents, where the atomic components are a class of components which specify
the behavior of independent sub-systems in labeled transition graphs, and the
compound components schedule the communication between atomic components
by defining interactions connecting atomic components and priorities of the in-
teractions. The textual model can be compiled, validated and synthesized with
command-line support on Linux system.

User

Lamp Controller

Clock

Press Interaction

Time Sync
Interaction Reset Interaction

press

pressed

synctime reset

resetsynctime

Wait

Low

Off

High

Rest

true
{time = 0;}

press

true
{}

synctime

time <5
{}

press

true
{}

press

time >=5
{}

press

true
{}

reset

export ePort reset()
export intPort synctime(int time)
export ePort press()

int time = 0

Fig. 2. A visual example of BIP model, including the compound and atomic compo-
nent, interactions, ports, states, transitions with actions and guards, local variables.

We depict the main features by an example constructed in the graphical in-
terface of Tsmart-BIPEX in Fig. 2. This model represents how a user controls
the brightness of a lamp. The left part shows the top-level model with three
components: User, Lamp Controller, and Clock. Components communicate with
each other through interactions. The interaction between User and Lamp Con-
troller is Press Interaction. The interactions between Lamp Controller and Clock
are Time Sync Interaction and Reset Interaction. Interactions and components
are connected via ports (the black dots attached to components). When an in-
teraction is fired, it triggers the computation of its connected components via
related ports. The right part shows the detailed behavior of the Lamp Controller
by an automaton. To obtain a full description for BIP, please refer to [2].

4

4 Tsmart-BIPEX Implementation

The overall structure of Tsmart-BIPEX is presented in Fig.1, and is imple-
mented on the Eclipse Rich Client Platform. The whole project contains 74,719
lines of Java codes and 2,358 lines of Clojure code, where 36,278 lines are in-
herited from Tsmart-GalsBlock[12] which contributes to the common graphical
user interface and pure hardware design. The four components contained in the
toolkit are described as follow.

Graphical Model Editor. The graphical model editor is based on Eclipse
RCP and Eclipse Graphical Modeling Framework which implements the BIP
syntax defined in [2]. The editor supports the graphical creation and editing of
compound & atomic components and interactions and its graphical interface is
shown in Fig. 3. The editor’s four views exhibits how the sub-components and
interactions in a compound component are created. (1) The project view lists
the models contained in the current project. (2) The editor view shows a canvas
where the selected model’s diagram can be edited. (3) The palette view provides
a bundle of predefined components and interactions which can be dragged into
the editor view as a template for the creation of a new model element. (4) The
model structure view displays the hierarchical structure of the current model
in editing. The interface for editing atomic components provides similar view
layout with elements for automata construction, as presented in Fig.2.

Fig. 3. Graphical editor interface for component and interaction construction.

Graphical Model Simulator. The graphical simulator is based on the ex-
ecution semantics of BIP and provides interactive simulation of the constructed
graphical model. In each step, an interaction or component is selected according
to their state and execution priority, and the computation inside this candidate
is executed. The graphical simulator helps users explore the system’s behavior
in a through way. Some basic functions are provided by the simulator, including
model states traversal and execution traces recording, etc.

The simulation interface includes five main views. (1) The simulation action
toolbar includes initialization, step-forward, step-backward and reset actions.
(2) The canvas view visualizes the simulated model in the same layout as the
editor, with the enabled components or interactions highlighted for choice. (3)
The candidate view displays all candidates (enabled components or interactions)

5

with the highest priority in the model’s current state, whose inner computation
will be triggered if this element is selected. Users can manually select one can-
didate to trigger by double-clicking the corresponding item or let the simulation
engine selects one randomly. (4) The data view lists values of local variables of
every component in the current state. (5) The model structure view shows the
hierarchical structure of the simulated model.

Fig. 4. Graphical simulator interface for the interactive model simulation,

Model Checker. The model checker is VCS [8], which takes the labeled
transition system and corresponding properties written in computation tree logic
formula as input, and export the verification output with optional counterexam-
ples. Although RTD-Finder supports the verification of BIP, its computation
efficiency for global invariant is not as good as VCS. For integration, we develop
an engine to translate the graphical BIP model to a semantics equivalent labeled
transition system, which can be verified by VCS directly. The formal verification
complements the simulation to provide stronger support for correctness.

Code Generator. The code generator for BIP is integrated based on the
source-to-source transformation architecture introduced in [2], which allows the
generation of C++ code from BIP models. The generated source code can be
executed on an embedded platform consisting of a BIP engine to schedule the
computation of components and interactions. The original code generator engine
is very good, and we integrate it into the graphical design environment. The user
just needs to click the code generation button, and the code would be generated.

5 Experimental Results

We have applied Tsmart-BIPEX in the component-based model driven de-
velopment of a network interface controller to evaluate the effectiveness of the
graphical toolkit. Network interface controller is an embedded device widely used
for the communication in several kinds of vehicle buses. The key component
of the network interface controller is the multi-function vehicle bus controller
(MVBC), which confirms with the protocol defined in IEC 61375 [13].

6

First, strictly following the description of the standard IEC 61375, we build
a top-level model for the network layer of an MVBC device in Tsmart-BIPEX
as shown in Fig. 3. The top-level model of the network layer contains three
components: the producer of a message, the consumer of a message, and the
router which transmits a message from the source device to its destination device.
The router is modeled as an atomic component abstracted in Fig. 5, which
extracts the source device address and the destination device address from the
processed message and composes a new message to send.

Fig. 5. Atomic component of the router function of the vehicle bus controller.

After several rounds of graphical model simulation, the MVBC model is au-
tomatically translated to an equivalent labeled transition system for VCS veri-
fication. We check several key requirements on the model, such as“the message
should not be sent to the link-layer if the source device address equals the desti-
nation device address”. For the violated property, we need to check and revise
the constructed model manually based on the counter example. This verification
process strengthens the confidence in the constructed BIP model of MVBC.

When all properties pass the verification, we can automatically generate C++
code from the verified BIP model. The generated C++ source files contain
2,537 lines of code, including 623 lines of the BIP engine code to coordinate the
components and interactions. Also, we write 146 lines of interface code to handle
the embedded device’s I/O communications. All codes are compiled by the arm-
gcc-3.8 compiler to get an executable file running on the ARM processor of the
MVBC device. Then, we connect the automatically synthesized MVBC device
with the existing well-tested hand-written MVBC device, the communication
between the two devices functions well.

6 Conclusion

In this paper, we present an integrated graphical development toolkit Tsmart-
BIPEX to support the widely used BIP modeling language. With the integra-
tion of the graphical model editor interface and the model simulation interface,
the convenience is greatly raised compared to the original textual model con-
struction and command-line based simulation. By translating the BIP model to

7

an equivalent labeled transition system, the verification efficiency is increased
compared to the original RTD-Finder. Our future work may focus on the de-
velopment and integration of more efficient code generation algorithms.

7 Acknowledgment

This research is sponsored in part by NSFC Program (No. 91218302, No. 61527812),
National Science and Technology Major Project (No. 2016ZX01038101), Ts-
inghua University Initiative Scientific Research Program (20131089331), MIIT
IT funds (Research and application of TCN key technologies) of China, and
The National Key Technology R&D Program (No. 2015BAG14B01-02).

References

1. André, C.: Semantics of safe state machine. I3S Laboratory 6070 (2003)
2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components

in bip. In: Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM’06). pp. 3–12. Ieee (2006)

3. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-finder: A tool for composi-
tional deadlock detection and verification. In: International Conference on Com-
puter Aided Verification. pp. 614–619. Springer (2009)

4. Dabney, J.B., Harman, T.L.: Mastering simulink. Pearson/Prentice Hall (2004)
5. Dormoy, F.X.: Scade 6: a model based solution for safety critical software devel-

opment. In: Proceedings of the 4th European Congress on Embedded Real Time
Software. pp. 1–9 (2008)

6. Hamon, G., Rushby, J.: An operational semantics for stateflow. In: International
Conference on Fundamental Approaches to Software Engineering. pp. 229–243.
Springer (2004)

7. Harel, D., Lachover, Hagi, e.: Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE transactions on software engineering
16(4), 403–414 (1990)

8. He, F., Yin, L.e.: Vcs: A verifier for component-based systems. In: Automated
Technology for Verification and Analysis. pp. 478–481 (2013)

9. Jiang, Y., Li, Z., etc: Design and optimization of multiclocked embedded systems
using formal techniques. IEEE Transactions on Industrial Electronics 62(2), 1270–
1278 (2015)

10. Jiang, Y., Liu, H., etc: Design of mixed synchronous/asynchronous systems with
multiple clocks. IEEE Transaction on Parallel and Distributed Systems pp. 2220–
2232 (2015)

11. Jiang, Y., Song, H., etc: Data-centered runtime verification of wireless medical
cyber-physical system. IEEE Transactions on Industry Informatics (2016)

12. Jiang, Y., Zhang, H.e.: Tsmart-galsblock: a toolkit for modeling, validation, and
synthesis of multi-clocked embedded systems. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. pp.
711–714. ACM (2014)

13. Schifers, C., Hans, G.: Iec 61375-1 and uic 556-international standards for train
communication. In: Vehicular Technology Conference Proceedings, 2000. VTC
2000-Spring Tokyo. 2000 IEEE 51st. vol. 2, pp. 1581–1585. IEEE (2000)

14. Tassey, G.: The economic impacts of inadequate infrastructure for software testing
(2002)

