Performance Comparison between Unity and D3.js
for Cross-Platform Visualization on Mobile Devices

Lorenz Kromer, Markus Wagner, Kerstin Blumenstein,
Alexander Rind, Wolfgang Aigner

St. Poelten University of Applied Sciences, Austria

Abstract

Modern data visualizations are developed as
interactive and intuitive graphic applications.
In the development process, programmers ba-
sically pursue the same goal: creating an
application with a great performance. Such
applications have to display information at
its best way in every possible situation. In
this paper, we present a performance com-
parison on mobile devices between D3.js and
Unity based on a Baby Name Explorer exam-
ple. The results of the performance analysis
demonstrated that Unity and D3.js are great
tools for information visualization. While
Unity convinced by its performance results ac-
cording to our test criteria, currently Unity
does not provide a visualization library.

1 Introduction & Related Work

Visualization systems provide interactive, visual rep-
resentations of data [CMS99] designed to help people
understand complex phenomena and augment their
decision-making capabilities [Munl4]. Given the in-
terconnectedness of the current age and the increasing
volumes of collected data, there is a dire need for such
support. While many usage scenarios can be identified
in scientific research and business management, sys-
tems for personal visualization [HTA115] and casual
information visualization [PSMO07] serve exceptionally
broad audiences. These visualizations focus less on

Copyright © by the paper’s authors.
private and academic purposes.

Copying permitted for

In: W. Aigner, G. Schmiedl, K. Blumenstein, M. Zeppelzauer
(eds.): Proceedings of the 9th Forum Media Technology 2016,
St. Polten, Austria, 24-11-2016, published at http://ceur-ws.org

47

task-driven activities and more on curiosity and enjoy-
ment while exploring personally relevant data. Show-
ing trends of popular baby names, the Name Voyager
[Wat05] is a typical example of a casual visualization.

A main challenge faced by the developers of ca-
sual visualization systems is the heterogeneity of de-
vices and platforms they should support. In particu-
lar for the casual context, mobile phones and tablets
are more suitable than classical desktop computers
[BWA15a, BNW*16, HTA'15, LAMRI14]. Native
systems, e.g., apps for Android or Apple, are only
runnable on the platform for which the code is com-
piled for. Cross-platform support requires the develop-
ment on top of different software stacks and to main-
tain separate code bases. One approach to address this
challenge are web-based visualizations, i.e. using web
technology such as D3.js [BOH11] within the browser.
However, a wide-spread concern is that web-based sys-
tems lack performance. For example, Baur stated in a
2013 interview [BSB13] that for big visualization sys-
tems such as TouchWave [BLC12], going native can-
not be avoided because “in the web it looks like a slide
show”. Besides the negative effects of interactive la-
tency [LH14], performance overheads negatively affect
battery load of mobile devices. Alternative approaches
are cross-compilers such as Unity [unil6], which can
deploy a single code base to native systems for mul-
tiple platforms. Yet, a limitation of Unity is that it
does not include a software library for visualizing data
[WBR*16]. These two approaches for cross-platform
visualization work very differently during both imple-
mentation and runtime. The choice will largely depend
on the respective application scenario but empirical
data on their performance is needed to inform such a
decision.

While some research has been carried out to com-
pare the performance of different web-based visualiza-
tion technologies [LABT08, JJK08, KSC12], no stud-
ies have been found which compare the performance of
web-based and cross-compiled visualization approach.

Performance Comparison between Unity and D3.js for Cross-Platform Visualization on Mobile Devices

BabyNames 2004 - 2013 OOE Overview

(a) Unity

Overview
——
———m
—m
—m
——
——m
——m
——m
—m
——

(b) D3.js

Figure 1: Shows a screenshot of the Baby Name Explorer interface implemented with (a) Unity and (b) D3.js.
Shows the circle packing chart (left) with the corresponding grouped bar chart (right) representing the frequency

per year for male (blue) and female (pink) names.

Neither could we identify performance results obtained
from different target platforms.

Thus, the paper at hand, contributes a performance
comparison between Unity (cross-compiled to native)
and D3.js (web-based) on four mobile devices. For
this, we created two implementations of a casual vi-
sualization system to explore popular baby names as
described in Section 2. Section 3 covers the implemen-
tation details and test setup. After the test results in
Section 4, we conclude our work in Section 5 and out-
line future work.

2 Visualization Design

As proof of concept we started with implementing a
simple interactive visualization setup using an open
data set of the regional government of Upper Austria
on the 50 most often used male and female baby names
from 2004 to 2013. The dataset includes the variables
name (nominal), gender (categorical), year (quanti-
tative) and count (quantitative). All these data are
merged together into a table provided as *.csv file. As
visualization concepts we combined a circle packing
chart [HBO10] with grouped bar charts [CM84].

Initially, the circle packing chart shows the first let-
ters of the baby names as bubbles and its diameter
matches with the number of babies per year. A slider
is positioned at the bottom of the screen for selecting
the year to display.

By tapping a bubble, the bubble expands and the
names which are related to the first letter are shown
inside the big bubble (see Figure 1). The color of a
name bubble is related to the gender (pink := female,
blue := male) and the diameter matches the number
of babies with the name for the selected year. Dur-
ing the layout phase, the bubbles are placed using
physics-based movement like gravity and the biggest
bubble is set to the center of the screen. The cir-

48

cle packing chart is linked with a grouped bar chart.
The bar chart initially shows the number of babies
for all names grouped per year, split into female and
male names (using the same colors as for the bubbles).
When selecting a first letter bubble, the grouped bar
chart shows the number of babies for names starting
with the selected letter. When selecting a name bub-
ble (e.g., “Leonie”), the grouped bar chart changes to
a single bar chart presenting the number for the name
per year.

3 Implementation and Test Setup

To introduce the implementation and test setup, we
describe the used tools for implementation D3.js and
Unity, the four test devices and environments, the per-
formance criteria and desired results as well as the
measured values and methods.

3.1 Test Devices and Environments

Since we focus on cross-platform visualization, the
test devices cover a range from tablets (Nexus 9 and
iPad Air) to Smartphones (iPhone 65+ and Galaxy S6
Edge). Both visualization systems are investigated on
the devices shown in Table 1.

When selecting the mobile test devices, we deliber-
ately choose devices with larger screen sizes, since the
presentation of the tested visualization (see Section 2)
on a screen size of 5” or small is not optimal.

The visualization is tested under Android 5.1
(Nexus 9 and Galaxy S6 Edge) and i0OS 9 (iPad Air
and iPhone 6S+). In addition to the requirements of
the devices, the test concept of this paper also exam-
ines the dependencies of both visualization versions
of external components such as libraries and plug-ins,
which were used during the development process.

Unity: With the development environment of

Performance Comparison between Unity and D3.js for Cross-Platform Visualization on Mobile Devices

Table 1: Overview of the dimensions of the test devices.

Screen Screen

Device Type . . Processor RAM Graphics processor
size resolution

Nexus 9 Tablet 8.9” 2048 x 1536px NVIDIA Tegra K1 2 GB NVIDIA GeForce ULP

iPad Air LTE Tablet 9.7” 2048 x 1536pxr Apple A7 1 GB PowerVR G6430
Smart-

iPhone 6S-+ phmofe 5.5” 1920 x 1080pz Apple A9 2GB PowerVR GT7600

Galaxy Smart- . Samsung Exynos 7 .

S6 Edge phone 5.1 2560 x 1440px Octa 7420 3 GB Mali-T760 MP8

Unity it is possible to make a project accessible for
multiple platforms. The Unity version of the Baby
Name Explorer (Figure 1a) is exported in two versions
(Android and i0S). The rich development environ-
ment of the game engine Unity includes a sufficient
repertoire of physics components and 3D elements.
Therefore, we did not have to use external libraries.

D3.js: Since the implementation of the visualiza-
tion in D3.js (Figure 1b) is web browser based, we
used the Google Chrome web browser as test envi-
ronment which is available on all tested devices (see
Table 1). Thus, the visualization is represented under
the same technological conditions. For the implemen-
tation of the web based version, we did not need addi-
tional JavaScript libraries, because D3.js contains all
functionalities.

3.2 Measured Values and Methods

To compare a number of software applications, com-
mon metrics and measurement points have to be de-
fined [MFBT07]. Subsequently the used methods are:

e FPS: For measuring the frames per second (FPS)
rates, time logging functions are added around
rendering methods in the code, logging the results
via logfiles or the console.

e CPU utilization: To show the difference be-
tween the hardware components, the CPU uti-
lization was observed while performing both visu-
alizations in a specific scenario and five minutes
in idle mode. Therefore, it was ensured that no
other processes were running on the device.

e Loading time of raw data: Both version (Unity
and D3.js) contain an explicit function to load the
raw data. In order to compare the raw data load-
ing from a CSV file, the elapsed time was mea-
sured between the explicit function call and end.

In relation to the technical implementation, Unity

and D3.js are strongly different. To overcome this is-
sue, we recorded the system parameters and console
logs with OS specific development systems, because
there are no uniform functions available to detect the
previously listed system parameters.

49

With the aforementioned measured values, both vi-
sualization systems were tested in a specific user sce-
nario. In this case, the Baby Name Explorers usage
was simulated over 60 seconds by a regular interac-
tion with the respective system. To reduce the effects
of operating system and other processes beyond user
control, this user scenario was repeated five times on
each visualization system per tested device.

4 Results

The results of the performance comparison of both ver-
sions are separated into the three measured parame-
ters, which were presented before. All the measured
values of the different test devices were compared into
an Excel sheet for preprocessing. By using MS Ex-
cel, we processed the calculation of the median values
to eliminate outliers and exported the result for each
parameter as grouped bar chart.

4.1 CPU Usage Analysis

Based on the performed measurements, Unity gener-
ates less CPU usage than D3.js. Calculating the me-
dian across all measured devices, Unity takes 22% and
D3.js takes 38%. Figure 2 illustrates a diagram to
compare the CPU usage between the tested devices in
idle mode and while performing both versions.

Nexus 9
Galaxy S6 E
iPhone 6s Plus

iPad Air 2

0 10 20 30 40 50 60 70

Figure 2: CPU usage in % in Unity (green), D3.js (or-
ange) compared to idle mode (blue) [lower is better].

Performance Comparison between Unity and D3.js for Cross-Platform Visualization on Mobile Devices

During the performance analysis it was very inter-
esting to see, that the Nexus 9 tablet got noticeable
warmer than the other devices. This effect mirrors
in the device’s CPU usage. However, no temperature
measurements were carried out to investigate this ef-
fect. In general, less CPU usage is a big benefit from
the perspective of smart devices because less energy
consumption results in more battery time.

4.2 FPS analysis

The evaluation of the FPS data shows that Unity
reaches a median of 57 FPS and D3.js version achieves
a median of 51 FPS. Unity can be seen as the winner of
this criteria of the performance comparison. The de-
tailed median values of the evaluation part are shown
in Figure 3.

Nexus 9

Galaxy S6 E

iPhone 6s Plus

iPad Air 2

0 10 20 30 40 50 60

Figure 3: FPS rate while performing with Unity
(green) and D3.js (orange) [higher is better].

It is very prominent, that the FPS rate of the D3.js
version was pretty low on the Galaxy S6 Edge, despite
the fact that the CPU usage on this device also stayed
slightly. In contrast, the Nexus 9 tablet was the only
device which reaches higher FPS with D3.js.

4.3 Loading Time Analysis

The result of the CSV data loading time measurement
shows, that D3.js takes a median of 5.17ms. In con-
trast, Unity requires significantly more time for the
raw data loading which results in a median of 15.17ms.
Figure 4 shows the gap between both versions.

The measured time depends on the internal imple-
mentation of the loading methods of the visualizations
which is the reason of the serious differences at the
cycle times of these functions.

5 Conclusion

This study compared two different approaches for
implementing cross-platform visualizations: cross-

50

Nexus 9

Galaxy S6 E

iPhone 6s Plus

iPad Air 2

0 5 10 15 20 25

Figure 4: CSV loading times in ms while performing
in Unity (green) and D3.js (orange) [lower is better].

compilation to native code and web technology, i.e.
usage within a web browser.

For this, the Baby Name Explorer, as example of a
realistic casual visualization design, was implemented
in both Unity and D3.js. Our experimental compari-
son on four devices showed that FPS were comparable,
D3.js was faster in initial data transformations, and
Unity resulted in a lower CPU utilization.

In terms of developer experience, Unity’s IDE sup-
ports C# as well as JavaScript for development. The
cross-compilation and deployment of the Baby Name
Explorer for all tested platforms worked seamlessly.

D3.js code is typically developed for a web environ-
ment. Due to the variety of web browsers, web based
visualizations need to be tested on a wide selection
before being released. During our experiment both
implementations worked well.

Depending on our proof-of-concept, we demon-
strated the benefits of the use of Unity for informa-
tion visualization and cross-platform compilation in
our field of research. In the next steps we will focus
on the synchronization for collaboration and semantic
zoom [WBR'16] and to show the ability to use this
framework for visualization for the masses as called
by Blumenstein et al. [BWAT15b] as an easy to use
system.

Acknowledgements

This work was supported by the Austrian Science Fund
(FWF) via the KAVA-Time and VisOnFire projects
(no. P25489 and P27975), the Austrian Ministry for
Transport, Innovation and Technology (BMVIT) un-
der the ICT of the future program via the VALiD
project (no. 845598) and under the Austrian Security
Research Programme KIRAS via the project Coura-
geous Community (no. 850196) as well as the project
seekoi (no. 1154) funded by the Internet Foundation
Austria (IPA).

Performance Comparison between Unity and D3.js for Cross-Platform Visualization on Mobile Devices

References
[BLC12] Dominikus Baur, Bongshin Lee, and
Sheelagh Carpendale. TouchWave: ki-

[BNW16]

[BOH11]

[BSB13]

[BWA15a]

[BWA*15b)

[CM84]

netic multi-touch manipulation for hier-
archical stacked graphs. In Proc. 2012
ACM int. conf. Interactive Tabletops and
Surfaces, ITS, pages 255-264. ACM,
2012.

Kerstin Blumenstein, Christina Niederer,
Markus Wagner, Grischa Schmiedl,
Alexander Rind, and Wolfgang Aigner.
Evaluating information visualization on
mobile devices: Gaps and challenges in
the empirical evaluation design space. In
Proc. 6th Workshop on Beyond Time and
Errors on Nowvel Evaluation Methods for
Visualization, BELIV, pages 125-132.
ACM, 2016.

Michael Bostock, Vadim Ogievetsky, and
Jeffrey Heer. D3: Data-Driven Docu-
ments. IEEE Trans. Vis. and Comp.
Graphics, 17(12):2301-2309, December
2011.

Enrico Bertini, Moritz Stefaner, and
Dominikus Baur. Visualization on
Mobile & Touch Devices. datas-
tori.es podcast, http://datastori.es/
data-stories-25-mobile-touch-vis/,
00:41:49 to 00:46:08, July 2013.

Kerstin Blumenstein, Markus Wagner,
and Wolfgang Aigner. Cross-Platform
InfoVis Frameworks for Multiple Users,
Screens and Devices: Requirements and
Challenges. In Workshop on Data Ex-
ploration for Interactive Surfaces DEXIS
2015, pages 7-11, 2015.

Kerstin Blumenstein, Markus Wagner,
Wolfgang Aigner, Rosa von Suess, Har-
ald Prochaska, Julia Piiringer, Matthias
Zeppelzauer, and Michael Sedlmair. In-
teractive Data Visualization for Second
Screen Applications: State of the Art
and Technical Challenges. In Proc. of
the Int. Summer School on Visual Com-
puting, pages 35-48. Frauenhoferverlag,
2015.

William S. Cleveland and Robert McGill.
Graphical Perception: Theory, Experi-
mentation, and Application to the Devel-
opment of Graphical Methods. Journal

51

[CMS99]

[HBO10]

[HTA*15)

[JJK08]

[KSC12]

[LAB+08]

[LAMR14]

[LH14]

of the American Statistical Association,
79(387):531-554, 1984.

Stuart K. Card, Jock D. Mackinlay, and
Ben Shneiderman. Readings in Infor-
mation Visualisation. Using Vision to
Think. Morgan Kaufmann, 1999.

Jeffrey Heer, Michael Bostock, and
Vadim Ogievetsky. A tour through the
visualization zoo. Comm. of the ACM,
53(6):59, 2010.

Dandan Huang, Melanie Tory, Bon Adriel
Aseniero, Lyn Bartram, Scott Bateman,
Sheelagh Carpendale, Anthony Tang,
and Robert Woodbury. Personal visu-
alization and personal visual analytics.
IEEFE Trans. Vis. and Comp. Graphics,
21(3):420-433, March 2015.

Donald W. Johnson and T. J. Jankun-
Kelly. A scalability study of web-
native information visualization. In Proc.
Graphics Interface, GI, pages 163—-168,
Toronto, 2008. Canadian Information
Processing Society.

Daniel E. Kee, Liz Salowitz, and Remco
Chang. Comparing interactive web-based
visualization rendering techniques. In
Poster Proc. IEEE Conf. Information Vi-
sualization, InfoVis, 2012.

Tim Lammarsch, Wolfgang Aigner,
Alessio Bertone, Silvia Miksch, Thomas
Turic, and Johannes Géartner. A com-
parison of programming platforms for
interactive visualization in web browser
based applications. In Proc. 12th Int.
Conf. Information Visualisation, iV,
pages 194-199, July 2008.

Tim Lammarsch, Wolfgang Aigner, Sil-
via Miksch, and Alexander Rind. Show-
ing important facts to a critical audi-
ence by means beyond desktop comput-
ing. In Yvonne Jansen, Petra Isen-
berg, Jason Dykes, Sheelagh Carpen-
dale, and Dan Keefe, editors, Death of
the Desktop— Workshop co-located with
IEEE VIS 2014, 2014.

Zhicheng Liu and Jeffrey Heer. The ef-
fects of interactive latency on exploratory
visual analysis. IEEE Trans. Vis. and
Comp. Graphics, 20(12):2122-2131, De-
cember 2014.

Performance Comparison between Unity and D3.js for Cross-Platform Visualization on Mobile Devices

[MFB*07] J. D. Meier, Carlos Farre, Prashant Ban-
sode, Scott Barber, and Dennis Rea, ed-
itors. Performance testing guidance for
web applications: patterns & practices.
Microsoft, United States?, 2007. OCLC:
ocn245241921.

[Mun14] Tamara Munzner. Visualization Analysis
and Design. A K Peters Ltd, 2014.

[PSMO7] Zachary Pousman, John T. Stasko, and
Michael Mateas. Casual Information Vi-
sualization: Depictions of Data in Every-
day Life. IEEE Trans. Vis. and Comp.
Graphics, 13(6):1145-1152, 2007.

[unil6] Unity - Game Engine, 2016.
https://unity3d.com/.

[Wat05] Martin Wattenberg. Baby names, visual-
ization, and social data analysis. In Proc.
IEEE Symp. Information Visualization,
INFOVIS, pages 1-7, October 2005.

[WBR*16] Markus Wagner, Kerstin Blumenstein,
Alexander Rind, Markus Seidl, Grischa
Schmiedl, Tim Lammarsch, and Wolf-
gang Aigner. Native cross-platform visu-
alization: A proof of concept based on the
Unity3D game engine. In Proc. Int. Conf.
Information Visualisation, iV, pages 39—
44. ITEEE Computer Society Press, 2016.

52

