
Pisco: A Computational Approach to Predict Personality
Types from Java Source Code

Matthias Liebeck
Institute of Computer Science

Heinrich Heine University
Düsseldorf

D-40225 Düsseldorf, Germany
liebeck@cs.uni-
duesseldorf.de

Pashutan Modaresi
Institute of Computer Science

Heinrich Heine University
Düsseldorf

D-40225 Düsseldorf, Germany
modaresi@cs.uni-

duesseldorf.de

Alexander Askinadze
Institute of Computer Science

Heinrich Heine University
Düsseldorf

D-40225 Düsseldorf, Germany
askinadze@cs.uni-

duesseldorf.de
Stefan Conrad

Institute of Computer Science
Heinrich Heine University

Düsseldorf
D-40225 Düsseldorf, Germany

conrad@cs.uni-
duesseldorf.de

ABSTRACT
We developed an approach to automatically predict the per-
sonality traits of Java developers based on their source code
for the PR-SOCO challenge 2016. The challenge provides a
data set consisting of source code with their associated de-
velopers’ personality traits (neuroticism, extraversion, open-
ness, agreeableness, and conscientiousness). Our approach
adapts features from the authorship identification domain
and utilizes features that were specifically engineered for
the PR-SOCO challenge. We experiment with two learn-
ing methods: linear regression and k-nearest neighbors re-
gressor. The results are reported in terms of the Pearson
product-moment correlation and root mean square error.

CCS Concepts
•Computing methodologies Ñ Artificial intelligence;
Natural language processing;

Keywords
Computational personality recognition; five factor model;
Java source code

1. INTRODUCTION
Author profiling is a research field that deals with the pre-

diction of user properties (e.g., age and gender prediction
of an author [10]). The subfield computational personality
recognition refers to an interdisciplinary field that incorpo-
rates computer science and psychology to automatically in-
fer an author’s personality based on his or her generated
contents [4]. Although the generated contents can be of any
form, we focus on textual contents in this work.

A popular personality model used in computational per-
sonality recognition is the five factor model [2]. According
to this model, five fundamental traits exist that make up
the human personality and each consists of several facets:
neuroticism (anxiety, depression, angry hostility), extraver-
sion (warmth, positive emotions, activity), openness (fan-

tasy, aesthetics, values), agreeableness (trust, straightfor-
wardness, compliance), and conscientiousness (competence,
order, dutifulness).

Computational personality recognition has been applied
to various domains, such as essays [8], tweets [7], and blogs
[11]. An interesting but less studied application is the per-
sonality prediction of software developers based on their
written source code. Unlike blogs and tweets, which are
written (mostly) in natural languages, source code is writ-
ten in a programming language that might not explicitly
reveal the author’s personality.

The study of software developers’ source code has many
practical applications. For instance, in the education sector
for detecting plagiarism [1], in the law sector for cybercrime
investigation [5], and in the technology sector to identify
the expertise level of programmers [6]. To the best of our
knowledge, there have been no studies on the automatic pre-
diction of software developers’ personalities based on their
source code. Having a tool capable of predicting the person-
ality of a software developer based on his or her open source
projects (GitHub1, Bitbucket2, etc.) could dramatically im-
prove the recruitment process of companies since software
development requires teamwork and deciding if a program-
mer’s personality fits the team is crucial for companies.

In this paper, we introduce a machine learning approach
developed in the scope of the PR-SOCO [12] shared task
to automatically identify the personality type of a Java de-
veloper based on his or her source code. Participants were
provided with a training set consisting of Java sources codes
of programmers annotated with the five previously discussed
personality traits and with a test set. The aim of the PR-
SOCO task is the development of approaches that predict
the personality traits of programmers on the test set.

We investigated two classes of features: structure features
dependent on the programming experience of the program-
mer (architecture design, code complexity, etc.) and style

1https://github.com/
2https://bitbucket.org/

Neuroticism Extroversion Openness Agreeableness Conscientiousness

Personality Traits

20

30

40

50

60

70

P
e
rs

o
n
a
lit

y
 T

ra
it

 V
a
lu

e

Figure 1: Distribution of personality traits in the
training set

features related to the code layout that cannot be easily
changed by IDEs (comment length, variable length, etc.).
We intentionally ignored the layout features (line length,
formatting style, etc.) as these features can be easily mod-
ified by IDEs using available formatting and code cleaning
functionalities [3].

The remainder of the paper is structured as follows: Sec-
tion 2 describes the PR-SOCO challenge and our contribu-
tion to solving it. The results of our approach are described
in Section 3. We conclude and outline future work in Section
4.

2. APPROACH
In order to process the students’ Java source code, we first

created knife3 which is an open-source wrapper for the two
Java parsers QDOX 4 and JavaParser5. Knife parses source
code into classes, methods, parameters, and variables and
uses the Spark micro framework to provide the parsed code
as JSON. Afterwards, pisco6 consumes the parsed source
code, extracts features, and uses machine learning to predict
personality traits with linear regression and the k-nearest
neighbors regressor.

2.1 Data
The data for the PR-SOCO challenge comprises solutions

for different Java programming tasks that were uploaded by
students and the results of their personality tests. Each of
the five personality traits is represented by a value between
20 and 80. The students were allowed to upload more than
one solution per programming task and to reuse code from
previous exercises or from external resources. The training
set comprises 49 data points and the test set contains 21
data points. It might be difficult to train classifiers and
avoid outliers with such a low amount of data.

Figure 1 shows a boxplot for the personality traits in the
training set. It can be observed that the median personality
scores are between 46 and 50.

3https://github.com/pasmod/knife
4https://github.com/paul-hammant/qdox
5https://github.com/javaparser/javaparser
6https://github.com/Liebeck/pisco

The data was not cleaned by the organizers and, therefore,
its quality varied. It sometimes contained debug output,
empty classes, syntax errors or even Python code. Another
influencing factor is that students occasionally used external
code that was copied into the project, e.g., code from pro-
gramming lectures at other universities. Since the focus of
this challenge is the prediction of the students’ personality
types, a proper filtering step for external code seems reason-
able. Otherwise, the prediction of the students’ personality
types can be influenced by other coder’s personality types.
Unfortunately, we were not able to perform a plagiarism
check via web search.

2.2 Implemented Features
With the parsed source code from knife, we are able to im-

plement several style and structure features for our machine
learning approach.

2.2.1 Style Features
While naming conventions are certainly a controversial

topic of debate for software developers (who each have their
own programming style), we believe that the naming of
classes, methods, fields and local variables is important for
the understanding of the code. For instance, overly short or
overly long variable names can be difficult to understand.
Therefore, the length of such names might correlate with
how thoughtful a developer was while writing source code.
We decided to use the following style features:

F1: Length of method names

F2: Length of method parameter names

F3: Length of field names

F4: Length of local variables names in methods
An interesting observation is that the training data
contains a solution from one student who used a lo-
cal variable name that is 75 characters long while the
mean length of local variable names for all students is
4.02 pσ “ 3.89q. Such an outlier can be problematic
for linear regression.

2.2.2 Structure Features
We investigated ten structure features that we consider

to be related to the developer’s programming experience.
A more experienced developer might tend to write shorter
methods with fewer lines of code or less code in general.

F5: Number of classes

F6: Cyclomatic complexity
The cyclomatic complexity [9] is a software metric that
calculates the number of linear independent paths in
a program’s control flow. We calculate the cyclomatic
complexity per method by starting with an initial value
of 1, which is increased for each occurence of control
flow modifying keywords, such as if or for.

F7: Number of methods

F8: Number of method parameters

F9: Length of methods
We included the length of methods in our feature set

since long methods can be an indicator that the sin-
gle responsiblity principle is violated and the methods
could be refactored into multiple smaller methods. In
our experiments, we tested the length of methods in
terms of the number of lines and in terms of characters
(without indentation).

F10: Number of fields per class

F11: Number of local variables in methods

F12: Duplicate code measure
We noticed that some students uploaded multiple solu-
tions with very similar looking code. They copy pasted
methods from one class to another while performing
small changes to the code. This motivated us to check
whether a student uploaded two methods that have a
high overlap.7

The duplicate code measure was implemented as a bi-
nary feature. The code lines from all methods were
tokenized and converted into bag-of-words models. Af-
terwards, we calculated the pairwise cosine similar-
ity between all methods and considered two methods
mi ‰ mj to be a duplicate of each other by comparing
their similarity with a threshold τ :

DCMpmi,mjq :“

#

1 if cospmi,mjq ą τ

0 otherwise
(1)

We empirically estimated τ “ 0.9. A student uploaded
duplicate code if DCMpmi,mjq “ 1 for two of his or
her methods mi ‰ mj .

F13: Usage of IDE default template text
We noticed that some students did not remove or
change default IDE text content and implemented this
behavior as a binary feature.

F14: Ratio of external library usage
Developers are nowadays able to share libraries via de-
pendency managers, which allow developers to use im-
plementations of other developers without the need to
write all the code from scratch. In the case of Java,
code can be grouped into packages which can be im-
ported. This feature calculates the ratio of imports
from standard Java packages to all imports.

2.2.3 Miscellaneous Features

F15: Number of empty classes
We noticed that the submitted solutions sometimes
contain empty classes. This might be an indicator of
how thoroughly a programmer works or how important
cleaning up source code is for him/her.

F16: Ratio of unparsable solutions
This feature captures that students uploaded code that
is not valid Java code. A student’s solution might con-
tain syntax errors that made it unparsable for QDOX.
This is especially the case where students uploaded
debug output or Python code. This feature is imple-
mented as the ratio of parsable to unparsable solutions.

7This is not to be confused with a plagiarism check between
the solutions of different students.

It reflects how careful the students were in following
instructions or in testing if their code meets the spec-
ified requirements.

Although it might be useful to analyze code comments
(e.g., the average comment length), we decided not to use
features based on code comments since line and block com-
ments may be polluted by code that was commented out.

2.3 Cross-Validation
Since most of our features are on a class or method basis,

we need to aggregate their values to a vector representation
of a fixed length in order to deal with different numbers of
solutions, classes, fields, methods, and parameters. In order
to make our features more robust against outliers, we first
aggregate the values per solution with a summary statistic
(e.g., mean, variance, range) and then calculate their mean.
Given that the choice of a summary statistic is not apparent,
we decided to choose it via cross-validation on the training
set.

Additionally, we noticed different behaviors of the features
depending on the personality trait. This encouraged us to
estimate an optimal feature set for each personality trait
individually. Since we have 16 features and the power set
of all of these features contains too many combinations, it
is not computationally feasible to search the entire feature
space. First, we performed a cross-validation on the training
set with all 16 features. Additionally, we experimented with
subsets of our features and chose the subset that performed
best during the 10-fold cross-validation on the training set.

3. EVALUATION
In total, 11 teams participated at the PR-SOCO shared

task and submitted 48 runs.

3.1 Evaluation Metrics
Two evaluation metrics were proposed for the evaluation

of the submissions. To measure the correlation between the
predicted values and the gold standard values, the Pear-
son product-moment correlation coefficient (PC) was used.
Moreover, the root mean square error (RMSE) was used to
measure the average amount of prediction errors. For a vec-
tor y P Rn of truth values and its corresponding prediction
vector y P Rn, the equations of the Pearson product-moment
correlation and RMSE are shown in Equations 2 and 3 re-
spectively:

r “

řn
i“1pyi ´ ȳqpyi ´ ȳq

b

řn
i“1 pyi ´ ȳq2

b

řn
i“1 pyi ´ ȳq

2
(2)

where ȳ and ȳ denote the average values of the vectors
y and y respectively and n represents the number of data
points.

RMSE “

c

řn
i“1pyi ´ yiq2

n
(3)

3.2 Results
To optimize the hyperparameters (meaning parameters

that do not need to be learned as part of the model, e.g.,
summary statistics for features and parameters that have
to be set manually for learning algorithms), we performed

an exhaustive 10-fold cross-validated grid search over all hy-
perparameters for each personality trait individually. We
used k-nearest neighbors regressor (runs 3 and 4) and linear
regression (runs 5 and 6), and optimized once to minimize
RMSE (runs 4 and 5) and once to maximize the Pearson
correlation (runs 3 and 6). After observing the results of
the cross-validation, we noticed that none of the two learn-
ing algorithms could outperform the other one. As a result,
we decided to choose the learning algorithm for each per-
sonality trait individually and chose the one with the higher
cross-validation score on the training data. This resulted
in two more runs since we once optimized for the Pearson
correlation (run 1) and once for RMSE (run 2).

The task organizers also provided two baseline ap-
proaches: a bag of character 3-grams with frequency weight
and an approach that always predicts the mean value ob-
served in the training data [12].

The settings of the best runs, including the selected fea-
tures and the applied learning algorithm, together with their
corresponding RMSE values, are summarized in Table 1.
Note that the numbers listed under selected features corre-
spond to the feature indexes introduced in Section 2.2. It is
observable that the k-nearest neighbors regressor has supe-
rior results over the linear regression method for all personal-
ity traits. As we discussed previously, several extracted fea-
tures include outliers, which can cause large residual values
by linear regression. By contrast, the k-nearest neighbors
regressor is capable of coping with outliers and is preferred
by the grid search.

It is also observable that the features length of field names
(F3), duplicate code measure (F12), usage of IDE default
template text (F13), and number of empty classes (F15) are
among the most powerful predictors of personality traits.

Neuroticism Extroversion Openness Agreeableness Conscientiousness

Personality Traits

5

10

15

20

25

30

R
o
o
t

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Figure 2: Root Mean Square Error Results

In Figure 2, we compare our results regarding the RMSE
measure to the other participants. The results not included
between the whiskers are considered as outliers and are rep-
resented by empty circles. For each personality trait, the
filled circle indicates the RMSE values of our best runs. For
all personality traits except agreeableness, our proposed ap-
proach had RMSE values lower than the median. In partic-
ular, we achieved the lowest RMSE among all participating
teams for the personality trait conscientiousness.

Neuroticism Extroversion Openness Agreeableness Conscientiousness

Personality Traits

1.0

0.5

0.0

0.5

1.0

P
e
a
rs

o
n
 P

ro
d
u
ct

-M
o
m

e
n
t

C
o
rr

e
la

ti
o
n

Figure 3: Pearson’s Correlation Results

For comparison, we also provide the settings of the best
runs regarding the Pearson correlation in Table 2. Similar to
the case of RMSE, the features F3, F12, F13, and F15 were
identified to result in higher Pearson correlations. For the
personality traits extroversion and agreeableness, based on
the grid search results, linear regression resulted in higher
Pearson correlations in comparison to the k-nearest neigh-
bors regressor. Nevertheless, linear regression results in neg-
ative correlation coefficients for both traits. The Pearson
correlations of our best runs for the individual traits can be
compared to the other submissions in Figure 3.

4. CONCLUSIONS
We presented our approach to automatically predict per-

sonality types in the five factor model from Java source code
for the PR-SOCO challenge 2016. Our architecture consists
of the two components knife and pisco which we made pub-
licly available on GitHub. We used knife to parse the source
code and pisco to extract features and to predict personality
traits.

We achieved the best root mean squared error for the per-
sonality trait conscientiousness among all 11 participating
teams. For the personality traits neuroticism and openness,
our best runs ranked 3rd and 9th, respectively, based on 48
runs. Our RMSE result for the trait extroversion was better
than the median. Unfortunately, the results in the dimen-
sion openness were not satisfactory. The results in terms of
the Pearson correlation were mixed since we achieved posi-
tive and negative correlations.

In our future work, we want to crawl external resources
in order to determine if pieces of the source code are plagia-
rized. We also want to evaluate non-linear machine learning
approaches. During our data analysis, we identified that the
developers sometimes used more than one natural language,
for instance in comments or in variable names. We would
like to investigate this behavior for possible correlations with
personality types. In our work, we ignored layout features
since they can easily be modified by an IDE. However, we
could investigate if the developer is consistent in using the
auto formatter of his or her IDE.

Table 1: Selected features for the best runs according to RMSE

Personality Trait
Selected Features

Method RMSE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Neuroticism X X X X X X X X X X X X X X k-NN 9.97

Extroversion X X k-NN 9.22

Openness X X X X k-NN 7.42

Agreeableness X X X X X X X X X X X X X X X X k-NN 11.5

Conscientiousness X X X X k-NN 8.38

Table 2: Selected features for the best runs according to the Pearson correlation

Personality Trait
Selected Features

Method PC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Neuroticism X X X X X X X X X X X X X X k-NN 0.23

Extroversion X X X X X X X X X X LR -0.05

Openness X X X X k-NN 0.29

Agreeableness X X X X X X X X X X X X X X X X LR -0.28

Conscientiousness X X X X k-NN 0.19

5. ACKNOWLEDGMENTS
This work was partially funded by the PhD program

Online Participation, supported by the North Rhine-
Westphalian funding scheme Fortschrittskollegs

”
by the Ger-

man Federal Ministry of Economics and Technology under
the ZIM program (Grant No. KF2846504), and by the IST-
Hochschule University of Applied Sciences. Computational
support and infrastructure were provided by the “Centre for
Information and Media Technology”(ZIM) at the University
of Düsseldorf (Germany).

6. REFERENCES
[1] A. Ahtiainen, S. Surakka, and M. Rahikainen. Plaggie:

GNU-licensed Source Code Plagiarism Detection
Engine for Java Exercises. In Proceedings of the 6th
Baltic Sea conference on Computing education
research: Koli Calling 2006, pages 141–142. ACM,
2006.

[2] P. T. Costa and R. R. McCrae. The NEO personality
inventory manual. Psychological Assessment
Ressources, 1985.

[3] H. Ding. Extraction of Java Program Fingerprints for
Software Authorship Identification. Master’s thesis,
Faculty of the Graduate College of the Oklahoma
State University, 2002.

[4] G. Farnadi, G. Sitaraman, S. Sushmita, F. Celli,
M. Kosinski, D. Stillwell, S. Davalos, M.-F. Moens,
and M. De Cock. Computational personality
recognition in social media. User Modeling and
User-Adapted Interaction, 26(2):109–142, 2016.

[5] G. Frantzeskou and S. Gritzalis. Source Code
Authorship Analysis for Supporting the Cybercrime
Investigation Process. In ICETE 2004, 1st
International Conference on E-Business and
Telecommunication Networks, pages 85–92, 2004.

[6] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A
Degree-of-Knowledge Model to Capture Source Code
Familiarity. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 385–394. ACM, 2010.

[7] J. Golbeck, C. Robles, M. Edmondson, and K. Turner.
Predicting Personality from Twitter. In
SocialCom/PASSAT, pages 149–156. IEEE, 2011.

[8] F. Mairesse, M. A. Walker, M. R. Mehl, and R. K.
Moore. Using Linguistic Cues for the Automatic
Recognition of Personality in Conversation and Text.
J. Artif. Int. Res., 30(1):457–500, Nov. 2007.

[9] T. J. McCabe. A Complexity Measure. IEEE Trans.
Software Eng., 2(4):308–320, 1976.

[10] P. Modaresi, M. Liebeck, and S. Conrad. Exploring
the Effects of Cross-Genre Machine Learning for
Author Profiling in PAN 2016. In Working Notes of
CLEF 2016 - Conference and Labs of the Evaluation
forum, pages 970–977, 2016.

[11] J. Oberlander and S. Nowson. Whose thumb is it
anyway? Classifying author personality from weblog
text. In Proceedings of the COLING/ACL on Main
Conference Poster Sessions, COLING-ACL ’06, pages
627–634. Association for Computational Linguistics,
2006.

[12] F. Rangel, F. González, F. Restrepo, M. Montes, and
P. Rosso. PAN at FIRE: Overview of the PR-SOCO
Track on Personality Recognition in SOurce COde. In
Working notes of FIRE 2016 - Forum for Information
Retrieval Evaluation, Kolkata, India, December 7-10,
2016, CEUR Workshop Proceedings. CEUR-WS.org,
2016.

