Indian Statistical Institute, Kolkata at PR-SOCO 2016 : A
Simple Linear Regression Based Approach

Kripabandhu Ghosh
Indian Statistical Institute
Kolkata, India
kripa.ghosh@gmail.com

ABSTRACT

We participated in the PR-SOCO task hosted in FIRE 2016
and tried some basic approaches which we look to improve in
the future. We defined some simple features from the source
code which, in our opinion, were indicative of the manner
in which the code was written and which might give some
clues about the personality of the programmer. We built
a multiple linear regression model from the training data
and applied this model on the test data. The results show
that our method produces good prediction performances for
Neuroticism, Extroversion and Openness.

CCS Concepts

eComputing methodologies — Supervised learning
by regression; eInformation systems — Information
extraction;

Keywords

BIGS5 personality; Source code; Linear regression

1. INTRODUCTION

Much work has been done on predicting user personal-
ity based on text written in a natural language (e.g, Face-
book status updates [2]). The task of predicting age, gen-
der, and personality traits of Twitter users has also been
attempted in the author profiling task [3] as one of the tasks
of PAN/CLEF 2015 [5]. However, the PR-SOCO 2016 [4]
task presents a different and possibly, a more challenging
problem. The main challenge lies in the fact that in this
task, the BIG5 personality traits [1] need to be predicted
from the source code which is written within the strict lexi-
cal and syntactic bounds of a programming language. This
is likely to limit the usual vocabulary of the programmer
which she could have used in a natural language composi-
tion. So, we looked to employ simple means to judge the
quality of the program code and hope to gain insights about
the personality of the programmer. Firstly, we tried to eval-
uate the “readability” of the code by automatically detecting
the tendency of the programmer to provide useful comments
in the code. By useful comments we mean the ones which
describe the functionality and purpose of different segments
of the code. However, we considered that the presence of
commented lines of code in the source file to be not desir-
able. We also considered the judicious use of spaces in the
code to be a good programming practice and this was also
supposed to improve the readability. For the readibility as-
pect, three features (MLC, SLC and NES) are defined in the

Swapan Kumar Parui
Indian Statistical Institute
Kolkata, India

swapan.parui@gmail.com

next section. Secondly, we tried to judge the efficiency of the
code. Since we were not provided with the problem state-
ment or input data for which the source codes were written,
we had no way to evaluate the algorithmic efficiency of the
code. However, we noticed that a particular feature can be
used to understand the efficiency of the code, to some ex-
tent. For the efficiency aspect, one feature (IS) is defined
in the next section. We believe that these four features can
predict the personality of a person. For example, a person
with prominent Neuroticism® exhibits low emotional stabil-
ity and so is likely to be less methodical in writing a code.
Persons with high Extroversion,? on the other hand, are
likely to express themselves and possibly provide meaning-
ful comments in their code. We discuss these features in the
following section. Next we use these features for predicting
the personality traits. We model a multiple linear regres-
sion® for each BIG5 personality trait. That is, each BIG5
personality value, for a given user, is predicted from these
features extracted from her program code. In the multiple
linear regression framework, each of the BIG5H traits is the
dependent variable and the four features are the explanatory
variables.

The rest of the paper is arranged as follows: We describe
the proposed methodology in Section 2. We present the
results in Section 3. We conclude in Section 4.

2. METHODOLOGY

2.1 Feature selection

We used four features (explanatory variables) for multiple
linear regression. Here each of the BIG5 traits is the depen-
dent variable. The feature values were extracted from the
source code of each program file. The features are as follows
(examples are shown in Table 1):

1. Multi-line comments (MLC): This is the number
of genuine comment words in multi-line comments, i.e.,
between /* and */ found in the program code. In Ta-
ble 1, we see a case of genuine comment under Positive
ezample. We have not considered the cases where lines
of code were commented, as shown under Negative ex-
ample. To extract this feature from a source code file,

"https://en.wikipedia.org/wiki/Neuroticism as seen on 26th
October, 2016
https://en.wikipedia.org/wiki/Extraversion_and_
introversion as seen on 26th October, 2016
https://en.wikipedia.org/wiki/Linear_regression as seen on
26th October, 2016

we first read the lines within /* and */. Then we
eliminated any instances of program code by search-
ing for a regular expression containing ;= as symbols
and functions of the form [a-zA-Z][a-zA-Z]*[J*((e.g.,
System.out.println(“Even”);) used in a Java code. This
feature value was normalized by dividing it by the total
number of words in the program file.

2. Single-line comments (SLC): This is the number of
genuine single-line comment words in single line com-
ments, i.e., comments following “//” (as shown in Ta-
ble 1, under Positive example). Here also, we have
not considered the cases where lines of code were com-
mented (as shown in Table 1, under Negative ezample).
To extract this feature value, we simply determined
the number of words following “//” in the code. Then
we eliminated the occurrences of program code by the
procedure used for the feature MLC. This feature value
was normalized by dividing it by the total number of
words in the program file.

3. Non-existent spaces (NES): This is the number of

lines containing non-existent spaces, e.g., i=1; i< =casos;

as shown in Table 1, under Negative example as op-
posed to i = I; i< = casos; as shown in Table 1, un-
der Positive example. We have considered this feature
since the presence of spaces is supposed to be a good
programming practice. This feature was extracted by
identifying the lines of code satisfying the regular ex-
pression [a-z][a-z]* [a-z][a-z]*[=<>+] (e.g., int i=1).
This feature value was normalized by dividing it by
the total number of lines in the program file.

4. Import Specific (IS): This is the number of instances
where the programmer exported the specific libraries
only (e.g., cases of
import java.io.FileNotFoundException as opposed to
import java.io.*). These examples are also shown in
Table 1. We have considered this feature as this is
supposed to be a good programming practice to use
specific libraries which reduce compilation time. In
addition, the choice of specific libraries may indicate
the experience and proficiency in programming. This
is because a good programmer is supposed to know the
specific libraries which will be useful. On the other
hand, an inexperienced programmer is more likely to
“import” all the libraries to somehow get the job done.
This feature was extracted by considering all the in-
stances of “import” not ending with a “*”. This feature
value also was normalized with respect to the total
number of lines in the program file.

2.2 Multiple linear regression model

For each BIG5 trait, we define a multiple linear regression
model* for a program code p, given as follows:

scorepras(p) =a + 1M LC(p) + B25LC(p)
+ BsNES(p) + Ba1S(p)

We calculate the values of parameters o and f3;, i = 1, 2,
3, 4 from the training data using the linear regression imple-

(1)

“https://en.wikipedia.org/wiki/Linear_regression as seen on
11th October, 2016

mentation in R.® Here, scoreprgs is the dependent variable
and MLC, SLC, NES and IS are the explanatory variables.

3. RESULTS

We submitted two runs as follows:

1. Runl.txt: The values of the dependent variables were
generated on the test data using the regression equa-
tion (1) learned from the training data.

2. Run2.txt: For this run, for each BIG5 trait, we cal-
culated the values of the dependent variables given by
the linear regression equation (1) on the training set.
We then calculated the error between the predicted
value and the actual value for each of the 49 training
samples. We removed the samples in the training set
with the three highest error values. We then trained
the linear regression on the new training set and calcu-
lated the regression coefficients. Finally, values of the
dependent variables were calculated on the test data.
The purpose of this run is to remove some outliers from
the training set.

The performances of these two runs are shown in Tables
2 and 3. Table 2 reports the results in terms of RMSE. The
table also reports two official baselines (bow and mean) and
the best results reported among all the submitted runs (Re-
ported best).® In RMSE, our run Runl.tzt produced the best
performance for Extroversion. This run also produced good
performances for Neuroticism and Openness when compared
with the baselines.

Table 3 reports the results in terms of Pearson Product-
Moment Correlation (PC). The table also reports two offi-
cial baselines (bow and mean) and the best results reported
among all the submitted runs (Reported best). In PC, our
run Runl.txt produced the best performance for Neuroti-
cism. This run produced good performances also for Extro-
version and Openness when compared with the baselines.

Table 4 shows the regression coefficient values learned
from the training data for each BIG5 trait, used for Runl.
Since our predictions for Neuroticism, Extroversion and Open-
ness are promising, we try to draw some inferences from
Table 4 for these traits, as follows.

Neuroticism: The negative value of high magnitude of
B2 indicates that a person who frequently provides Single
Line Comments (SLC) in her code is likely to exhibit a low
level of Neuroticism. This agrees with our intuition that a
Neurotic person is not organized in her coding. However a
positive value (though of relatively lower magnitude) of /31
indicates that a person who provides Multi Line Comments
(MLC) is likely to have a high level of Neuroticism. Also,
a negative value of 3 indicates that a person who does not
provide necessary spaces in the code is likely to have a low
level of Neuroticism. These two coefficient values somewhat
contradict our intuition that a Neurotic person is necessarily
chaotic in nature while writing a code. But negative value
of high magnitude of 84 indicates that a person who tends
to import libraries selectively, is likely to have a low level of
Neuroticism, which again agrees with our intuition.

https://www.r-bloggers.com/
r-tutorial-series-multiple-linear-regression/

SThese values are reported at http://www.autoritas.es/
prsoco/evaluation/

Extroversion: The positive values of 81, 82 and B4 indi-
cates that a person who tends to provide genuine comments
(both Multi Line and Single Line) and import specific li-
braries in her code is likely to have high Extrovertion. But,
the positive value 3 indicates that an Extrovert may not
provide appropriate spaces in her code. The value of 2 is
much higher than the other coefficients, which implies that
a person with a tendency of providing genuine Single Line
Comments is likely to have high Extrovertion.

Openness: The observations about Openness are similar
to those about Extroversion.

However, the prediction results show that our features are
possibly not suitable indicators for Agreeableness and Con-
scientiousness.

4. CONCLUSION

We see that these simple and intuitive features yield promis-
ing prediction results for Neuroticism, Extroversion and Open-
ness, as inferred from samples of written program code.
We gain some interesting insights into the relationship of
these three traits with these features. For example, Neu-
roticism has a strong negative correlation with the tendency
of writing genuine Single Line Comments, Extroversion has
a strong (positive) correlation with the tendency of writing
genuine Single Line Comments etc. We look to explore other
features in future. However, these features are not adequate
for predicting Agreeableness and Conscientiousness.

S. REFERENCES

[1] P. Costa and R. McCrae. The Revised NEO
Personality Inventory (NEO-PI-R). In The SAGE
Handbook of Personality Theory and Assessment, pages
179-198, 2008.

[2] G. Farnadi, G. Sitaraman, S. Sushmita, F. Celli,

M. Kosinski, D. Stillwell, S. Davalos, M.-F. Moens, and
M. De Cock. Computational personality recognition in
social media. User Modeling and User-Adapted
Interaction, pages 1-34, 2016.

[3] F. M. R. Pardo, F. Celli, P. Rosso, M. Potthast,

B. Stein, and W. Daelemans. Overview of the 3rd
author profiling task at PAN 2015. In Working Notes of
CLEF 2015 - Conference and Labs of the Evaluation
forum, Toulouse, France, September 8-11, 2015., 2015.

[4] F. Rangel, F. Gonzélez, F. Restrepo, M. Montes, and
P. Rosso. Pan at fire: Overview of the pr-soco track on
personality recognition in source code. In Working
notes of FIRE 2016 - Forum for Information Retrieval
FEvaluation, Kolkata, India, December 7-10, 2016,
CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[5] E. Stamatatos, M. Potthast, F. M. R. Pardo, P. Rosso,
and B. Stein. Overview of the PAN/CLEF 2015
evaluation lab. In Ezperimental IR Meets
Multilinguality, Multimodality, and Interaction - 6th
International Conference of the CLEF Association,
CLEF 2015, Toulouse, France, September 8-11, 2015,
Proceedings, pages 518-538, 2015.

Feature Positive example Negative example

MLC J** /*System.out.println(“Even”);
* Make the hash table logically empty. printQ(qEven);

* System.out.println(“Odd”);
printQ(qOdd);*/

SLC // Create a new double-sized, empty table | //String[] ss = linea.readLine().split(* ”);
NES for (int i=1; i<=casos; i++) for (int i = 1; i< = casos; i++)

IS import java.io.FileNotFoundException import java.io.*

Table 1: The table shows positive examples (i.e., conforming to the feature requirement) and negative
examples (i.e., not conforming to the feature requirement) of features. For MLC and SLC, the positive
examples show cases of genuine comments while the negative examples show cases where lines of code are
commented out. For NES, the positive example shows a case where space is absent while the negative example
shows a case where spaces are present. For IS, the positive example shows a case where a specific library is
imported while in the negative example, all the libraries are imported.

Method NEUROTICISM | EXTROVERSION | OPENNESS | AGREEABLENESS | CONSCIENTIOUSNESS
Runl.txt 10.22 8.60 7.16 9.60 9.99
Run2.txt 10.04 10.17 7.36 9.55 10.16

Baseline (bow) 10.29 9.06 7.74 9.00 8.47

Baseline (mean) 10.26 9.06 7.57 9.04 8.54

Reported best 9.78 8.60 6.95 8.79 8.38

Table 2: Root Mean Squared Error (RMSE). The best result produced by our submitted runs when compared
to all the submitted runs is shown in bold.

Method NEUROTICISM | EXTROVERSION | OPENNESS | AGREEABLENESS | CONSCIENTIOUSNESS
Runl.txt 0.36 0.35 0.33 0.09 -0.20
Run2.txt 0.27 0.04 0.27 0.11 -0.13

Baseline (bow) 0.06 0.12 -0.17 0.20 0.17

Baseline (mean) 0.00 0.00 0.00 0.00 0.00

Reported best 0.36 0.47 0.62 0.38 0.33

Table 3: Pearson Product-Moment Correlation (PC). The best result produced by our submitted runs when
compared to all the submitted runs is shown in bold.

BIG5 « 51 52 ﬁg 54
Trait (Intercept) | (MLC) | (SLC) | (NES) (IS)
Neuroticism 55.30 10.82 | -331.58 | -57.15 | -282.14
Extroversion 39.58 50.49 261.44 67.38 163.28
Openness 46.63 46.07 98.92 28.20 49.48
Agreeableness 42.521 -1.103 78.905 | 90.909 | 196.740
Conscientiousness -1.708 -1.708 | 225.988 | -67.633 | 135.353

Table 4: The regression coefficients for Runl

