
IIT BHU at FIRE 2016 Microblog Track: A Semi-automatic
Microblog Retrieval System

Ribhav Soni
Department of Computer Science and

Engineering
Indian Institute of Technology (BHU) Varanasi

ribhav.soni.cse13@iitbhu.ac.in

Sukomal Pal
Department of Computer Science and

Engineering
Indian Institute of Technology (BHU) Varanasi

spal.cse@iitbhu.ac.in

ABSTRACT
This paper presents our work for the Microblog Track in
FIRE 2016. The task involved utilizing microblog data (tweets)
to retrieve useful information during times of disasters. In
particular, given a set of tweets posted during the Nepal
earthquake in 2015, the goal was to judge relevance of each
tweet against a set of topics which reflected useful informa-
tion needs. Our approach made use of manual query forma-
tion for searching relevant tweets based on the information
required for each topic, after indexing them using Lucene.

1. INTRODUCTION
This paper describes our approach for the Microblog Track

in FIRE 2016 [1]. Microblogging sites like Twitter are im-
portant sources of real-time information, and thus can be
utilized for extracting significant information at times of dis-
asters such as floods, earthquakes, cyclones, etc. The aim
of the Microblog track at FIRE 2016 [1] was to develop IR
systems to retrieve important information from microblogs
posted at the time of disasters. The task involved identifying
tweets relevant to the given topics which reflect the infor-
mation needs at critical times. The topics were provided in
a standard TREC format, containing a title, a brief descrip-
tion, and a detailed narrative specifying what type of tweets
would be considered relevant to the topic. An example of a
topic is:

<top>
<num> Number: FMT4
<title>
WHAT MEDICAL RESOURCES WERE REQUIRED
<desc> Description:
Identify the messages which describe the requirement of

some medicine or other medical resources.
<narr> Narrative:
A relevant message must mention the requirement of some

medical resource like medicines, medical equipments, supple-
mentary food items, blood, human resources like doctors/staff
and resources to build or support medical infrastructure like
tents, water filter, power supply, ambulance, etc. General-
ized statements without reference to medical resources would
not be relevant.

</top>

Three types of runs were considered in the track, based on
the amount of manual intervention in different stages such
as query formation and document retrieval:

(1) Fully automatic, where no step involves manual inter-
vention

(2) Semi-automatic, where there is some manual interven-
tion but only in the query formation stage

(3) Manual, where there is manual intervention in both
the query formation and document retrieval stages

We submitted one run in the semi-automatic category. We
used Lucene [2] for indexing, and retrieved relevant tweets
for each of the topics by manual query formation. Results
show that our system performs reasonably well, given its
simplicity, but is outperformed by more complex systems.

The rest of this paper is structured as follows. We describe
the training data used in Section 2, the main challenges in-
volved due to the nature of microblogs in Section 3, our
approach in Section 4, results and discussions in Section 5,
and conclusion and future work in Section 6.

2. DATA
The training data was a collection of about 50,000 tweets

posted during the Nepal earthquake in April 2015, along
with the associated metadata for each tweet [4].

3. CHALLENGES
Tweets have a stringent word limit, and users often make

use of innovative abbreviations which are difficult to handle
for retrieval systems. Besides, they are mostly informal, and
may involve the use of multiple languages in the same tweet
(called code mixing), or even multiple scripts in a tweet. It
is also difficult to make sense of emoticons, especially inno-
vative ones made up by users.

4. OUR APPROACH
Our run was in the semi-automatic category, which in-

cludes systems with manual intervention in the query forma-
tion stage. We used Apache Lucene, an open-source textual
search engine library, for indexing the available tweets.

For retrieval, we used Lucene’s search facility with manual
search queries, which were formed on the basis of require-
ments for each topic. The search queries that we used for
each of the topics are given in Table 1.

Lucene first selects the documents to be scored based on
Boolean logic from the query specification, and then ranks
them via the specified retrieval model [3]. We made use of
the default similarity model, which computes scores using a
combination of the Vector Space Model (VSM) and proba-
bilistic models such as Okapi BM25.



Table 1: Query strings for each topic

TOPIC QUERY STRING
What Resources Were Available ”food water clothes volunteers power charge availableˆ2”
What Resources Were Required ”food water clothes volunteers power charge availableˆ2”
What Medical Resources Were Available ”doctor medicine ambulance blood milk baby food nurse water

tent power availableˆ2”
What Medical Resources Were Required ”doctor medicine ambulance food blood nurse water tent power

requireˆ2 needˆ2”
What Were The Requirements / Availability Of Resources At Spe-
cific Locations

”locationˆ3 placeˆ2 townˆ2 kathmandu village available need”

What Were The Activities Of Various NGOs / Government Or-
ganizations

”NGOˆ5 governmentˆ4 workˆ3”

What Infrastructure Damage And Restoration Were Being Re-
ported

”road railway house damage place town”

Table 2: Results of our run
RUN ID Precision@20 Recall@1000 MAP@1000 OverallMAP

iitbhu fmt16 1 0.3214 0.2581 0.0670 0.0827

For tokenization, we used the StandardAnalyzer, which
creates tokens using the Word Break rules from the Unicode
Text Segmentation algorithm specified in [5]. It is capable
of handling names and email address, lowercases each token,
and removes stopwords and punctuations.

Lucene ranks the returned search results (retrieved tweets)
based on the degree of relevance using its scoring algorithms,
and returns the ranked list as well as individual scores. Since
the task involved tagging all relevant tweets, all the re-
turned tweets were marked relevant. In addition, the re-
turned scores were normalized to the range of [0, 1] for as-
signing relevance scores to each returned topic-tweet pair as
per the run submission instructions.

5. RESULTS AND DISCUSSION
The results of our run based on several metrics are given

in Table 2.
Our system performed reasonably well in the semi-automatic

category. However, it was outperformed in the task by more
elaborate systems.

6. CONCLUSION AND FUTURE WORK
Our system was overly simplistic, and offers much scope

for improvement by making use of state of the art IR tech-
niques.

Some approaches to improve on the system include better
preprocessing of tweets (which is very essential for microblog
retrieval tasks, given the challenges with the nature of mi-
croblogs that we described in Section 2), taking the quality
of tweets into account by considering the prior tweets by the
author, query expansion approaches using external informa-
tion (like Google search results, or Wikipedia corpus), and
using pseudo-relevance feedback techniques to better tune
relevant search results. Also, Lucene was too liberal in re-
turning tweets with a very low score as part of search results,
most of which were found to be non-relevant. Thus, it is im-
portant to further refine the relevant results returned by the
search query by setting a threshold so that only those tweets
are considered relevant to a query which have a reasonably
large similarity score.

7. REFERENCES

[1] S. Ghosh and K. Ghosh. Overview of the FIRE 2016
Microblog track: Information Extraction from
Microblogs Posted during Disasters. In Working notes
of FIRE 2016 - Forum for Information Retrieval
Evaluation, Kolkata, India, December 7-10, 2016,
CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[2] Apache Lucene. https://lucene.apache.org/.

[3] org.apache.lucene.search (Lucene 6.2.1 API). https://
lucene.apache.org/core/6 2 1/core/org/apache/lucene/
search/package-summary.html#package.description.

[4] Tweets – Twitter Developers.
https://dev.twitter.com/overview/api/tweets.

[5] Unicode Standard Annex #29: Unicode Text
Segmentation. http://unicode.org/reports/tr29/.


