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ABSTRACT 

One of the major challenges nowadays is Information retrieval 

from social media platforms. Most of the information on these 

platforms is informal and noisy in nature. It makes the 

Information retrieval task more challenging. The task is even 

more difficult for twitter because of its character limitation per 

tweet. This limitation bounds the user to express himself in 

condensed set of words. In the context of India, scenario is little 

more complicated as users prefer to type in their mother tongue 

but lack of input tools force them to use Roman script with 

English embeddings. This combination of multiple languages 

written in the Roman script makes the Information retrieval task 

even harder. Query processing for such CodeMixed content is a 

difficult task because query can be in either of the language and it 

need to be matched with the documents written in any of the 

language. In this work, we dealt with this problem using Vector 

Space Models which gave significantly better results than the 

other participants. The Mean Average Precision (MAP) for our 

system was 0.0315 which was second best performance for the 

subtask. 
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1. INTRODUCTION 

Social media has a plentitude of user generated data in numerous 

languages which are predominantly informal in nature. Most of 

these languages have their own native scripts. Some of these 

scripts include Arabic, Chinese, Hebrew, Greek, and Indic etc. For 

most of these languages, major user-generated content is 

transliterated into the Roman script with English embeddings. The 

trend in Indian social media is to use such informal text 

containing a mixture of multiple South-Asian languages with 

English embeddings. This mixture makes the Information 

Retrieval (IR) task very challenging. In Forum for Information 

retrieval (FIRE)1 (2016), a similar task was proposed, which 

required Mixed Script IR on Code-Mixed Hindi-English tweets. 

The difference of Code-Mixed IR from MixedScript IR is subtle. 

In MixedScript content, query 𝑞𝑚𝑠 is written in Roman or native 

script [1] whereas in Code-Mixed content, query 𝑞𝑐𝑚 is a Roman 

transliteration of a different language. The Code-Mixed corpus 

provided at MSIR Subtask II had English and Roman 

transliterated Hindi twitter data [2]. The major issue in such 

corpus is several possibilities of writing the same (Hindi) word 

with different transliterations. For example, “कम” meaning 

“less” in Hindi can be spelled in Roman transliteration as km, 

kam, kum, kmm etc. These nuances make it hard for the IR system 

to match the query with correct document in a document set. This 

significantly affects the performance of IR system. Nowadays, 

getting information from such CodeMixed social media text is 

very important as it helps in many business analytics purposes. In 

the following sections, Section 2 explains about the information 

retrieval subtask, Section 3 explains the Vector Space Models 

which were used for information retrieval, Section 4 explains the 

methodology used for this work, Section 5 discusses about the 

results obtained and analysis of others result. 

2. Task Description  
The subtask II of shared task of Mixed Script IR on Code-Mixed 

Hindi-English tweets was to retrieve 20 most relevant tweets from 

a document given a query. The query as well as the document was 

in Roman script but with CodeMixed Hindi and English 

languages. The corpus had set of documents with each document 

containing several hundred (or thousand) tweets. The corpus was 

further classified based on topics and queries. Each topic had at 

least one query related to the topic description. Table 1 explains 

about the structure of training/testing corpus provided for the 

subtask. The total number of topics for training and testing corpus 

was 10 and 3 respectively. There were several queries based on 

each topic (See Table 1) and there was at least one query per 

topic. The total number of queries for training was 23 and for 

testing, it was 12. A narrative on each topic was also given in the 

corpus describing the details about the tweets under that topic. 

The topic 001 (Aam Aadmi Party) has four queries under the 

same description (Table 1). All these four queries had separate 

documents with a corresponding number of tweets. Let 𝑞𝑖 be the 

given query, IR task was to rank the tweets in the corresponding 

document from most relevant with the query to the least. 

 

                                                                 

1 https://msir2016.github.io/ 



Table 1. Corpus Description 

Topic 
Topic 

Description 
Queries #tweets 

001 

Aam 

Aadmi 

Party 

The tweets 

under this 

topic are 

related to the 

Aam Aadmi 

Party which is 

a political 

party in Delhi 

Government 

q1: aam aadmi party 710 

q2: aam aadmi party 

dilli me 
1071 

q3: aam aadmi ki 

party 
1583 

q4: aap ki rally 3529 

 

The IR system should return top-20 most relevant tweets to the 

given query. The CodeMixed nature of the tweets makes the IR 

task hard to process as semantic search for such transliterated 

queries and documents is still an unsolved problem [2]. 

3. Vector Space Models 
Vector-Space-Models (VSMs) are used to represent documents as 

a vector (of terms) that occurs within a collection [5]. The given 

query is also represented in the same document space. The query 

is also called as pseudo-document. As the document is represented 

as a vector of terms that occur in the document hence it is 

necessary to identify the terms present in the document. The terms 

are basically the vocabulary of collection of documents. If there 

are more than one document then each document will be a huge 

vector and it will be convenient to organize these vectors into a 

matrix. This matrix is called term-document matrix. The row 

vectors are referred as terms and column vectors are referred as 

documents. A document is used as a context to understand the 

term. If we take document as phrases, sentences, paragraphs, 

chapters etc. we get a word-context matrix. Similarly we can also 

have a pair-pattern matrices [3].  

To imagine the representation of term-document matrix, think of a 

multiset from set theory. A multiset is a set but it allows multiple 

instances of the same element. For example, 𝑀 = {𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑧} 

is a multiset containing elements 𝑥, 𝑦 and 𝑧. Just like sets, order of 

elements in multiset could be anything. That means, multiset 

𝑀1 = {𝑦, 𝑧, 𝑦, 𝑥, 𝑥, 𝑥} is same as multiset 𝑀2 = {𝑥, 𝑦, 𝑧, 𝑥, 𝑥, 𝑦}. 

Multisets are also called as bags and we can represent these bags 

as a vectors with vector component denoting the frequency of the 

elements of multiset i.e. 𝑉 = < 3, 2, 1 > is vector representation 

of the bag M in which 3 is the frequency of 𝑥 and 2 is the 

frequency of 𝑦 etc. Using the same analogy, we can imagine a 

document as a bag and set of documents as set of bags aligned as 

columns in a matrix, say 𝑋. This matrix, 𝑋, is term document 

matrix with columns representing a bag and rows representing a 

unique member. A particular element 𝑥𝑖𝑗  in the matrix 

corresponds to the frequency of 𝑖𝑡ℎ term in the 𝑗𝑡ℎ document (or 

bag). To capture the whole intuition, let’s assume 3 documents as: 

Doc1: We stayed very closely connected. 

Doc2: Charger stayed connected with phone. 

Doc3: His phone charger closely resembled mine. 

The term document matrix of frequency for above three 

documents could be: 

 

 

Table 2. Term-Document matrix 

 Doc1 Doc2 Doc3 

We 1 0 0 

stayed 1 1 0 

very 1 0 0 

closely 1 0 1 

Connected 1 1 0 

Charger 0 1 1 

with 0 1 0 

phone 0 1 1 

His 0 0 1 

resembled 0 0 1 

mine 0 0 1 

 

In the above matrix, terms are the rows and columns are 

documents. It has 3 documents (Doc1, Doc2 & Doc3) and 11 

unique terms (tokens in this case) with dimension 11x3. In a 

similar way a given query could be represented as bag of words 

and estimating the relevance of query with the documents in such 

a manner is called bag of words hypothesis in Information 

retrieval. This hypothesis states that a column vector in a term-

document matrix captures the meaning of the corresponding 

document (to some extent). It should be observed that the column 

vector which correspond to a document in a collection tell us 

about the frequency of the words in the document with loss of 

actual order of the words. The vector may not capture the 

structure of a document as it is but it works surprisingly well with 

the search engines. We can compare the column (document) 

vectors to compute the similarity among them. This similarity can 

be computed using euclidean distance if we are assuming 

columns (documents) as points in the document space. If we are 

assuming columns (documents) as vectors in documents space, we 

can use cosine similarity to measure the similarity by the angle 

between the vectors. Larger the cosine, more semantically related 

the documents are. If 𝑑𝑜𝑐1 and 𝑑𝑜𝑐2 are two document vectors, 

then cosine of angle 𝜃 between them is computed as: 

cos(𝑑𝑜𝑐1, 𝑑𝑜𝑐2) =
𝑑𝑜𝑡(𝑑𝑜𝑐1, 𝑑𝑜𝑐2)

||𝑑𝑜𝑐1||. ||𝑑𝑜𝑐2||
 

Where ||𝑑𝑜𝑐1|| and ||𝑑𝑜𝑐2|| are the length (or norm) of the 

vectors. The basic intuition behind using cosine similarity is that it 

captures the idea that the angle between the vectors is important, 

length of the vector is not (See Figure 1). The cosine is 1 when 

vectors are same or they point in the same direction (𝜃 𝑧𝑒𝑟𝑜). The 

cosine value varies from 0-1, zero being not similar and one being 

exactly similar.  

3.1 Term-Weighing 

Generally, most frequent terms will have lower information than 

the less frequent or surprising terms. To capture this idea, most 

efficient way is to use 𝑡𝑓 − 𝑖𝑑𝑓 (term frequency-inverse 

document frequency). An element in a term-document matrix gets 

a higher weight when a term in corresponding document is very 

frequent (𝑡𝑓) that means the term is rare in collection of 

documents(𝑑𝑓). Hence the weight of a particular terms 

appearance is computed as: 

𝑊𝑚𝑛 = 𝑡𝑓 × 𝑖𝑑𝑓 



Where 𝑊𝑚𝑛 is the weight of the term 𝑚 in document 𝑛. It is 

demonstrated in [4] that using  𝑡𝑓 − 𝑖𝑑𝑓 functions brings 

significant improvement over raw frequency.  

 Figure. 1 Angle between document vectors2 

So far we have talked about measuring document similarity but 

VSMs can also be used for query processing. A query 𝑞 can be 

treated as a pseudo document and similarity measures of each 

document in the collection with pseudo document (query) can be 

computed. There are several other similarity measures available as 

Jensen-Shannon, recall, precision, Jaccard, harmonic mean etc. 

The use of these similarity measures depends upon the relative 

frequency of adjacent words with respect to the target word. 

4. Methodology 
The subtask II in FIRE was Mixed Script Information Retrieval on 

Code-Mixed Hindi-English tweets. There were total 23 files 

containing tweets for training and 12 files for testing. Each file 

had a corresponding query. Given a query 𝒒𝒊, the information 

retrieval task was to compute the similarity between the query and 

tweets in each file and return the top 20 most relevant tweets. As 

explained in the last section, this query processing task can be 

successfully executed using VSMs.  
Each file was treated as a collection of documents and each tweet 

within the collection is referred as document. The dataset 

comprised of Hindi-English code-mixed tweets. As twitter data is 

generally noisy and requires some preprocessing, it was subjected 

to some preprocessing modules. The preprocessing in our 

implementation included tokenizing, removing stop words, 

stripping punctuations, stripping repetitions (hiiiiiii→ hi) etc. The 

major issue in tokenizing twitter data is to capture the key 

attributes of tweets such as: hashtags (#aap), @ mentions 

(@timesnow), URLs, symbol, emoticons etc. These attribute were 

captured using regular expressions. A sample tweet after 

capturing these nuances, stripping punctuation and tokenizing 

appeared as: 

 

Original 
@respectshraddie shhhhh :( salman ko jail 

hojaegi :( #badday 

Preprocessed 
‘@respectshraddie’, ‘shh’, ‘:(’, ‘salman’, ‘jail’,  

‘hojaegi’, ‘:(’ , ‘#badday’ 

                                                                 

2 https://www.math10.com/en/geometry/geogebra/geogebra.html 

 

Tokenization was done for all the queries too. The document 

vector (column) size, as well as the query vectors, were in same 

vector space. The preprocessing was performed for each file 

(collection) over each document (tweet). After preprocessing over 

each file (collection), it was fed to Information Retrieval system. 

The similarity scores for each tweet in a collection given a query 

were computed and results were saved in a list. The top 20 tweets 

related to the given query were retrieved from the index values of 

top 20 similarity scores in the list.  

There was a provision of submitting three systems per team. We 

submitted two systems. One system was same as explained above. 

In second system, we manually removed some Hindi stop words 

like 𝑘𝑎, 𝑗𝑜, 𝑘𝑒 𝑛𝑒, 𝑡𝑜, 𝑣𝑒, 𝑙𝑒 etc. It didn’t reflected any better 

results. All the implementations were done in Python 2.7. Related 

code will be made available at author’s Github page. 

5. Result and Analysis   
The result were declared roughly after two weeks of the 

submission. There were total 7 teams and our system performed 

well as compared to others [6]. The evaluation was done by 

calculating Mean Average Precision (MAP) which is a standard 

measure for comparing search algorithm. The results for Q1 for 

system 1 and system 2 can be seen in Figure 2. And Figure 3. 

 
Figure. 2 System-1 results 

The results of top three performers in the subtask are given in 

Table 3. 

Table 3 

Team Name 
No. of 

runs 

Runs (Mean Average Precision) 

Run 1 Run 2 Run 3 

Amrita_CEN 1 0.0377 NIL NIL 

CEN@Amrita* 2 0.0315 0.016 NIL 

UB 3 0.0217 0.016 0.015 



 

Figure. 3 System-2 results 

 

6. Conclusion 
The shared task on CodeMixed Information retrieval was indeed a 

unique task. It captured the latest trend in social media. We used 

Vector Space Models (VSMs) of semantics to compute the 

similarity between the tweets and given query. The performance 

of our system was ranked 2 among all the participants. But the 

Mean Average Precision (MAP) value was very low in terms of 

performance. That suggests, CodeMixed IR task is a difficult task 

and existing algorithms do not perform as expected and require 

sufficient attention to perform well for such data.    
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