
CEN@Amrita: Information Retrieval on CodeMixed
HindiEnglish Tweets Using Vector Space Models

Shivkaran Singh
Centre for Computational Engineering
and Networking (CEN), Amrita School

of Engineering, Coimbatore, Amrita
Vishwa Vidyapeetham, Amrita
University, India, PIN: 641112

+91 84278 78973

shivkaran.ssokhey@gmail.com

Anand Kumar M
Centre for Computational Engineering
and Networking (CEN), Amrita School

of Engineering, Coimbatore, Amrita
Vishwa Vidyapeetham, Amrita
University, India, PIN: 641112

m_anandkumar@cb.amrita.edu

Soman K P
Centre for Computational Engineering
and Networking (CEN), Amrita School

of Engineering, Coimbatore, Amrita
Vishwa Vidyapeetham, Amrita
University, India, PIN: 641112

kp_soman@amrita.edu

ABSTRACT

One of the major challenges nowadays is Information retrieval

from social media platforms. Most of the information on these

platforms is informal and noisy in nature. It makes the

Information retrieval task more challenging. The task is even

more difficult for twitter because of its character limitation per

tweet. This limitation bounds the user to express himself in

condensed set of words. In the context of India, scenario is little

more complicated as users prefer to type in their mother tongue

but lack of input tools force them to use Roman script with

English embeddings. This combination of multiple languages

written in the Roman script makes the Information retrieval task

even harder. Query processing for such CodeMixed content is a

difficult task because query can be in either of the language and it

need to be matched with the documents written in any of the

language. In this work, we dealt with this problem using Vector

Space Models which gave significantly better results than the

other participants. The Mean Average Precision (MAP) for our

system was 0.0315 which was second best performance for the

subtask.

CCS Concepts

• Information Systems ➝ Information Retrieval ➝ Retrieval

models and ranking

• Computing methodologies ➝ Artificial Intelligence ➝

Natural Language Processing

Keywords

CodeMixed social media, Mixed-Script, Information Retrieval,

Vector-space-models, Semantics

1. INTRODUCTION

Social media has a plentitude of user generated data in numerous

languages which are predominantly informal in nature. Most of

these languages have their own native scripts. Some of these

scripts include Arabic, Chinese, Hebrew, Greek, and Indic etc. For

most of these languages, major user-generated content is

transliterated into the Roman script with English embeddings. The

trend in Indian social media is to use such informal text

containing a mixture of multiple South-Asian languages with

English embeddings. This mixture makes the Information

Retrieval (IR) task very challenging. In Forum for Information

retrieval (FIRE)1 (2016), a similar task was proposed, which

required Mixed Script IR on Code-Mixed Hindi-English tweets.

The difference of Code-Mixed IR from MixedScript IR is subtle.

In MixedScript content, query 𝑞𝑚𝑠 is written in Roman or native

script [1] whereas in Code-Mixed content, query 𝑞𝑐𝑚 is a Roman

transliteration of a different language. The Code-Mixed corpus

provided at MSIR Subtask II had English and Roman

transliterated Hindi twitter data [2]. The major issue in such

corpus is several possibilities of writing the same (Hindi) word

with different transliterations. For example, “कम” meaning

“less” in Hindi can be spelled in Roman transliteration as km,

kam, kum, kmm etc. These nuances make it hard for the IR system

to match the query with correct document in a document set. This

significantly affects the performance of IR system. Nowadays,

getting information from such CodeMixed social media text is

very important as it helps in many business analytics purposes. In

the following sections, Section 2 explains about the information

retrieval subtask, Section 3 explains the Vector Space Models

which were used for information retrieval, Section 4 explains the

methodology used for this work, Section 5 discusses about the

results obtained and analysis of others result.

2. Task Description
The subtask II of shared task of Mixed Script IR on Code-Mixed

Hindi-English tweets was to retrieve 20 most relevant tweets from

a document given a query. The query as well as the document was

in Roman script but with CodeMixed Hindi and English

languages. The corpus had set of documents with each document

containing several hundred (or thousand) tweets. The corpus was

further classified based on topics and queries. Each topic had at

least one query related to the topic description. Table 1 explains

about the structure of training/testing corpus provided for the

subtask. The total number of topics for training and testing corpus

was 10 and 3 respectively. There were several queries based on

each topic (See Table 1) and there was at least one query per

topic. The total number of queries for training was 23 and for

testing, it was 12. A narrative on each topic was also given in the

corpus describing the details about the tweets under that topic.

The topic 001 (Aam Aadmi Party) has four queries under the

same description (Table 1). All these four queries had separate

documents with a corresponding number of tweets. Let 𝑞𝑖 be the

given query, IR task was to rank the tweets in the corresponding

document from most relevant with the query to the least.

1 https://msir2016.github.io/

Table 1. Corpus Description

Topic
Topic

Description
Queries #tweets

001

Aam

Aadmi

Party

The tweets

under this

topic are

related to the

Aam Aadmi

Party which is

a political

party in Delhi

Government

q1: aam aadmi party 710

q2: aam aadmi party

dilli me
1071

q3: aam aadmi ki

party
1583

q4: aap ki rally 3529

The IR system should return top-20 most relevant tweets to the

given query. The CodeMixed nature of the tweets makes the IR

task hard to process as semantic search for such transliterated

queries and documents is still an unsolved problem [2].

3. Vector Space Models
Vector-Space-Models (VSMs) are used to represent documents as

a vector (of terms) that occurs within a collection [5]. The given

query is also represented in the same document space. The query

is also called as pseudo-document. As the document is represented

as a vector of terms that occur in the document hence it is

necessary to identify the terms present in the document. The terms

are basically the vocabulary of collection of documents. If there

are more than one document then each document will be a huge

vector and it will be convenient to organize these vectors into a

matrix. This matrix is called term-document matrix. The row

vectors are referred as terms and column vectors are referred as

documents. A document is used as a context to understand the

term. If we take document as phrases, sentences, paragraphs,

chapters etc. we get a word-context matrix. Similarly we can also

have a pair-pattern matrices [3].

To imagine the representation of term-document matrix, think of a

multiset from set theory. A multiset is a set but it allows multiple

instances of the same element. For example, 𝑀 = {𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑧}

is a multiset containing elements 𝑥, 𝑦 and 𝑧. Just like sets, order of

elements in multiset could be anything. That means, multiset

𝑀1 = {𝑦, 𝑧, 𝑦, 𝑥, 𝑥, 𝑥} is same as multiset 𝑀2 = {𝑥, 𝑦, 𝑧, 𝑥, 𝑥, 𝑦}.

Multisets are also called as bags and we can represent these bags

as a vectors with vector component denoting the frequency of the

elements of multiset i.e. 𝑉 = < 3, 2, 1 > is vector representation

of the bag M in which 3 is the frequency of 𝑥 and 2 is the

frequency of 𝑦 etc. Using the same analogy, we can imagine a

document as a bag and set of documents as set of bags aligned as

columns in a matrix, say 𝑋. This matrix, 𝑋, is term document

matrix with columns representing a bag and rows representing a

unique member. A particular element 𝑥𝑖𝑗 in the matrix

corresponds to the frequency of 𝑖𝑡ℎ term in the 𝑗𝑡ℎ document (or

bag). To capture the whole intuition, let’s assume 3 documents as:

Doc1: We stayed very closely connected.

Doc2: Charger stayed connected with phone.

Doc3: His phone charger closely resembled mine.

The term document matrix of frequency for above three

documents could be:

Table 2. Term-Document matrix

 Doc1 Doc2 Doc3

We 1 0 0

stayed 1 1 0

very 1 0 0

closely 1 0 1

Connected 1 1 0

Charger 0 1 1

with 0 1 0

phone 0 1 1

His 0 0 1

resembled 0 0 1

mine 0 0 1

In the above matrix, terms are the rows and columns are

documents. It has 3 documents (Doc1, Doc2 & Doc3) and 11

unique terms (tokens in this case) with dimension 11x3. In a

similar way a given query could be represented as bag of words

and estimating the relevance of query with the documents in such

a manner is called bag of words hypothesis in Information

retrieval. This hypothesis states that a column vector in a term-

document matrix captures the meaning of the corresponding

document (to some extent). It should be observed that the column

vector which correspond to a document in a collection tell us

about the frequency of the words in the document with loss of

actual order of the words. The vector may not capture the

structure of a document as it is but it works surprisingly well with

the search engines. We can compare the column (document)

vectors to compute the similarity among them. This similarity can

be computed using euclidean distance if we are assuming

columns (documents) as points in the document space. If we are

assuming columns (documents) as vectors in documents space, we

can use cosine similarity to measure the similarity by the angle

between the vectors. Larger the cosine, more semantically related

the documents are. If 𝑑𝑜𝑐1 and 𝑑𝑜𝑐2 are two document vectors,

then cosine of angle 𝜃 between them is computed as:

cos(𝑑𝑜𝑐1, 𝑑𝑜𝑐2) =
𝑑𝑜𝑡(𝑑𝑜𝑐1, 𝑑𝑜𝑐2)

||𝑑𝑜𝑐1||. ||𝑑𝑜𝑐2||

Where ||𝑑𝑜𝑐1|| and ||𝑑𝑜𝑐2|| are the length (or norm) of the

vectors. The basic intuition behind using cosine similarity is that it

captures the idea that the angle between the vectors is important,

length of the vector is not (See Figure 1). The cosine is 1 when

vectors are same or they point in the same direction (𝜃 𝑧𝑒𝑟𝑜). The

cosine value varies from 0-1, zero being not similar and one being

exactly similar.

3.1 Term-Weighing

Generally, most frequent terms will have lower information than

the less frequent or surprising terms. To capture this idea, most

efficient way is to use 𝑡𝑓 − 𝑖𝑑𝑓 (term frequency-inverse

document frequency). An element in a term-document matrix gets

a higher weight when a term in corresponding document is very

frequent (𝑡𝑓) that means the term is rare in collection of

documents(𝑑𝑓). Hence the weight of a particular terms

appearance is computed as:

𝑊𝑚𝑛 = 𝑡𝑓 × 𝑖𝑑𝑓

Where 𝑊𝑚𝑛 is the weight of the term 𝑚 in document 𝑛. It is

demonstrated in [4] that using 𝑡𝑓 − 𝑖𝑑𝑓 functions brings

significant improvement over raw frequency.

 Figure. 1 Angle between document vectors2

So far we have talked about measuring document similarity but

VSMs can also be used for query processing. A query 𝑞 can be

treated as a pseudo document and similarity measures of each

document in the collection with pseudo document (query) can be

computed. There are several other similarity measures available as

Jensen-Shannon, recall, precision, Jaccard, harmonic mean etc.

The use of these similarity measures depends upon the relative

frequency of adjacent words with respect to the target word.

4. Methodology
The subtask II in FIRE was Mixed Script Information Retrieval on

Code-Mixed Hindi-English tweets. There were total 23 files

containing tweets for training and 12 files for testing. Each file

had a corresponding query. Given a query 𝒒𝒊, the information

retrieval task was to compute the similarity between the query and

tweets in each file and return the top 20 most relevant tweets. As

explained in the last section, this query processing task can be

successfully executed using VSMs.
Each file was treated as a collection of documents and each tweet

within the collection is referred as document. The dataset

comprised of Hindi-English code-mixed tweets. As twitter data is

generally noisy and requires some preprocessing, it was subjected

to some preprocessing modules. The preprocessing in our

implementation included tokenizing, removing stop words,

stripping punctuations, stripping repetitions (hiiiiiii→ hi) etc. The

major issue in tokenizing twitter data is to capture the key

attributes of tweets such as: hashtags (#aap), @ mentions

(@timesnow), URLs, symbol, emoticons etc. These attribute were

captured using regular expressions. A sample tweet after

capturing these nuances, stripping punctuation and tokenizing

appeared as:

Original
@respectshraddie shhhhh :(salman ko jail

hojaegi :(#badday

Preprocessed
‘@respectshraddie’, ‘shh’, ‘:(’, ‘salman’, ‘jail’,

‘hojaegi’, ‘:(’ , ‘#badday’

2 https://www.math10.com/en/geometry/geogebra/geogebra.html

Tokenization was done for all the queries too. The document

vector (column) size, as well as the query vectors, were in same

vector space. The preprocessing was performed for each file

(collection) over each document (tweet). After preprocessing over

each file (collection), it was fed to Information Retrieval system.

The similarity scores for each tweet in a collection given a query

were computed and results were saved in a list. The top 20 tweets

related to the given query were retrieved from the index values of

top 20 similarity scores in the list.

There was a provision of submitting three systems per team. We

submitted two systems. One system was same as explained above.

In second system, we manually removed some Hindi stop words

like 𝑘𝑎, 𝑗𝑜, 𝑘𝑒 𝑛𝑒, 𝑡𝑜, 𝑣𝑒, 𝑙𝑒 etc. It didn’t reflected any better

results. All the implementations were done in Python 2.7. Related

code will be made available at author’s Github page.

5. Result and Analysis
The result were declared roughly after two weeks of the

submission. There were total 7 teams and our system performed

well as compared to others [6]. The evaluation was done by

calculating Mean Average Precision (MAP) which is a standard

measure for comparing search algorithm. The results for Q1 for

system 1 and system 2 can be seen in Figure 2. And Figure 3.

Figure. 2 System-1 results

The results of top three performers in the subtask are given in

Table 3.

Table 3

Team Name
No. of

runs

Runs (Mean Average Precision)

Run 1 Run 2 Run 3

Amrita_CEN 1 0.0377 NIL NIL

CEN@Amrita* 2 0.0315 0.016 NIL

UB 3 0.0217 0.016 0.015

Figure. 3 System-2 results

6. Conclusion
The shared task on CodeMixed Information retrieval was indeed a

unique task. It captured the latest trend in social media. We used

Vector Space Models (VSMs) of semantics to compute the

similarity between the tweets and given query. The performance

of our system was ranked 2 among all the participants. But the

Mean Average Precision (MAP) value was very low in terms of

performance. That suggests, CodeMixed IR task is a difficult task

and existing algorithms do not perform as expected and require

sufficient attention to perform well for such data.

Acknowledgements

The authors would like to thank the organizers of Forum for

Information Retrieval Evaluation (FIRE) for organizing this event.

The authors would also like to thank the organizers of shared task

on Mixed Script Information Retrieval (MSIR) for organizing the

much coveted task for Indian social media.

REFERENCES
[1] Gupta, P., Bali, K., Banchs, E. R., Choudhury, M., and

Rosso, P. 2014. Query expansion for mixed-script

information retrieval. In Proceedings of the 37th

international ACM SIGIR conference on Research &

development in information retrieval, pp. 677-686. ACM.

[2] Chakma, K., and Das, A. 2016. CMIR: A Corpus for

Evaluation of Code Mixed Information Retrieval of Hindi-

English Tweets. Computación y Sistemas 20.3 (2016): 425-

434.

[3] Turney, P. D., and Pantel, P. 2010. From frequency to

meaning: Vector space models of semantics. Journal of

artificial intelligence research 37.1 (2010): 141-188.

[4] Salton, G., and Buckley, B. 1988. Term-weighting

approaches in automatic text retrieval. Information

processing & management 24.5 (1988): 513-523.

[5] Soman, K. P., Loganathan, R., and Ajay, V. 2009. Machine

learning with SVM and other kernel methods. PHI Learning

Pvt. Ltd.

[6] Banerjee, S., Chakma K., Naskar, S. K., Das, A., Rosso,

P., Bandyopadhyay, S., and Choudhury, M. 2016. Overview

of the Mixed Script Information Retrieval at

FIRE. In Working notes of FIRE 2016 - Forum for

Information Retrieval Evaluation, Kolkata, India, December

7-10, 2016, CEUR Workshop Proceedings. CEUR-WS.org.

