
A Deep Learning Approach towards Cross-Lingual Tweet
Tagging

Nikhil Bharadwaj Gosala
BITS Pilani, Hyderabad

nikhil.gosala@gmail.com

Shalini Chaudhuri
BITS Pilani, Hyderabad
shalini_chaudhuri

@yahoo.co.in

Monica Adusumilli
BITS Pilani, Hyderabad

adusumillimonica@gmail.com

Kartik Sethi
BITS Pilani, Hyderabad

kartik1295@gmail.com

ABSTRACT
Named Entity Recognition (NER) is important in analysing
the context of a statement and also the sentiments associated
with it. Although Twitter Data is noisy, it is valuable due to
the amount of information it can provide. Therefore, NER
for Twitter Data is necessary. Our model aims to extract
the named entities from tweets using a Recurrent Neural
Network Core. Long Short Term Memory (LSTM) was used
to learn long term dependencies in our supervised learning
model. The sequence-to-sequence architecture was used in
the implementation of our supervised learning model.

CCS Concepts
•Information systems → Information extraction;

Keywords
Recurrent Neural Network, Tweet Tagging

1. INTRODUCTION
Sequence Tagging, especially Named Entity Recognition

(NER) has been, for a very long time, a classic NLP task
[1]. A lot of research has been directed towards it for the
past couple of decades. The output of the NER module,
the tagged entities, play a significant role in determining the
working of many other applications. For instance, these tags
are widely used in measuring the sentiment in a sequence of
posts, finding the context of a message, and identifying key
elements referred to in a set of documents. These tags could
be very generic (such as ’noun’) or specific (such as ’name
of person’) depending on the task at hand. Generic tags are
usually helpful in learning the structure and automatically
generating new sentences in an unknown language. On the
other hand, specific tags are widely used by search engines
to generate user and product specific advertisements.

Twitter data stores a lot of information that, when ex-
tracted and processed properly, can offer a great deal of
knowledge. They are the most up-to-date and inclusive
sources of information that is currently available on the in-
ternet largely due to its low-barrier of entry, and the wide
use of mobile devices [4]. Although tweets follow basic gram-
mar rules, they are both extremely noisy, and difficult to
comprehend. Due to this very basic nature of tweets, many
traditional NER tools fail miserably in tagging them. On the
contrary, the human brain does a great job in making sense

of these kinds of tweets. This is the motivation behind the
choice of exploring the field of Artificial Neural Networks.

Thus, to make an effort in efficiently tagging tweets by
modelling a very basic version of the human brain, Recurrent
Neural Networks, especially the Long Short Term Memory
(LSTM) model was used.

2. RELATED WORK
Most of the existing NER taggers are based on linear

statistical models like the Hidden Markov Model [3] and
Conditional Random Fields [2]. More recently, owing to its
promising results in sequence tagging tasks, Convolutional
Neural Networks has gained a lot of attention for the task of
Named Entity Recognition. The use of RNN and especially
LSTMs have been extensively discussed by [1] wherein they
demonstrate the amazing performance of RNNs.

3. SYSTEM DESCRIPTION
The aim of the task was to tag twitter data that contained

a mixture of both Hindi and English tokens. The system can
be subdivided into the following three modules:

1. Pre-Processing

2. RNN Core

3. Post-Processing

3.1 Pre-Processing
Pre-processing is an inevitable step that should be adopted

before processing any kind of data to remove the unwanted
values and reduce the noise in the dataset. Adhering to its
definition, the pre-processing phase was used to clean and
structure the data into a form that could be read by our
Tagging Model. The pre-processing phase comprises of the
following stages:

1. Removal of HTML Escape Characters: It was
observed that many of the HTML characters were not
replaced by their system equivalent characters. For
example, & was present instead of the normal &
token. Such HTML escape characters were taken care
of by using the ’html’ package in Python.

2. Tweet Tokenization: The tweets were tokenized
using Regular Expressions. As is with Twitter Data,
some words/tokens can easily be tokenized by looking

at their regular expression. For instance, Twitter Han-
dles always start with an @ and any token that starts
with @ is a twitter handle. This observation helped us
in tokenizing the twitter data with great effect. The
following are a list of all the regular expressions used
to tokenize the tweet:

(a) Emoticons: r”(?: [:=;] [oO\-]? [D\)\]\(\]/)”

(b) HTML Tags: r’<[ˆ>]+>’

(c) Twitter Handles: r’(?:@[\w]+)’

(d) Hash Tags: r’(?:\#+[\w]+[\w\’ \-]*[\w]+)’

(e) Whitespaces: r’[\n\t\r]+’

(f) URLs: r’http[s]?://(?:[a-z]|[0-9]|[$- @.& +]

(g) Numbers: r’(?:(?:\d+,?)+(?:\.?\d+)?)’

(h) Words with ’ and -: r”(?:[a-z][a-z’\-]+[a-z])”

(i) Other Words: r’(?:[\w]+)’

(j) Everything Else: r’(?:\S)’

3. Stop Word Removal: Stop Words are those words
that occur far too frequently to have any effect on the
classification or tagging task. Stop words were tack-
led by using the Stop Words corpus from NLTK and
appending it with words and punctuations that occur
far too frequently.

4. Unicode Emoji Removal: Some of the emojis
could not be captured using the regular expressions.
For instance, Ÿ‘a and Ÿ‘a, could not be captured us-
ing regular expressions. For such cases, Unicode ranges
were used to strip the tweet of emojis.

5. Rule Tagging: Owing to the structure of twitter
data, some of the tokens can be directly tagged based
on Regular Expressions. For instance, any token that
begins with a # can be categorized as a Hash Tag
and any token that begins with @ is a Twitter Han-
dle. Such tokens were tagged using regular expres-
sions and custom tags. The custom tokens added to
the corpus were - HTML TAG, TWITTER HANDLE,
HASH TAG, WHITESPACE, URL, EMOTICON, RT
and OTHER.

6. Common Misspelling Mapping: Owing to the
140-character limit of Twitter and the widespread use
of SMS lingo, many tweets consist of common SMS
lingo. For example, the word for is commonly written
as 4 and the word because is written as bcoz, coz, bcz
and so on. All such misspellings were mapped to the
correct spelling of the word. This was done to reduce
the number of unique words in the corpus.

7. Token List Generation: The pre-tagged text was
added to different lists based on the tag. These lists
were used later in the tagging process to tag tokens
that could not be tagged by the model.

The output of the Pre-Processing module was a vert file
that is commonly used in many commercially available Part-
of-Speech taggers.

3.2 RNN Core
Upon studying various models for NER tagging, Deep

Learning and especially Recurrent Neural Networks (RNNs)
was chosen for the task of Tweet Tagging. In RNN, there
were multiple models available and of all the models, we de-
cided to go with the Sequence-to-Sequence (seq2seq) model.
In seq2seq model, each input token has a corresponding tag
associated with it. This feature of seq2seq model was con-
sistent with that of the twitter data provided and thus was
used for tweet tagging (Each token in the twitter data had
a corresponding tag. If it did not, we assigned a custom tag
to it).

LSTMs are special kind of RNNs that are capable of learn-
ing long-term dependencies. An LSTM cell has multiple
gates that define which data to be retained and which data to
be forgotten. By training the weights of these gates, one can
control the amount of data to be retained and the amount
of data to be forgotten. In our implementation, each node
in the RNN was a GRU cell. A GRU cell is very similar
in function to an LSTM cell, but is computationally much
more efficient. Keeping efficiency in mind, GRU cell was
chosen over an LSTM cell.

A RNN consists of multiple hidden layers and each layer
contains multiple nodes. Each node is like a neuron in the
human brain that can retain some information and can make
decisions based on this information. The complexity of the
model can be varied by changing the number of nodes per
layer or the number of hidden layers in a model.

The supervised approach was chosen to train the RNN.
In the supervised model, the desired output (target data)
is provided along with the training data. The network then
processes the inputs and compares its resulting outputs against
the desired outputs. Errors are propagated back through the
system, causing the system to adjust the weights that con-
trol the RNN. This process occurs multiple times and the
weights are continuously tweaked. For reducing the error,
Adam Optimizer was used instead of the more common Gra-
dient Descent or the Stochastic Gradient Descent Algorithm.
This decision was made because the TensorFlow implemen-
tation of Adam Optimizer uses the moving averages of the
parameters to tweak the weights. The main advantage of
this approach is that it has a large step size and thus con-
verges much faster than the Gradient Descent Algorithm.

3.3 Post-Processing
After the model was trained, it was used to predict the

data. But because the model was not 100% accurate, some
of the tokens were left untagged (i.e. they were tagged with
a custom token OTHER). These tokens were then checked
with the Token Lists and any untagged token that was found
in the token list was tagged with the corresponding token.

This step also included removal of tags that were not a
part of the annotated tags file. For instance, custom tags like
URL, HASH TAG, TWITTER HANDLE and so on were
removed from the final output file to keep the output file
consistent with that of the given annotated file.

Apart from the earlier steps, this step also included a func-
tion to merge any two consecutive tokens having the same
tag into a single word. As an example, Nikhil Bharadwaj
would have been composed of two tokens Nikhil and Bharad-
waj with the same tag. Because both these tokens are con-
secutive and have the same tag (NAME), they are merged
and the phrase Nikhil Bharadwaj is tagged as NAME.

4. EVALUATION AND RESULTS
Two runs were performed to tag the twitter data. Both

the runs used the RNN model but the parameters i.e. the
number of hidden layers and number of nodes per layer were
modified. The learning rate in both the runs was set to 0.003
and the decay rate was set at 0.97. In Run 1, 3 layers were
used with each layer having 192 nodes and in Run 2, 4 layers
were used with each layer having 256 nodes. In the case of
the Run 1, the final error, after all the iterations was around
0.6 whereas in Run 2, the final error was around 0.45.

The results obtained by using this model were very en-
couraging. An accuracy of 59.28% and a recall of 19.64%
was achieved with an F1 score of 29.50 in the case of Run
1. For Run 2, an accuracy of 61.80% and a recall of 26.39%
was achieved with an F1 score of nearly 37. These num-
bers show that the more complex model (Run 2) was better
in capturing a lot more information than the less complex
model.

The future direction of research focuses on improving the
accuracy by making the annotated data much more compre-
hensive. While analysing the tagged output, it was observed
that a lot of tokens were tagged as OTHER. This was due
to the fact that most of the tokens in the corpus did not
have any tag. This meant that the model was extremely bi-
ased towards assigning OTHER to any unknown token. This
problem was made less severe by adding custom tags to the
data based on Regular Expressions. For instance, any token
beginning with a # is destined to be a hash tag. So the
token HASH TAG was assigned to it. It was also observed
that the words in the corpus were not frequent enough. The
model, thus, could not learn a lot of information about such
words. This issue could be resolved by either using external
tagged data, or by making the corpus much more compre-
hensive.

5. REFERENCES
[1] Z. Huang, W. Xu, and K. Yu. Bidirectional lstm-crf

models for sequence tagging. arXiv preprint
arXiv:1508.01991, 2015.

[2] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the eighteenth
international conference on machine learning, ICML,
volume 1, pages 282–289, 2001.

[3] A. McCallum, D. Freitag, and F. C. Pereira. Maximum
entropy markov models for information extraction and
segmentation. In Icml, volume 17, pages 591–598, 2000.

[4] A. Ritter, S. Clark, O. Etzioni, et al. Named entity
recognition in tweets: an experimental study. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1524–1534.
Association for Computational Linguistics, 2011.

