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ABSTRACT
In this paper, we present our approaches for the Mediae-
val Emotional Impact of Movies Task. We extract features
from multiple modalities including audio, image and motion
modalities. SVR and Random Forest are used as our re-
gression models and late fusion is applied to fuse different
modalities. Experimental results show that the multimodal
late fusion is beneficial to predict global affects and con-
tinuous arousal and using CNN features can further boost
the performance. But for continuous valence prediction the
acoustic features are superior to other features.

1. INTRODUCTION
The 2016 Emotion Impact of Movies Task [1] involves t-

wo subtasks: global and continuous affects prediction. The
global subtask requires participants to predict the induced
valance and arousal values for the short video clips, while the
affects values should be continuously predicted every second
for long movies in the continuous subtask. In the following
sections, we describe the multimodal features, models and
experiments in details.

2. FEATURE EXTRACTION

2.1 Audio Modality
Statistical Acoustic Features: Statistical acoustic fea-

tures are proved to be very effective in speech emotion recog-
nition. We use the open-source toolkit OpenSMILE [2] to
extract three kinds of features IS09, IS10 and IS13, which
uses the configuration in INTERSPEECH 2009 [3], 2010 [4]
and 2013 [5] Paralinguistic challenge respectively. The dif-
ference between these features is that features in the later
years cover more low-level features and statistical functions.

MFCC-based Features: The Mel-Frequency Cepstral
Coefficients (MFCCs) [6] are the most widely used low-level
features. Therefore, we use MFCCs as our frame-level fea-
ture and apply two encoding strategies, Bag-of-Audio-Words
(BoW) [7] and Fisher Vector Encoding (FV) [8], to trans-
form the set of MFCCs to the sentence-level features. For
mfccBoW features, the acoustic codebook is trained by K-
means with 1024 clusters. For mfccFV features, we use the
GMM to train the codebook with 8 mixtures.

In the continuous subtask, the audio features are extracted
with the window of 10s and shift of 1s to cover more context.
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2.2 Image Modality
Hand-crafted Visual Features: We extract the Hue-

Saturation Histogram (hsh) to describe the color informa-
tion and the Dense SIFT (DSIFT) features to represent the
visual appearance information. For hsh features, we quan-
tize the hue to 30 levels and the saturation to 32 levels. For
DSIFT features, we use Fisher Vector encoding to construc-
t the video-level features. Then kernel PCA is utilized to
reduce the dimensionality into 4096.

DCNN Features: To explore the performance of dif-
ferent pre-trained CNN models, we extract multiple layers
from different CNN models including inception-v3 [9], VGG-
16 and VGG-19 [10]. All the CNN features are applied with
mean pooling to generate video-level representations.

2.3 Motion Modality
To exploit the temporal information in the video, we ex-

tract the improved Dense Trajectory (iDT) [11] and the C3D
features [12].For iDT features, HOG, HOF and MBH fea-
tures are densely extracted from the video and encoded with
Fisher Vector. Then kernel PCA is used to reduce dimen-
sionality into 4096. For C3D features, we extract activations
from the penultimate layer for every non-overlap 16 frames
and use mean pooling to aggregate them into one vector.

The challenge also provides baseline features [13] for global
subtask, which consists of acoustic and visual features.

3. EXPERIMENTS

3.1 Experimental Setting
In the global subtask, there are 9,800 video clips from 160

movies in the development set. We randomly select 6093,
1761 and 1946 videos as our local training, validation and
testing sets respectively. Video clips from the same movies
are kept in the same set. In the continuous subtask, the 30
movies in the development set are also divided into 3 parts
with 24 for training, 3 for validation and 3 for testing.

We train SVR and Random Forest for each kind of fea-
tures and use grid search to select the best hyper-parameters.
For SVR, we explore linear and RBF kernels and tune the
cost from 2−5 to 212 and the epsilon-tube from 0.1 to 0.4. For
Random Forest, the number of trees and the depth of trees
are tuned from 100 to 1000 and from 3 to 20 respectively.
We apply late fusion to fuse different features by training a
second-layer model (linear SVR) with input of the best pre-
dictions for each kind of features using the local validation
set. We use Sequential Backward Selection algorithm to find
the best subset of feature types for late fusion.



Figure 1: MSE Performance of Different Features
for Global Arousal Prediction on Local Testing Set

Figure 2: MSE Performance of Different Features
for Global Valence Prediction on Local Testing Set

3.2 Global Affects Prediction
In the global subtask, we use the mean standard error

(MSE) as evaluation metric. Figure 1 presents MSE of the
different features for arousal prediction. The audio modality
performs the best. Since the baseline feature contains multi-
modal cues, it achieves the second best performance follow-
ing our mfccBoW feature. The run1 is the late fusion of all the
audio features, baseline and iDT features. In the run2 sys-
tem, besides the features used in run1, c3d_fc6, vgg16_fc7
and vgg19_fc6 features are also used in late fusion. The
arousal prediction performance is significantly improved by
the multimodal late fusion.

The MSE of different features for global valence prediction
is shown in Figure 2. The image modality features especial-
ly the CNN features are better than other modalities for
valence prediction. The run1 system consists of baseline,
IS10, mfccBoW, mfccFv and hsh. The run2 system also us-
es c3d_fc6, c3d_prob, vgg16_fc6, vgg16_fc7 and the fea-
tures in run1. Although the late fusion performance does
not outperform the unimodal performance with CNN vgg16

features on our local testing set, it might be more robust
than using one single feature.

3.3 Continuous Affects Prediction
In the continuous subtask, we use the Pearson Correla-

tion Coefficient (PCC) for performance evaluation instead
of MSE. Because the labels in the continuous subtask have
closer temporal connections than those in the global subtask
and thus the shape of the prediction curve is more importan-
t. Since the testing set is relative small and the performance
is quite unstable in the evaluation, we average the perfor-

Figure 3: PCC Performance of Different Features
for Continuous Prediction on Local Testing Set

Table 1: The Submission Results for Global and
Continuous Affects Prediction

Arousal Valence
MSE PCC MSE PCC

Global
run1 1.479 0.405 0.218 0.312
run2 1.510 0.467 0.201 0.419

Continuous
run1 0.120 0.147 0.102 0.106
run2 0.121 0.236 0.108 0.132
run3 0.122 0.191 0.099 0.142

mance of the validation and testing set. Figure 3 shows the
PCC results of different features. The mfccFV feature per-
forms the best in both arousal and valence prediction. The
settings for the submitted three runs are as follows. In run1,
we apply late fusion over mfccFV, IS09 and IS10 for arousal
and use the mfccFV SVR for valence. In run2, mfccFV, IS09,
IS10 and inc_fc are late fused for arousal and mfccFV and
IS09 are late fused for valence. The run3 late fuses mfccFV,
IS09 and inc_fc for arousal and use mfccFV Random Forest
for valence. In our experiment, late fusion is beneficial for
the arousal prediction but not for valence prediction.

3.4 Submitted Runs
In Table 1, we list our results on the challenge testing set.

For the global subtask, comparing between run1 and run2,
fusing CNN features can greatly improve the arousal and va-
lence prediction performance. For the continuous subtask,
the fusion of image and audio cues improves the arousal pre-
diction performance. But for valence prediction, the mfccFV

feature alone achieves the best results.

4. CONCLUSIONS
In this paper, we present the multimodal approach to pre-

dict global and continuous affects. The best result on the
global subtask is achieved by the late fusion of audio, im-
age and motion modalities. However, for the continuous
subtask, the mfccFV feature significantly outperforms other
features and benefits little from late fusion on valence pre-
diction. In the future work, we will explore more features
for continuous affects prediction and use LSTMs to model
the temporal structure of the videos.
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