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Abstract

Recent advances in wireless sensor networks
and positioning technologies have boosted
new applications that manage moving objects.
In such applications, a dynamic index is often
built to expedite evaluation of spatial queries.
However, development of efficient indexes is a
challenge due to frequent object movement. In
this paper, we propose a new update-efficient
index method for moving objects in road net-
works. We introduce a dynamic data struc-
ture, called adaptive unit, to group neighbor-
ing objects with similar movement patterns.
To reduce updates, an adaptive unit captures
the movement bounds of the objects based
on a prediction method, which considers the
road-network constraints and stochastic traf-
fic behavior. A spatial index (e.g., R-tree) for
the road network is then built over the adap-
tive unit structures. Simulation experiments,
carried on two different datasets, show that an
adaptive-unit based index is efficient for both
updating and querying performance.

Keywords Spatial-Temporal Databases, Moving
Objects, Index Structure, Road Networks

1 Introduction

Recent advances in wireless sensor networks and po-
sitioning technologies have enabled a variety of new
applications such as traffic management, fleet manage-
ment, and location-based services that manage contin-
uously changing positions of moving objects [11, 12].
In such applications, a dynamic index is often built to
expedite evaluation of spatial queries. However, exist-
ing dynamic index structures (e.g. B-tree and R-tree)
suffer from poor performance due to the large over-
head of keeping the index updated with the frequently
changing position data. Development of efficient in-

Proceedings of the third Workshop on STDBM
Seoul, Korea, September 11, 2006

dexes to improve the update performance is an impor-
tant challenge.

Current work on reducing the index updates of mov-
ing objects mainly contains three kinds of approaches.
First, most efforts [4, 9, 10, 15] focus on the update
optimization of the existing multi-dimensional index
structures especially the adaptation and extension of
the R-tree [6]. To avoid the multiple paths search op-
eration in the R-tree during the top-down update, re-
cent work proposes the bottom-up approach [9, 10] and
memo-based [15] structure to reduce the updates of
the R-tree. Another method [4] exploits the change-
tolerant property of the index structure to reduce the
number of updates that cross the MBR boundaries of
R-tree.

However, the indexes based on MBRs exhibit high
concurrency overheads during node splitting, and each
individual update is still costly. Therefore, some index
methods based on a low-dimensional index structure
(e.g. B+-tree) are proposed [7, 16], which construct
the second category of index methods. They combine
the dimension reduction and linearization technique
with a single B+-tree to efficiently update the index
structure.

The third kind of approaches use a prediction
method with a time-parameterized function to reduce
the index updates [12, 13, 14]. They describe a mov-
ing object’s location by a linear function and the index
is updated only when the parameters of the function
change, for example, when the moving object changes
its speed or direction. The MBRs of the index vary
with the time as a function of the enclosed objects.
However, the linear prediction is hard to reflect the
movement in many real application and therefore leads
to low prediction accuracy and frequent updates.

Though these index structures solve the problem
of index updates to some extent, they are designed
to index objects performing free movement in a two-
dimensional space. We focus on the index update
problem in real life environments, where the objects
move within constrained networks, such as vehicles on
roads. In such setting, the spatial property of objects’
movement is captured by the network. Therefore, the
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spatial location of moving objects can be indexed by
means of the road-network index structure. For ex-
ample, moving objects can be accessed by each road
segment indexed by the R-tree. Since the road net-
work seldom change and objects just move from one
part to the other part of the network, the R-tree in
this case remains fixed. Existing index work that han-
dles network-constrained moving objects [1, 5, 11] is
based on this feature. They separate spatial and tem-
poral components of the moving objects’ trajectories
and index the spatial aspect by the network with a
R-tree. However, they are mostly concerned with the
historical movement and therefore they do not consider
the problem of index updates.

In this paper, we address the problem of efficient
indexing of moving objects in road networks to sup-
port heavy loads of updates. We exploit the con-
straints of the network and the stochastic behavior of
the real traffic to achieve both high update and query
efficiency. We introduce a dynamic data structure,
called adaptive unit (AU for short) to group neigh-
boring objects with similar movement patterns in the
network. A spatial index (e.g., R-tree) for the road
network is then built over the adaptive units to form
the index scheme for moving objects in road networks.
The index scheme optimizes the update performance
for the following reasons: (1) An AU functions as
a one-dimensional MBR in the TPR-tree [13], while
it minimizes expanding and overlaps by considering
more movement features. (2) The AU captures the
movement bounds of the objects based on a predic-
tion method, which considers the road-network con-
straints and stochastic traffic behavior. (3) Since the
movement of objects is reduced to occur in one spatial
dimension and attached to the network, the update of
the index scheme is only restricted to the update of the
AUs. We have carried out extensive experiments based
on two datasets. The results show that an adaptive-
unit based index not only improves the efficiency of
each individual update but also reduces the number of
updates and is efficient for both updating and querying
performance.

The main contributions of this paper are:

• The introduction of Adaptive Units that optimize
for frequent index updates of moving objects in
road networks.

• An experimental evaluation and validation of the
efficient update as well as query performance of
the proposed index structure.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work and introduces underlying
model. Section 3 describes the structure and algo-
rithms of adaptive units for efficient updates. Sec-
tion 4 contains algorithm analysis and experimental
evaluation. We conclude and propose the future work
in Section 5.

2 Related Work and Underlying Model

2.1 Related Work

There are lots of efforts at reducing the need for index
updates of moving objects. In summary, they can be
classified into three categories.

First, most work focuses on the update optimiza-
tion of existing multi-dimensional index structures es-
pecially the adaptation and extension of the R-tree [6].
The top-down update of R-tree is costly since it needs
several paths for searching the right data item con-
sidering the MBR overlaps. In order to reduce the
overhead, Kwon et al. [9] develop the Lazy Update R-
tree, which is updated only when an object moves out
of the corresponding MBR. With adding a secondary
index on the R-tree, it can perform the update oper-
ation in the bottom-up way. Recently, by exploiting
the change-tolerant property of the index structure,
Cheng et al. [4] present the CTR-tree to maximize
the opportunity for applying lazy updates and reduce
the number of updates that cross MBR boundaries.
[10] extends the main idea of [9] and generalizes the
bottom-up update approach. However, they are not
suitable to the case where consecutive changes of ob-
jects are large. Xiong and Aref [15] present the RUM-
tree that processes R-tree updates in a memo-based
approach, which eliminates the need to delete the old
data item during an index update. Therefore, its up-
date performance is stable with respect to the changes
between consecutive updates. In our index structure,
however, the R-tree remains fixed since it indexes the
road network and only the adaptive units are updated.

The second type of methods are based on the dimen-
sion reduction technique [11] and a low-dimensional in-
dex [7, 16] (e.g. B+-tree). The Bx-tree [7, 16] combine
the linearization technique with a single B+-tree to ef-
ficiently update the index structure. They uses space
filling curves and a pre-defined time interval to parti-
tion the representation of the locations of the moving
objects. This makes the B+-tree capable to index the
two-dimensional spatial locations of moving objects.
Therefore, the cost of individual update of index is
reduced. However, the Bx-tree imposes discrete rep-
resentation and may not keep the precise values of lo-
cation and time during the partitioning. For our set-
ting, the two-dimensional spatial locations of moving
objects can be reduced to the 1.5 dimensions [8] by the
road network where objects move.

The techniques in third category use a prediction
method represented as the time-parameterized func-
tion to reduce the index updates [12, 13, 14]. They
store the parameters of the function, e.g. the veloc-
ity and the starting position of an object, instead of
the real positions. In this way, they update the in-
dex structure only when the parameters change (for
example, the speed or the direction of a moving ob-
ject changes). The Time-Parameterized R-tree (TPR-
tree) [13] and its variants (e.g. TPR*-tree) [12, 14] are
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the examples of this type of index structures. They
all use a linear prediction model, which relates ob-
jects’ positions as a linear function of time.However,
the linear prediction is hard to reflect the movement
in many real application especially in traffic networks
where vehicles change their velocities frequently. The
frequent changes of the object’s velocity will incur re-
peated updates of the index structure. Our technique
also fall into this category and apply an accurate pre-
diction method we proposed in [3] by considering more
transportation features.

Several methods have been proposed for index-
ing moving objects in spatially constrained networks.
Pfoser et al. [11] propose to convert the 3-dimensional
problem into two sub-problems of lower dimensions
through certain transformation of the networks and
the trajectories. Another approach, known as the
FNR-tree [5], separates spatial and temporal compo-
nents of the trajectories and indexes the time intervals
that each moving object spends on a given network
link. The MON-tree approach [1] further improves
the performance of the FNR-tree by representing each
edge by multiple line segments (i.e. polylines) instead
of just one line segment. However, they all focus on
the historical movement and cannot support frequent
index updates. To the best of our knowledge, there is
no current index method to support efficient updates
of moving objects in road networks.

2.2 Underlying Model

We use the GCA model we proposed in [3] to model the
network and moving objects. A road network is mod-
eled as a graph of cellular automata (GCA), where
the nodes of the graph represent road intersections
and the edges represent road segments with no inter-
sections. Each edge consists of a cellular automaton
(CA), which is represented, in a discrete mode, as a
finite sequence of cells.

In the GCA, a moving object is represented as a
symbol attached to the cell and it can move several
cells ahead at each time unit. Intuitively, the velocity
is the number of cells an object can traverse during
a time unit. The motion of an object is represented
as some (time, location) information. Generally, such
information is treated as a trajectory.

3 The Adaptive Unit

3.1 Structure and Storage

Conceptually, an adaptive unit is similar to a one-
dimensional MBR in the TPR-tree, that expands with
time according to the predicted movement of the ob-
jects it contains. However, in the TPR-tree, it is possi-
ble that an MBR may contain objects moving in oppo-
site directions, or objects moving at different speeds.
As a result, the MBR may expand rapidly, which may
create large overlaps with other MBRs. The AU avoids
this problem by grouping objects having similar mov-

ing patterns. Specifically, for objects in the same net-
work edge, we use a distance threshold and a speed
threshold to cluster the adjacent objects with the same
direction and similar speed. In comparison, the AU
has no obvious enlargement because objects in the AU
move in a cluster.

We now formally introduce the AU. An AU is a
8-tuple:

AU = (auID, objSet, upperBound, lowerBound,
edgeID, enterTime, exitTime, auInitLen)

where auID is the identifier of the AU, objSet is a list
that stores objects belonging to the AU, upperBound
and lowerBound are upper and lower bounds of pre-
dicted future trajectory of the AU. The trajectory
bounds will be explained in details in Section 3.3. We
assume the functions of trajectory bounds as follows:

upperBound : D(t) = αu + βu · t
lowerBound : D(t) = αl + βl · t

edgeID denotes the network edge that the AU belongs
to, enterTime and exitTime record the time when the
AU enters and leaves the edge and auInitLen repre-
sents the initial length of the AU.

In the road network, multiple AUs are associated
with a network edge. Since AUs in the same edge are
likely to be accessed together during query process-
ing, we store AUs by clustering on their edgeID. That
is, the AUs in the same edge are stored in the same
disk pages. To access AUs more efficiently, we create
an in-memory, compact summary structure called the
direct access table for each edge. A direct access ta-
ble stores the summary information of each AU on an
edge (i.e. number of objects, trajectory bounds) and
pointers to AU disk pages. Each AU corresponds to
an entry in the direct access table, which has the fol-
lowing structure (auID, upperBound, lowerBound,
auPtr, objNum), where auPtr points to a list of AUs
in disk storage and objNum is the number of objects
included in the AU. In order to minimize I/O cost, we
use the direct access table to filter AUs and only access
the disk pages when necessary.

3.2 The Index Scheme

We build a spatial index (e.g., R-tree) for the road net-
work over the adaptive units to form the index scheme
for the network-constrained moving objects. The AU
index scheme is a two-level index structure. At the
top level, it consists of a 2D R-tree that indexes spa-
tial information of the road network. On the bottom
level, its leaves contain the edges representing road
segments included in the corresponding MBR of the
R-tree and point to the lists of adaptive units. The
top level R-tree remains fixed during the lifetime of
the index scheme (unless there are changes in the net-
work). The index scheme is developed with the R-tree
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Figure 1: Structure of the AU index scheme

in this paper, but any existing spatial index can also
be used without changes.

Figure 1 shows the structure of the AU index
scheme, which also includes the direct access table.
The R-tree and adaptive units are stored in the disk.
However, the direct access table is in the main memory
since it only keeps the summary information of adap-
tive units. In the index scheme, each leaf node of the
R-tree can be associated with its direct access table by
its edgeID and the direct access table can connect to
corresponding adaptive units by auPtr in its entries.
Therefore, we only need to update the direct access
table when AUs change, which greatly enhances the
performance of the index scheme.

3.3 Optimizing for Updates

An important feature of the AU is that it groups ob-
jects having similar moving patterns. The AU is capa-
ble of dynamically adapting itself to cover the move-
ment of the objects it contains. By tightly bounding
enclosed moving objects for some time in the future,
the AU alleviates the update problem of MBR rapid
expanding and overlaps in the TPR-tree like methods.

For reducing the updates further, the AU captures
the movement bounds of the objects based on a predic-
tion method we proposed in [3], which considers the
road-network constraints and stochastic traffic behav-
ior. Since objects in an AU have similar movement, we
then predict the movement of the AU, as if it were a
single moving object. In the following, we describe the
application and adaptation of the prediction method
to the AU.

We use GCAs not only to model road networks,
but also to simulate the movements of moving objects
by the transitions of the GCA. Based on the GCA,
the Simulation-based Prediction (SP) method to an-
ticipate future trajectories of moving objects is pro-
posed. The SP method treats the objects’ simulated
results as their predicted positions. Then, by the lin-
ear regression, a compact and simple linear function
that reflects future movement of a moving object can
be obtained. To refine the accuracy, based on differ-
ent assumptions on the traffic conditions we simulate
two future trajectories to obtain its predicted move-
ment function. Specifically, we extend the CA model
used in traffic flow simulation for predicting the future

t

d

slowest movement

fastest 
movement

road

cars t

d

AU

upper bound

lower bound

road

tq

d1

d2

(a) Simulated trajectories (b) Trajectory bounds

Figure 2: The simulation-based prediction

trajectories of objects by setting Pd(i) to values that
model different traffic conditions. In this setting, Pd(i)
is treated as a random variable to reflect the stochas-
tic, dynamic nature of traffic system. By giving Pd(i)
two values (e.g. 0 and 0.1 in our experiments), we can
derive two future trajectories, which describe, respec-
tively, the fastest and slowest movements of objects.
Finally, we translate the two regression lines, until all
estimated future positions fall within to obtain the pre-
dicted trajectory bounds. The SP method is shown in
Figure 2. Through the SP method, we obtain two pre-
dicted future trajectory bounds of objects. We apply
this technique to the AU - a set of moving objects that
have similar movement and are treated as one object.

The future trajectory bounds are predicted as soon
as AU is created. The trajectory bounds will not be
changed along the edge that the AU moves on until
the objects in the AU move to another edge in the net-
work. It is evident that the range of predicted bounds
of AU will become wider with the time, which leads to
lower accuracy of future trajectory prediction. How-
ever, if we issue another prediction when the predicted
bounds are not accurate any more, the costs of sim-
ulation and regression are high. Considering that the
movement of objects along one network edge is sta-
ble, we can assume the same trends of the trajectory
bounds and adjust only the initial locations when the
prediction is not accurate. Specifically, when the pre-
dicted position exceeds its actual position above the
predefined accuracy, the AU treats its actual locations
(the locations of the boundary objects) at that time
as the initial locations of the two trajectory bounds
and follow the same movement vector (e.g. slope of
the bounds) as the previous bounds to provide more
accurate predicted trajectory bounds. In this way, the
predicted trajectory bounds can be effectively revised
with few costs. Figure 2(b) shows the adaptation of
the trajectory bounds. tq is the time slice when actual
locations of boundary objects in the AU exceeds the
predicted bounds of the AU above precision threshold
and the d1,d2 are the actual locations of the first object
and last object respectively in the AU. The trajectory
bounds are revised according to the actual locations
and the original bounds’ slopes. Therefore, without
executing more prediction, the prediction accuracy of
the objects’ future trajectories can be kept high.

GENESIS
텍스트 상자   
12



Since the R-Tree indexes the road network, it re-
mains fixed, and the update of the AU index scheme
restricts to the update of adaptive units. Specifically,
an AU is usually created at the start of one edge and
dropped at the end of the edge. Since the AU is a
one-dimensional structure, it performs update opera-
tions much more efficiently than the two-dimensional
indexes. We will describe these operations in details.

3.4 Update Operations

The update of an AU can be of the following form:
creating an AU, dropping an AU, adding objects to an
AU and removing objects from an AU.

Creating an AU

To create an AU, we first compose the objSet – a list of
objects traveling in the same direction with similar ve-
locities, and in close-by locations. We then predict the
future trajectories of the AU by simulation and com-
pute its trajectory bounds. In fact, we treat the AU
as one moving object (the object closest to the center
of the AU) and predict its future trajectory bounds by
predicting this object. The prediction starts when the
AU is created and ends at the end the edge. Finally,
we write the created AU to the disk page and insert
the AU entry to its summary structure.

Dropping an AU

When objects in an AU move out of the edge, they
may change direction independently. So we need to
drop this AU and create new AUs in adjacent edges to
regroup the objects. When the front of an AU touches
the end of the edge, some objects in the AU may start
moving out of the edge. However, the AU cannot be
dropped because a query may occur at that time. Only
after the last object in the AU enters another edge and
joins another AU, can the AU be dropped. Dropping
an AU is simple. Through its entry in direct access
table, we find the AU and delete it.

Adding and removing objects from an AU

When an object leaves an AU, we remove this object
from the AU and find another AU in the neighborhood
to check if the object can fit that AU. If it can, the
object will be inserted into that AU, otherwise, a new
AU is created for this object. Specifically, when adding
an object into an AU, we first find the direct access
table of the edge that the object lies and, by its AU
entry in the table, access the AU disk storage. Finally,
we insert into the objects list of the AU and update
the AU entry in the direct access table. Removing an
object from an AU has the similar process.

Therefore, when updating an object in the AU index
scheme, we first determine whether the object is leav-
ing the edge and entering another one. If it is moving
to another edge, we delete it from the old AU (if it is
the last object in the old AU, the AU is also dropped)
and insert it into the nearest AU or create a new AU
in the edge it is entering. Otherwise, we do not update

the AU that the object belongs to unless its position
exceeds the bounds of the AU. In that case, we execute
the same updates as those when it moves to another
edge or only revise the predicted trajectory bounds of
the AU. Factually, we find, from the experiment eval-
uation, that the chances that objects move beyond the
trajectory bounds of its AU on an edge are very slim.
The algorithm 1 shows the update algorithm of AUs.

Algorithm 1: Update(objID, position, velocity, edgeID)

input : objID is the object identifier, position and
velocity are its position and velocity,
edgeID is the edge identifier where the
object lies

Find AU where objID is included before update;
if AU.edgeID 6= edgeID or (position <
AU.lowerBound or position > AU.upperBound)
then

// The object moves to a new edge or
exceeds bounds of its original AU

Find the nearest AU AU1 for objID on edgeID;
if GetNum(AU1.objSet) < MAXOBJNUM and
ObjectFitAU(objID, position, velocity, AU1)
then

InsertObject(objID, AU1.auID, AU1.edgeID);
else AU2 ← CreateAU(objID,edgeID);
if GetNum(AU.objSet) > 1 then

DeleteObject(objID, AU.auID, AU.edgeID);
else DropAU(AU.edgeID, AU.auID);

end

In summary, updating the AU-based index is easier
than updating the TPR-tree. It never invoke any com-
plex node splitting and merging. Moreover, thanks to
the similar movement features of objects in an AU and
the accurate prediction of the SP method, the objects
are seldom removed or added from their AU on an
edge, which reduces the number of index updates.

3.5 Query Algorithm

Query processing in the AU index scheme is straight-
forward. Given a query, we use the top level R-tree
to get the edges involved and then scan the direct
access tables of the edges. With the upperBound
and the lowerBound in the direct access table, we
can easily find AU entries that intersect the query,
and then visit the disk pages to get more informa-
tion about these AUs. For space limitation, we just
take window range query for example. Given a range
with (X1, Y1, X2, Y2), we first perform a spatial range
search in the top level R-Tree to locate the edges (e.g.
e1, e2, e3, . . .). For each selected edge ei, we trans-
form the original search (X1, Y1, X2, Y2) to a 1D search
range (S1, S2) (S1 ≤ S2), where S1 and S2 are the rel-
ative distances from the start vertex along the edge ei.
In the case of multiple intersecting edges, we can di-
vide the query range into several sub-ranges by edges
and apply the transformation method to each edge.
The method is also applicable to the various modes
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that the query and edges intersect. Here, we only il-
lustrate the case when the query window range only
intersects one edge and compute its relative distances
S1 and S2. It can be easily extended to other cases.
Suppose Xstart, Ystart, Xend, Yend are the start vertex
coordinates and the end vertex coordinates of the edge
ei. According to Thales Theorem about similar trian-
gles, we obtain S1 and S2 as follows:

r =
√

(Xstart −Xend)2 + (Ystart − Yend)2

S1 =
X1 −Xstart

Xend −Xstart
r

S2 =
Y1 − Ystart

Yend − Ystart
r

The transformed query (S1, S2) is then executed in
each of the AUs in the direct access table of the cor-
responding edge ei. By the trajectory bounds of the
AU, we can determine whether the transformed query
intersects the AU, thus filtering the unnecessary AUs
quickly. Finally, we access the selected AUs in disk
storage and return the objects satisfying the query
window. In summary, the query processing is efficient
due to the grouping of similar objects in AUs and the
dimensionality reduction of the query.

4 Performance Analysis

We evaluate the AU index scheme (denoted as “AU
index”) by comparing it with the TPR-tree and the
AU index scheme when the direct access table is not
used (denoted as “AU index without DT”). We mea-
sure their their update performance with the individ-
ual update, update frequency and total update costs
and their query performance.

4.1 Datasets

We use two datasets for our experiments. The first
is generated by the CA simulator, and the second by
the Brinkhoff’s Network-based Generator [2]. We use
the CA traffic simulator to generate a given number of
objects in a uniform network of size 10000×10000 con-
sisting of 500 edges. Each object has its route and is
initially placed at a random position on its route. The
initial velocities of the objects follow a uniform random
distribution in the range [0, 30]. The location and ve-
locity of every object is updated at each time-stamp.
The Brinkhoff’s Network-based Generator is used as a
popular benchmark in many related work. The gen-
erator takes a map of a real road network as input
(our experiment is based on the map of Oldenburg
including 7035 edges). The positions of the objects
are given in two dimensional X-Y coordinates. We
transform them to the form of (edgeid, pos), where
edgeid denotes the edge identifier and pos denotes
the object relative position on the edge. The generator
places a given number of objects at random positions
on the road network, and updates their locations at
each time-stamp.

Table 1: Parameters and their settings
Parameters Settings

Page size 4K
Node capacity 100

Numbers of queries 200
Numbers of mo(cars) 10K, ... , 50K, ... , 100K
Numbers of updates 100K, ... , 500K, ... , 1M
Dataset Generator CA Simulator, Network-based Generator

We implemented both the AU index scheme and
the TPR-tree in Java and carried out experiments on
a Pentium 4, 2.4 GHz PC with 512MB RAM running
Windows XP. To improve the performance of the index
structure, we employed a LRU buffer of the same size
as the one used in the TPR-tree [13]. We summarize
workload parameters in Table 1, where values in bold
are default values.

4.2 Update Cost

We compare the cost of index update for the AU index
and the TPR-tree in terms of the average individual
update cost, update frequency and total update cost.

Individual Update Cost

We study the individual update performance of the in-
dex while varying the number of moving objects and
updates. Figure 3 shows the average individual update
cost when increasing the data size from 10K to 100K.
Figure 4 shows how the performance varies over time.
Clearly, updating the TPR-tree tends to be costly,
and the problem is exacerbated when the data size in-
creases. In each case of different data size and different
number of updates, the AU index has much lower up-
date cost than the TPR-tree. The main reason can
be explained as follows. Each update of the TPR-tree
involves the search of an old entry and a new entry, as
well as the modification of the index structure (node
splitting, merging, and the propagating of changes up-
wards). The cost increases with larger data size due
to more overlaps among MBRs. The changes of index
structure with the increase of data updates also affect
the performance of the TPR-tree. However, the AU
index has better performance because its update only
restricts to the AU’s update and as a one-dimensional
access structure, the AU has few overlaps and incurs
no cost associated with node splitting and the propa-
gation of MBR updates.

The direct access table of the AU index has a signif-
icant contribution in improving update performance.
This is because the search of the specific AU is accel-
erated by the in-memory structure.

Update Frequency

Frequent updates of moving objects (a.k.a. data up-
dates) may lead to frequent updates of index. When
an object’s position exceeds the MBR or AU, the index
needs to be updated to delete the object from the old
MBR or AU and insert it to another one. In this ex-
periment, we measure the index update rate, which is
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Figure 3: Individual Update Cost with Different Datasize
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Figure 4: Individual Update Cost over Time

the ratio between number of index updates and num-
ber of data updates, for every 100K data updates and
different data size. Figure 5 and 6 show that the up-
date rate of the TPR-tree is nearly 4 to 5 times more
than that of the AU index. The index update rate
depends on the prediction method. In the AU index,
the future positions of the object are predicted more
accurately, so the object is likely to remain in its AU,
which leads to fewer index updates.

Total Update Costs

The total update costs depend on the update fre-
quency and the average individual update cost, and
it can reflect the index update performance more ac-
curately. From both Figure 7 and 8, we can see that
although the AU index has to deal with the creation
and dropping of AUs, the TPR-tree incurs much higher
update costs than the AU index and its performance
deteriorates dramatically as data size increases. This
is mainly due to the inaccuracy of the linear prediction
model and the complex reconstruction of the TPR-tree
(e.g. splitting and merging).

 2

 4

 6

 8

 10

 12

 14

90K70K70K50K30K10K

R
at

e 
of

 in
de

x 
up

da
te

s 
(%

)

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

90K70K70K50K30K10K

R
at

e 
of

 in
de

x 
up

da
te

s 
(%

)

Number of moving objects

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 5: Index Update Frequency with Different Datasize
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Figure 6: Index Update Frequency over Time
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Figure 7: Total Update Cost with Different Datasize

For each data size, the update costs of the two in-
dexes in the Brinkhoff’s dataset are both higher than
those in the CA dataset due to the higher complex-
ity of road network and skewed spatial distribution of
objects in the Brinkhoff’s dataset.

4.3 Query Cost

We study the window range query performance of the
TPR-tree and the AU index with different update set-
tings. We increase the number of updates from 100K
to 1M to examine how query performance is affected.
We issued 200 range queries for every 100K updates
in a 1M dataset. Figure 9 shows that the cost of the
TPR-tree increases much faster as the number of up-
dates increases. The cost of the AU index is consider-
ably lower and is less sensitive to the number of up-
dates. This is because the adaptive units in the AU
index have much less overlaps than the MBRs in the
TPR-tree, and the overlaps to a large extent determine
the range query cost. Besides, as objects move apart,
the amount of dead space in the TPR-tree increases,
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Figure 8: Total Update Cost over Time
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which makes false hits more likely. Also, updates lead
to the expanding and overlaps of MBRs, which further
deteriorate the performance of the TPR-tree. For the
AU index, the increase of the updates hardly affect the
total number of AUs, and the chances of overlaps of
different AUs are very slim.

We also study the query performance while varying
the number of moving objects and query window size.
For the space limitation, we do not report the exper-
imental results. Also, in each case, the AU index has
lower query cost than the TPR-tree and scales well.

 0

 200

 400

 600

 800

 1000

 1200

900K700K500K300K100K

R
an

ge
 q

ue
ry

 I/
O

s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(a) Brinkhoff

 30

 40

 50

 60

 70

 80

 90

 100

900K700K500K300K100K

R
an

ge
 q

ue
ry

 I/
O

s

Number of data updates

AU-index
AU-index without DT

TPR-tree

(b) CA

Figure 9: Effect of Updates on Query Performance

5 Conclusions and Future Work

Indexing objects moving in a constrained network es-
pecially the road network is a topic of great practical
importance. We focus on the index update issue for
the current positions of network-constrained moving
objects. We introduce a new access structure, adap-
tive unit that exploits as much as possible the charac-
teristics of the movements of objects. The updates of
the structure are minimized by an accurate prediction
method which produces two trajectory bounds based
on different assumptions on the traffic conditions. The
efficiency of the structure also results from the possi-
ble reduction of dimensionality of the trajectory data
to be indexed. Our experimental results performed
on two datasets show that the efficiency of the index
structure is one order of magnitude higher than the
TPR-tree.

In the future, we will compare the update perfor-
mance with the work of the R-tree-based updating op-
timization such as RUM-tree [15] and CTR-tree [4].
On the other hand, since the adaptive units contain
the predicted future trajectories of moving objects,
the predictive query algorithms can be developed nat-
urally based on the adaptive unit-based index. Fur-
thermore, we will extend the query algorithms to sup-
port the KNN query and continuous query for moving
objects in the road network.
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