
Predicted Range Aggregate Processing in Spatio-temporal 
Databases 

Wei Liao, Guifen Tang, Ning Jing, Zhinong Zhong 

School of Electronic Science and Engineering, National University of Defense Technology  
Changsha, China 

liaoweinudt@yahoo.com.cn 
 

Abstract 
Predicted range aggregate (PRA) query is an 
important researching issue in spatio-temporal 
databases. Recent studies have developed two 
major classes of PRA query methods: (1) 
accurate approaches, which search the common 
moving objects indexes to obtain an accurate 
result; and (2) estimate methods, which utilize 
approximate techniques to estimate the result 
with an acceptable error. 

In this paper, we present a novel accurate 
prediction index technique, named PRA-tree, for 
range aggregation of moving objects. PRA-tree 
takes into account both the velocity and space 
distribution of moving objects. First, the velocity 
domain is partitioned into different velocity 
buckets, and moving objects are classified into 
different velocity buckets by their velocities, thus 
objects in one bucket have similar velocities. 
Then we use aTPR-tree, which is based on the 
basic TPR-tree structure and added with 
aggregate information in intermediate nodes, to 
index objects in each bucket. PRA-tree is 
supplemented by a hash index on IDs of moving 
objects, and exploits bottom-up deletion 
algorithm, thus having a good dynamic 
performance and concurrency. Also new PRA 
query methods with a more precise branch-and-
bound searching strategy are developed for PRA-
tree. Extensive experiments confirm that the 
proposed methods are efficient and practical.  

1. Introduction 
Traditional research in spatio-temporal databases often 
aims at predicted query, which retrieves the moving 
objects lying inside a multidimensional hyper-rectangle in 
future. In many scenarios (e.g., statistical analysis, traffic 
monitoring, etc.), however, users are interested only in 
summarized information about such objects, instead of 
their individual properties. Consider, for example, a 

spatio-temporal database managing the vehicles in a city, 
results of predicted queries (e.g., finding all vehicles in 
the center) are meaningless (due to continuous object 
movements), while the aggregate information (the number 
of vehicles) is usually stable and measurable (e.g., finding 
the number of vehicles across the center during the next 5 
minutes) [1], [2].  

Specifically, given a set S of moving points in the d-
dimensional space, a predicted range aggregate (PRA) 
query returns a single value that summarizes the set 

SR ⊆  of points in a d-dimensional hyper-rectangle qR and 
a future time interval (or a future timestamp) qT according 
to some aggregation function (e.g., count, max, min, sum, 
average). In this paper, we consider predicted range 
distinct count queries on multidimensional moving points, 
where the result is the size of R (e.g., the number of 
vehicles in an area qR and a future time interval (or a 
future timestamp) qT), but the solutions can apply to any 
other aggregation mentioned above with straightforward 
adaptation. 

1.1  Motivation 

A PRA query can be trivially processed as an ordinary 
query, i.e., by first retrieving the qualifying objects and 
then aggregating their properties. This approach assumes 
that the server manages the detailed information of 
moving objects using a (typically disk-based) spatio-
temporal access method [3], [4], [5], however, incurs 
significant overhead since, the objective is to retrieve only 
a single value (as opposed to every qualifying object). 
The most popular aggregate indexes [6], [7] aim at 
estimating the PRA results. These approaches are 
motivated by the fact that approximate aggregates with 
small error are often as useful as the exact ones in practice, 
but can be obtained much more efficiently. In particular, 
such estimation methods require only a fraction of the 
dataset or a small amount of statistics and are significantly 
faster than exact retrieval. In this paper, we focus on 
accurate PRA queries processing with a novel aggregate 
index.  

1.2  Contributions  

In this paper, we propose a new indexing method, called 
predicted range aggregate tree (PRA-tree), for efficient 
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PRA queries processing. The PRA-tree takes into account 
the distribution of moving objects both in velocity and 
space domain. First, the velocity domain is partitioned 
into velocity buckets, and moving objects are classified 
into different velocity buckets by their velocities, thus 
objects in one bucket have similar velocities. Then we use 
aTPR-tree, which is based on the basic TPR-tree structure 
and added with aggregate information in intermediate 
nodes, to index the objects in each bucket. We supplement 
the PRA-tree by a hash index constructed on the IDs of 
moving objects, and develop a bottom-up deletion 
algorithm to obtain good dynamic performance and 
concurrency. Finally, we present novel algorithms that use 
a more precisely branch-and-bound searching strategy for 
PRA queries based on PRA-tree.  

The rest of the paper is organized as follows: Section 
2 reviews previous work related to ours. Section 3 
provides the problem definition and an overview of the 
proposed methods. Section 4 presents the PRA-tree index 
structure and its construction, insertion, deletion and 
update techniques. Section 5 elaborates algorithms for 
PRA queries. Section 6 evaluates the proposed methods 
through extensive experimental evaluation. Finally, 
Section 7 concludes the paper. 

2.   Related Work  
Section 2.1 discusses the most popular TPR-tree index, 
while Section 2.2 overviews the aggregate R-tree (aR-tree) 
which motivates our solution.  

2.1 The TPR-tree  

 
a) MBRs at time 0           b) MBRs of at time 1 

Figure 1 MBRs of TPR-tree 

The TPR-tree is an extension of the R-tree that can 
answer predicted queries on dynamic objects. The index 
structure is very similar to R-tree, and the difference is 
that the index stores velocities of elements along with 
their MBRs in nodes. The leaf node entry contains not 
only the position of moving objects but also their 
velocities. Similarly, an intermediate node entry also 
stores MBRs and velocity vector VBRs of its child nodes. 
As in traditional R-tree, the extents of MBR are such that 
tightly encloses all entries in the node at construction time. 
The velocity vector of the intermediate node MBR is 
determined as follows: (i) the velocity of the upper edge is 
the maximum of all velocities on this dimension in the 

sub-tree; (ii) the velocity of the lower edge is the 
minimum of all velocities on this dimension. This ensures 
that the MBR always encloses the underlying objects, but 
it is not necessarily tight all the time. The TPR-tree 
inherits the problems related to the R-tree, such as overlap 
and dead space. Since the index structure is dynamic, its 
query performance degrades quickly with time. The 
algorithms for insertion and deletion are also similar to R-
tree, while the TPR-tree uses time-parameterized metrics 
for parameters such as the area, perimeter, and distance 
from the centroid [4]. For example, Figure 1a) shows the 
MBRs and their velocities of TPR-tree at construction 
time 0, and Figure 1b) shows MBRs of the same TPR-tree 
at future time 1. 

2.2   The Aggregate R-tree (aR-tree) 

The aR-tree [8] improves the conventional R-tree by 
adding aggregate information into intermediate nodes. 
Figure 2a) shows an example, where for each intermediate 
entry, in addition to the minimum bounding rectangle 
(MBR), the tree stores the number of objects in its subtree 
(i.e., count aggregate function). To answer a RA query q 
(the shaded rectangle), the root R is first retrieved and its 
entries are compared with q. For every entry, there are 
three cases: 1) The MBR of the entry (e.g., e1) does not 
intersect q, and thus its subtree is not explored further. 2) 
The entry partially intersects q (e.g., e2) and its child 
nodes are fetched to continue the search. 3) The entry is 
contained in q (e.g., e3), then we simply add the aggregate 
number of the entry (i.e., 3 for e3) without accessing its 
subtree. As a result, only two node accesses (R and R2) 
are necessary, while a conventional R-tree (i.e., without 
the aggregate numbers) would also visit R3. The cost 
savings increase with the window of the query, which is 
an important fact because in practice RA queries often 
involve large rectangles. 

 
Figure 2 The aR-tree 

3   Preliminary and Overview  
We start with a concrete definition of aggregate query in 
spatio-temporal databases before presenting the PRA-tree 
index. By definition, a spatiotemporal object is a unified 
object with spatial and temporal extent [2]. A pure spatial 
object can be a point, a line, or a region in two or three-
dimensional space. The position and/or shape either 
changes continuously (e.g., the motion of vehicles) or 
discretely (e.g., the shrink of forest) with time. In this 
paper we concentrate on the points (moving objects), 
which have continuously moving positions, in two-
dimensional space. In spatio-temporal databases, a 
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moving object is represented as <Loc, Vec, A1, A2…An>, 
where Loc, Vec denote the position and velocity vector 
respectively, and A1, A2…An denote the non-spatial 
properties of this object. 

An aggregate function takes a set of tuples and returns 
a single value that summarizes the information contained 
in the set of tuples. Spatio-temporal aggregate query first 
retrieves the qualifying objects that satisfy a spatio-
temporal query predicate and returns aggregation 
information (e.g., count, average) on the non-spatial 
properties of objects.  

Given a range query q(qR,qT), which obtains the 
objects lying in the query window qT  and space area qR, 
and a moving objects dataset P, a spatio-temporal query 
predicate Sel(P) can be expressed as 
Sel(P)={pi| RiT qtpthatsuchqt ∈∈∃ )( }. Especially, if qT=tf, 
where tf denotes a future timestamp, then the query q is a 
predicted timestamp range query. Generally, the query 
space area is a static rectangle. Therefore, we can define 
predicted range aggregate query as the following. 

Definition 1 (predicted range aggregate query). Given 
a dataset P, in which each tuple is represented as <Loc, 
Vec, A1, A2,…,An>, where the domain of Ai is Di, and a 
aggregate function aggn DDDDf →××× K21: , where Dagg 

denote the range of f. then an predicted range aggregate 
query can be defined as follows:  

f(q,P)=f(Sel(P))=f({pi| RiT qtpthatsuchqt ∈∈∃ )( }). 
Similar to the aR-tree, we enhance the conventional 

TPR-tree by keeping aggregate information in 
intermediate nodes. To answer a PRA query q(qR,qT), the 
root node is first retrieved and its entries are compared 
with q. For every entry, there are three cases: 1) the MBR 
of this entry does not intersect query area qR all through 
the query time qT, then this subtree is not visited further; 2) 
the entry is totally contained in the query area qR during 
qT , and we simply add the aggregate information without 
accessing its subtree; 3) the entry partially intersects the 
area qR during qT , then its child nodes need to be fetched 
and continue searching until the leaf. Using this approach, 
the cost of processing PRA queries can be significantly 
reduced. 

However, the TPR-tee is constructed merely in the 
space domain, and slightly considering the velocity 
distribution of moving objects. At construction time, 
TPR-tree index clusters objects mainly according to their 
spatial proximity into different nodes; however, the 
velocities of objects in the same page are always 
discrepant greatly. The minority of objects with higher 
velocity make the velocity-bounding rectangle (VBR) 
relatively larger. In addition, the MBR will increase 
extremely with time, causing deterioration of the query 
performance and dynamic maintenance. Actually, in most 
applications PRA queries often visit unnecessary 
intermediate TPR-tree nodes due to the extremely large 
MBRs and massive dead space. 

Figure 3 shows the moving objects in two dimensional 
space with velocity vector (10, 0) and (-10, 0) for example. 
Figure 3 a) illustrates the MBRs of TPR-tree constructed 
merely in space domain. Obviously, the MBRs of 
intermediate TPR-tree nodes extend extremely along the 
horizontal direction, thus incurring the degradation of 
query performance. Therefore, an effective aggregate 
query indexing technique needs to consider the 
distribution of moving objects in both velocity and space 
domain to avoid the deterioration of query and dynamic 
performance.  

Motivated by this, we propose a predictive range 
aggregate tree (PRA-tree) index structure. First, the 
velocity domain is partitioned into buckets with about the 
same objects number. Then moving objects are classified 
into different velocity buckets by their velocities, and 
objects with similar velocities are clustered into one 
bucket. Finally, an aTPR-tree structure is presented for 
indexing moving objects in each bucket. 

Figure 3 b) and c) shows the MBRs of PRA-tree that 
considers the distribution of velocity domain. The moving 
objects are classified into two velocity buckets. The 
bucket1 (as shown in figure 3 b)) contains the moving 
objects with velocity vector (10, 0), while bucket2 (as 
shown in figure 3 c)) contains the moving objects with 
velocity vector (-10, 0). As seen, the MBR of each bucket 
moves with time, but the shapes of MBR keep unchanged. 
So PRA-tree can hold a good query performance during 
all the future time. 

 
Figure 3 MBRs of PRA-tree 

In addition, existing TPR-tree update algorithms work 
in a top-down manner. For each update, one index 
traversal to locate the item for deletion and another 
traversal to insert a new item are needed. The deletion 
operation affects the disk I/O cost greatly, for the MBRs 
of TPR-tree become looser with time, thus incurring lots 
of area overlaps between MBRs, and the searching 
operation for deletion needs to visit all the TPR-tree nodes 
at worst case. The top-down approach for visiting the 
hierarchical structure is very simple, and easy for dynamic 
maintenance. Nevertheless, for TPR-tree like index 
structures, the area between intermediate node MBRs 
inevitably overlaps each other (which is not occurred in 
other traditional indexes such B-tree), so that the top-
down searching strategy is inefficient in nature. This 
manner results in the deterioration of TPR-tree, and is not 
suitable in frequent update applications. Motivated by this, 
we exploit the bottom-up delete strategy to improve the 
dynamic performance of PRA-tree. 
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Figure 4The structure of PRA-tree

4.  The PRA-tree 
Section 4.1 discusses the structure of PRA-tree, while 
Section 4.2 provides the construction method, Section 4.3 
gives the insertion, deletion and update techniques, 
Section 4.4 evaluates the effect factors of PRA-tree 
performance. 

4.1  The PRA-tree Structure 

Specifically, in PRA-tree structure we keep the basic 
TPR-tree index structure and add aggregate summary into 
its intermediate nodes to make a new index, the aggregate 
TPR-tree (aTPR-tree). The entries in aTPR-tree are 
organized as vector <MBR, VBR, Agg, ptr>, where MBR, 
VBR, Agg, ptr denote the space area, velocity range, 
aggregate information of this node and pointer to its 
subtree respectively. In addition, we introduce a main 
memory linear queue for management of velocity buckets, 
the items of which are formed as <MBR, VBR, Agg, tpr>, 
where MBR, VBR, Agg, tpr denote the space area, velocity 
range, aggregate information of this bucket and pointer to 
its corresponding aTPR-tree respectively. To improve the 
dynamic performance of PRA-tree, we supplement a disk-
based hash index structure to access the leaf node of 
PRA-tree directly. Further, we modified the original TPR-
tree node item as vector <entry，…, entry, parentptr>, 
where entry denotes the child nodes contained in this node, 
and parentptr denotes the physical address of its parent 
node. Compared with node page size, the space 
consumption by pointer parentptr is trivial, and its effect 
on the fanout of PRA-tree is ignorable. 

Figure 4 illustrates the PRA-tree structure. The top 
right corner is a velocity bucket queue, in which each item 
describes the MBR, VBR and aggregate information (i.e., 
count) of its corresponding aTPR-tree. The bottom right 
corner is a hash index constructed on IDs of moving 
objects, the item is defined as vector <oid, ptr>, where oid 
denotes the identifier of moving objects, and ptr denotes 
physical offset of the object entry in leaf node; the left of 
Figure 4 is the aTPR-tree structures pointed to by the 
velocity bucket queue. In this figure, the pointer to parent 
node is not clearly depicted for concision. 

4.2   Construction  

We use spatio-temporal histograms as mentioned in [9] on 
two velocity dimensions to compute the velocity buckets 
number and their velocity range. The main idea is to 
divide the moving objects set into different partitions with 
about the same objects number. Then the algorithm scans 
the set of moving objects in sequence, and inserts objects 
into the aTPR-tree pointed to by corresponding bucket 
according to their velocities. To avoid redundant disk I/Os 
caused by frequent insertion one by one, construction 
algorithm exploits the bulk loading technique [9] to 
construct the aTPR-tree. However, unlike the traditional 
bulk loading method, the construction algorithm must 
compute and store the aggregate information in the 
intermediate nodes.  

The foremost problem for PRA-tree is to choose the 
number of velocity buckets. With too few velocity 
buckets the PRA-tree can not gain the optimal query and 
dynamic maintenance performance, while too many 
velocity buckets may cause shifts between velocity 
buckets when update, thus resulting in the deterioration of 
index structure. So choosing a proper number of velocity 
buckets can make the query and dynamic performance of 
PRA-tree optimal. In the experimental section, we 
evaluate the effect of velocity buckets number on the 
query and dynamic maintenance performance. 

4.3   Insertion , Deletion and Update 

The insertion algorithm is straightforward. When inserting 
a new moving object into the PRA-tree index, the 
algorithm first scans the main-memory velocity bucket 
queue to find the bucket that contains this object, and the 
aTPR-tree related to this bucket can be obtained by the 
pointer in the queue item. Then a new object entry is 
produced and inserted into a suitable leaf node using the 
standard TPR*-tree insertion algorithm. Finally, a new 
item is produced and inserted into the hash index. If 
overflow occurs while insertion, the aTPR-tree node must 
be split with the method mentioned in [4]. In addition, the 
algorithm must modify the aggregate information of this 
bucket and aTPR-tree nodes along the searching path. 

To delete an object entry from the PRA-tree, a simple 
straight approach is to first find the velocity bucket that 
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contains this object and delete the object entry from the 
aTPR-tree with standard deletion algorithm. However, 
usually the searching path for deletion may be several, so 
the algorithm must keep the searching path to perform 
another operation to complete the modification of 
aggregate information along the path, thus causing 
redundant disk I/Os. Motivated by this, we exploit the 
bottom-up deletion strategy like [10] to improve the 
deletion performance. The deletion algorithm first locates 
the leaf node that holds the object entry with hash index, 
and then deletes the entry from this leaf node directly. 
Then the algorithm ascends the branches of PRA-tree by 
the pointer parentptr until the root node, and modifies the 
MBR, VBR and aggregate information of intermediate 
nodes along the path meanwhile. Finally, the 
corresponding object item in the hash index must be 
deleted to reflect the change and also the bucket item 
related to this aTPR-tree must be modified. 

The update algorithm uses the standard deletion-
insertion mechanism in TPR-tree. The algorithm first 
deletes the old entry from the PRA-tree and then inserts a 
new entry into the PRA-tree. 

4.4   Effects on Index Performance  

PRA-tree partitions moving objects into velocity buckets 
that do not overlap each other in velocity domain. So the 
index can perform a good concurrency when a large 
amount of concurrent dynamic operations occur. 
Obviously, the concurrency improves with the number of 
velocity buckets. However, with too large a bucket 
number the index structure is prone to instability. That is 
to say, because the velocity range of each bucket is too 
small, when an object is updated, the likely object’s shift 
from one bucket to another bucket may cause excessive 
disk I/Os. In addition, limited by the system memory, and 
considering the space and velocity distribution uncertainty 
of moving objects, too many velocity buckets do not 
reduce node accesses for processing PRA query. 
Therefore, PRA-tree with a proper number of velocity 
buckets can obtain the optimal query and update 
performance.  

The cost of maintain the velocity bucket queue is 
inexpensive. The queue is constructed along with PRA-
tree, when dynamic operations such as insertion and 
deletion occurred, the summary in which must also be 
updated. The queue is pinned in main memory, thus 
decrease the visiting cost greatly. And the space 
consumed by velocity queue is rather small and ignorable. 

5  The Predicted Range Aggregate Query 
Algorithm 
We now illustrate the algorithm for answering a predicted 
range aggregate query with PRA-tree. There are two types 
of queries: predicted time-slice range aggregate query and 
predicted window range aggregate query, which have 

been thoroughly surveyed in [1]. For example, we 
consider the following queries: i) “how many cars are 
expected to appear at the center of city 10 minutes from 
now?” and ii) “how many cars are expected to cross the 
center of city during the next 5 minutes?” Section 5.1 
presents the algorithm for queries as case 1, and section 
5.2 details the algorithm for queries as case2. 

5.1   Predicted Time-slice Aggregate Range Query 
(PTRA Query) 

PTRA query returns the aggregate information of objects 
that will fall in a rectangle at a future timestamp based on 
the current motion of moving objects. Obviously, 
according to the current MBR and VBR of each node in 
PRA-tree, we can get the MBR of this node at future 
timestamp, and then an aggregate range search is 
implemented under the PRA-tree at this timestamp. 

Specifically, given a PTRA query q(qR,qT), the 
algorithm first scans the velocity bucket queue, and for 
each bucket we can get whether any object in this bucket 
lies in the query area qR at timestamp qT  according to the 
bucket’s MBR and VBR. If qR does not intersect the space 
area covered by a velocity bucket at future timestamp qT, 
the aTPR-tree pointed by this bucket need not to be 
visited. Or else if qR contains the space area covered by a 
velocity bucket at future timestamp qT, the aggregate 
information is returned from the bucket item directly and 
added to the query result. Otherwise, if qR intersects the 
space area covered by a velocity bucket at qT, the 
corresponding aTPR-tree is obtained and then from the 
root point, the algorithm recursively computes the 
topological relation between the MBR of this node at 
future timestamp qT and query area qR. If the MBR is 
contained in qR, then the algorithm adds the aggregate 
information in this node to the query result, or else if the 
MBR does not intersect qR each other, then the node is 
skipped; otherwise this subtree is explored further until 
the leaf level.  

5.2 Predicted Window Aggregate Range Query 
(PWRA Query) 

PWRA query returns the aggregate information of objects 
that will fall in a query rectangle at a future time window 
based on current motion of moving objects. To answer a 
PWRA query, a straightforward method is to judge 
whether the MBR of current node is totally contained in 
the query area at some future time. If true, then the 
algorithm only adds the aggregate information without 
visiting this subtree; or else if the MBR of this node does 
not intersect the query area at any future time, then this 
node is skipped. Otherwise, this subtree is explored 
further. This approach will access nodes whose MBR 
partially intersect the query area while the moving objects 
enclosed in totally lie in the query area at different 
timestamp (as shown in figure 5),thus causing excessive 
disk I/Os.    
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      Motivated by this, we present an enhanced predictive 
range aggregate query (EPRA) algorithm with a more 
precise branch and bound criterion. Before introducing 
the EPRA algorithm, we give the following lemmas. 

Lemma 1 Given a moving rectangle R with fixed edge 
velocities and a static query rectangle q, let Φ≠∩ Rq . If 
the four vertices of R lie in the query area q at different 
future timestamps, then the moving points enclosed in R 
will lie in the query area q during the future time. 

Proof: As an illustration of Lemma 1, consider Figure 
5 where the relationship between R(a, b, c, d) and query q 
is shown as case a) and case b), since Φ≠∩ Rq . 
Supposing the VBR of R is< +−+−

yyxx vvvv ,,, >, then the 
direction of VBR can only be depicted as in Figure 5 a) 
and b), for vertices a, b, c and d will lie in q at future time.  

In case a), c has the velocity < +−
yx vv , >, for Rp∈∀  

point p has the velocity < yx vv , >, where −> xx vv  

and +< yy vv . If c lies in q at future timestamp tc, then c 
must cross the line l2 and not cross the line l3 at tc. So that 
for point p, it must have crossed line l2 before tc and still 
not cross line l3, the p lies in q at some timestamp before 
tc.  

In case b): for a, b and c will lie in q at future times, 
obviously at least either b or c must lies in q at some 
future timestamp ts with d, then at ts the topological 
relationship between R and q can be illustrated as Figure 5 
a). According to the discussion above, we can conclude 
that every point enclosed in R will lie in q at some future 
timestamp. 

 
Figure 5 Topological relations between R and q 

Lemma 2 Given a moving rectangle R with fixed edge 
velocities and a static query rectangle q, let Φ=∩ Rq . If 
the four vertices of R lie in the query area q at different 
future timestamps, then the moving points enclosed in R 
will lie in the query area q during the future time. 

Proof: Supposing vertex d to be the first point that will 
lie in the query q, then at this timestamp the topological 
relationship between R and q can be shown as in Figure 5. 
So according to Lemma 1, we can deduce Lemma 2. 

Heuristic 1: Given an intermediate entry E and a PRA 
query q(qR,qT), the subtree of E totally satisfy query q if 
the vertices of MBR in entry E lie in query area qR during 
future time qT. If true, the query algorithm only returns the 
aggregate information of E without accessing its subtree.  

Heuristic 1 reduces the searching cost considerably, 
while incurring rather small computational overhead. 
Specifically, the algorithm first scans the velocity bucket 

queue, according to the current MBR and VBR of this 
bucket, the future timestamps when each vertex lies in the 
query area qR can computed. If all the vertices can lie in 
qR during the query window qT, then the algorithm only 
need to return the aggregate information of this bucket; or 
else if none of the vertices will lie in qR during the query 
window qT, then the algorithm skips this bucket; 
otherwise the bucket is explored further. Similarly, when 
searching the aTPR-tree, from the root point the 
timestamps when four vertices of MBR in each node lie in 
qR is computed. If all the vertices can lie in qR during the 
query window qT, then the algorithm only need to return 
the aggregate information of this node; or else if none of 
the vertices will lie in qR during the query window qT, 
then the algorithm skips this node; otherwise this subtree 
is explored further. 

The Algorithm 1 describes the pseudo-code for 
processing PWRA query as follows: 

Algorithm 1 
Input: a PWRA query q(qR,qT), output: Agg(q) 

1. Initialize Agg(q), set 0)( ←qAgg  
2.   For each item E in the velocity bucket queue  
3.      Compute the timestamps when each vertex lies in qR; 
4.      If all the timestamps lie between qT 
5.         Then AggEqAggqAgg .)()( +← ; 
6.      Else if none of the timestamps lies between qT 
7.         Then skip E; 
8.      Else get the aTPR-tree pointed by this bucket item E; 
9.         from the root point, for each entry E in this node 
10.           Compute the timestamps when each vertex lies in qR; 
11.            If all the timestamps lie between qT 
12.               Then AggEqAggqAgg .)()( +←  
13.            Else if none of the timestamps lies between qT 
14.               then skip E 
15.            Else explore the subtree recursively until leaf level 
16.               Compute the aggregate information in leaf node E 
17.                   Set AggEqAggqAgg .)()( +←  
18.      End if 
19.   End for 
20.   End if 
21.  End for 
 End algorithm 1 

6  Experimental Results and Performance 
Analysis 

6.1  Experimental Setting and Details 

In this section, we evaluate the query and update 
performance of PRA-tree with aTPR-tree and TPR*-tree. 
We use the Network-based Generator of Moving Objects 
[11] to generate 100k moving objects. The input to the 
generator is the road map of Oldenburg (a city in 
Germany). An object appears on a network node, and 
randomly chooses a destination. When the object reaches 
its destination, an update is reported by randomly 
selecting the next destination. When normalize the data 
space to 10000×10000, the default velocity of objects is 
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equal to 20 per timestamp. At each timestamp about 0.8 
% moving objects update their velocities. The PRA 
queries are generated as follows: i) the query spatial 
extent qRlen is set as 100×100,400×400,800×800,1200
×1200,1600×1600 respectively, and the starting point of 
its extent randomly distributes in (10000-qRlen)×(10000-
qRlen).ii) the query time window is [Tisu，Tisu+qTlen] 
(Tisu is the time when the query is presented ), where 
qTlen=20,40,60,80,100 respectively. The query perform-
ance is measured as the average number of node accesses 
in processing ten PRA queries with the same parameters. 
The update performance is measured as the average node 
accesses in executing 100 moving objects updates.  

Table 1 summarizes the parameters of PRA-tree 
exploited for the workload. For all simulations, we use a 
Celeron 2.4GHz CPU with 256MByte memory. 

Table 1  PRA-tree parameters 
Parameter Value  Description 
Number 
of buckets 

25/50/100/1
50/200/250 

The velocity domain is split 
into 5×5, 5×10, 10×10, 10×15, 
and 10×25 respectively. 

Page size 1k The page size of PRA-tree. 
Fanout 21  The average fanout of PRA-tree 

in intermediate node. 
Average 
height 

3 The average height of PRA-
tree. 

6.2  Performance Analysis 

We compare the query and update performance of PRA-
tree, TPR*-tree and aTPR-tree by node accesses. In order 
to study the deterioration of the indexes with time, we 
measure the performance of PRA-tree, aTPR-tree and 
TPR*-tree, using the same query workload, after every 5k 
updates. 
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a) qTlen=50              b) qRlen=1000 

Figure 6 comparison of PTRA query performance 

Figure 6 a) and b) shows the PTRA query cost as a 
function of qRlen and qTlen respectively. In Figure 6 a) 
we fix the parameter qTlen=50 and in Figure 6 b) we fix 
the parameter qRlen=1000. As seen, the query 
performance of PRA-tree works best and TPR*-tree 
exhibits a worst performance. This is because PRA-tree is 
constructed both on the space and velocity domain, the 
area of MBRs overlap relatively less than those of aTPR-
tree and TPR*-tree, thus having a good query 
performance. While TPR*-tree and aTPR-tree may visit 
many unnecessary nodes for the massive overlaps 
between area of MBRs with time, causing a worse query 

performance. In addition, the larger the query range area, 
the better the PTRA query performance of PRA tree, for 
the intermediate nodes in PRA-tree store the aggregate 
information of this subtree, thus reducing the node 
accesses needed by TPR*-tree. The aTPR-tree holds a 
relative worse performance than PRA-tree for its larger 
MBRs with time. 
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a) qTlen=50              b) qRlen=1000 

Figure 7 comparison of PWRA query performance 

Figure 7 a) and b) shows the PWRA query cost as a 
function of qRlen and qTlen respectively. In Figure 7 a) 
we fix the parameter qTlen=50 and in Figure 7 b) we fix 
the parameter qRlen=1000. As seen, the query 
performance of PRA-tree works best and TPR*-tree 
exhibits a worst performance. This is because the MBRs 
PRA-tree overlap relatively less than those of aTPR-tree 
and TPR*-tree, thus having a good query performance. 
While TPR*-tree and aTPR-tree may visit many 
unnecessary nodes for the massive overlaps between area 
of MBRs with time. Furthermore, PRA-tree exploits more 
precise branch-and-bound strategy, thus having a best 
performance.  
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 a) update cost     b) query cost 
Figure 8 comparison of update& query performance 

Figure 8 compares the average PRWA query and 
update cost as a function of the number of updates. As 
shown in figure 8 a), the node accesses needed in PRA-
tree update execution are far less than TPR*-tree and 
aTPR-tree. And PRA-tree and TPR*-tree have nearly 
constant update cost This is because PRA-tree exploits the 
bottom-up deletion strategy, avoiding the excessive node 
accesses for deletion search, while TPR*-tree and aTPR-
tree process update in top-down manner, needing more 
node accesses. 

Figure 8 b) shows the node accesses in processing one 
PWRA query as function of an interval of 5k updates 
when fixing the parameters qTlen=50 and qRlen=1000. It 
is clear that the query cost increases with the number of 
updates. The PRA-tree has a slow increasing query cost, 
while the cost of TPR*-tree and aTPR-tree increase 
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significantly. This is because the MBRs of PRA-tree 
extend less than those of TPR*-tree and aTPR-tree, so the 
degradation is not much expensive. 
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      a) effect on update cost        b) effect on query cost 

Figure 9 effect of velocity bucket number 

Figure 9 shows the effect of velocity buckets number 
on PWRA query and update performance of PRA-tree. 
We fix the parameters qTlen=50 and qRlen=1000. As 
shown in Figure9 a), the update cost of PRA-tree increase 
slightly with the number of velocity buckets, because the 
small velocity bucket window causes the shift of moving 
objects between buckets, thus incurs excessive node 
accesses. From Figure 9 b) we can see, the PWRA query 
performance will degrade with too many buckets, this is 
because of, as mentioned earlier, the uncertainty of 
moving objects distribution in velocity and space, the 
probability of overlaps between the area covered by 
velocity buckets and query region don’t decrease linearly 
as expected. However, it may bring more TPR-tree node 
accesses. In this experiment, we set the number of 
velocity bucket equal to 25. 

7.   Conclusion  
This paper investigates the problem of PRA queries. Our 
contribution is a novel indexing method, referred to as 
predicted range aggregate R-tree (PRA-tree). PRA-tree 
considers the distribution of moving objects both in 
velocity and space domain. First, we partition the velocity 
domain into velocity buckets, and then we use aTPR-tree 
to index the moving objects in each bucket. To support 
frequent updates a supplemented hash index on leaf nodes 
is added to PRA-tree. Also an extended bottom-up 
deletion algorithm is developed for PRA-tree.  

An open problem is to extend our work to support 
large scale of concurrent PRA queries efficiently. Further, 
the PRA query results need to be revaluated for the 
frequent object updates, so developing novel incremental 
algorithms for PRA queries is also an interesting work. 

References 

[1]   Yufei Tao and Dimitris Papadias, Range Aggregate 
Processing in Spatial Databases. IEEE TKDE, 
NO.12, pp.1555-1570, 2004. 

[2]   Ine´s Fernando Vega Lo´pez, Richard T. Snodgrass, 
and Bongki Moon. Spatiotemporal Aggregate 

Computation: A Survey. IEEE TKDE, NO.2, 
pp.271-286, 2005. 

[3]   Simonas Saltenis, Christian S. Jensen, et al.. 
Indexing the Positions of Continuously Moving 
Objects. Proc. SIGMOD Conf., pp.331-342, 2000. 

[4]   Tao Y., Papadias D., and Sun J.. The TPR*-Tree: 
An Optimized Spatio-Temporal Access Method for 
Predictive Queries. Proc. VLDB Conf., pp.790-801, 
2003.  

[5]   Jignesh M. Patel, Yun Chen, V. Prasad Chaka. 
STRIPES: An Efficient Index for Predicted 
Trajectories. Proc. SIGMOD Conf., pp.635-646, 
2004. 

[6]   Yufei Tao, Dimitris Papadias, Jian Zhai, and Qing 
Li. Venn Sampling: A Novel Prediction Technique 
for Moving Objects. Proc. Int’l Conf. Data Eng., 
pp.680-691, 2005. 

[7]   Yufei Tao, Jimeng Sun, Dimitris Papadias. 
Selectivity Estimation for Predictive Spatio-
Temporal Queries. Proc. Int’l Conf. Data Eng., 
pp.417-428, 2003. 

[8]   M. Jurgens and H. Lenz. The Ra*-Tree: An 
Improved R-Tree with Materialized Data for 
Supporting Range Queries on OLAP-Data. Proc. 
DEXA Workshop, 1998. 

[9]   Bin Lin and Jianwen Su. On bulk loading TPR-tree. 
Proc. IEEE Conf. Mobile Data Management 
(MDM), pp.114-124, 2004. 

[10]   M. Lee, W. Hsu, C. Jensen, B. Cui, and K. Teo. 
Supporting Frequent Updates in R-Trees: A 
Bottom-Up Approach. Proc. VLDB Conf., pp.608-
619, 2003. 

[11]   Thomas Brinkhoff. A Framework for Generating 
Network-Based Moving Objects. GeoInformatica, 
Vol.6 (2), pp.153-180, Kluwer, 2002. 

 
 

GENESIS
텍스트 상자   
32




