
Predicted Range Aggregate Processing in Spatio-temporal
Databases

Wei Liao, Guifen Tang, Ning Jing, Zhinong Zhong

School of Electronic Science and Engineering, National University of Defense Technology
Changsha, China

liaoweinudt@yahoo.com.cn

Abstract
Predicted range aggregate (PRA) query is an
important researching issue in spatio-temporal
databases. Recent studies have developed two
major classes of PRA query methods: (1)
accurate approaches, which search the common
moving objects indexes to obtain an accurate
result; and (2) estimate methods, which utilize
approximate techniques to estimate the result
with an acceptable error.

In this paper, we present a novel accurate
prediction index technique, named PRA-tree, for
range aggregation of moving objects. PRA-tree
takes into account both the velocity and space
distribution of moving objects. First, the velocity
domain is partitioned into different velocity
buckets, and moving objects are classified into
different velocity buckets by their velocities, thus
objects in one bucket have similar velocities.
Then we use aTPR-tree, which is based on the
basic TPR-tree structure and added with
aggregate information in intermediate nodes, to
index objects in each bucket. PRA-tree is
supplemented by a hash index on IDs of moving
objects, and exploits bottom-up deletion
algorithm, thus having a good dynamic
performance and concurrency. Also new PRA
query methods with a more precise branch-and-
bound searching strategy are developed for PRA-
tree. Extensive experiments confirm that the
proposed methods are efficient and practical.

1. Introduction
Traditional research in spatio-temporal databases often
aims at predicted query, which retrieves the moving
objects lying inside a multidimensional hyper-rectangle in
future. In many scenarios (e.g., statistical analysis, traffic
monitoring, etc.), however, users are interested only in
summarized information about such objects, instead of
their individual properties. Consider, for example, a

spatio-temporal database managing the vehicles in a city,
results of predicted queries (e.g., finding all vehicles in
the center) are meaningless (due to continuous object
movements), while the aggregate information (the number
of vehicles) is usually stable and measurable (e.g., finding
the number of vehicles across the center during the next 5
minutes) [1], [2].

Specifically, given a set S of moving points in the d-
dimensional space, a predicted range aggregate (PRA)
query returns a single value that summarizes the set

SR ⊆ of points in a d-dimensional hyper-rectangle qR and
a future time interval (or a future timestamp) qT according
to some aggregation function (e.g., count, max, min, sum,
average). In this paper, we consider predicted range
distinct count queries on multidimensional moving points,
where the result is the size of R (e.g., the number of
vehicles in an area qR and a future time interval (or a
future timestamp) qT), but the solutions can apply to any
other aggregation mentioned above with straightforward
adaptation.

1.1 Motivation

A PRA query can be trivially processed as an ordinary
query, i.e., by first retrieving the qualifying objects and
then aggregating their properties. This approach assumes
that the server manages the detailed information of
moving objects using a (typically disk-based) spatio-
temporal access method [3], [4], [5], however, incurs
significant overhead since, the objective is to retrieve only
a single value (as opposed to every qualifying object).
The most popular aggregate indexes [6], [7] aim at
estimating the PRA results. These approaches are
motivated by the fact that approximate aggregates with
small error are often as useful as the exact ones in practice,
but can be obtained much more efficiently. In particular,
such estimation methods require only a fraction of the
dataset or a small amount of statistics and are significantly
faster than exact retrieval. In this paper, we focus on
accurate PRA queries processing with a novel aggregate
index.

1.2 Contributions

In this paper, we propose a new indexing method, called
predicted range aggregate tree (PRA-tree), for efficient

--
Proceedings of the 3rd Workshop on STDBM
Seoul, Korea, September 11, 2006

GENESIS
텍스트 상자
25

PRA queries processing. The PRA-tree takes into account
the distribution of moving objects both in velocity and
space domain. First, the velocity domain is partitioned
into velocity buckets, and moving objects are classified
into different velocity buckets by their velocities, thus
objects in one bucket have similar velocities. Then we use
aTPR-tree, which is based on the basic TPR-tree structure
and added with aggregate information in intermediate
nodes, to index the objects in each bucket. We supplement
the PRA-tree by a hash index constructed on the IDs of
moving objects, and develop a bottom-up deletion
algorithm to obtain good dynamic performance and
concurrency. Finally, we present novel algorithms that use
a more precisely branch-and-bound searching strategy for
PRA queries based on PRA-tree.

The rest of the paper is organized as follows: Section
2 reviews previous work related to ours. Section 3
provides the problem definition and an overview of the
proposed methods. Section 4 presents the PRA-tree index
structure and its construction, insertion, deletion and
update techniques. Section 5 elaborates algorithms for
PRA queries. Section 6 evaluates the proposed methods
through extensive experimental evaluation. Finally,
Section 7 concludes the paper.

2. Related Work
Section 2.1 discusses the most popular TPR-tree index,
while Section 2.2 overviews the aggregate R-tree (aR-tree)
which motivates our solution.

2.1 The TPR-tree

a) MBRs at time 0 b) MBRs of at time 1

Figure 1 MBRs of TPR-tree

The TPR-tree is an extension of the R-tree that can
answer predicted queries on dynamic objects. The index
structure is very similar to R-tree, and the difference is
that the index stores velocities of elements along with
their MBRs in nodes. The leaf node entry contains not
only the position of moving objects but also their
velocities. Similarly, an intermediate node entry also
stores MBRs and velocity vector VBRs of its child nodes.
As in traditional R-tree, the extents of MBR are such that
tightly encloses all entries in the node at construction time.
The velocity vector of the intermediate node MBR is
determined as follows: (i) the velocity of the upper edge is
the maximum of all velocities on this dimension in the

sub-tree; (ii) the velocity of the lower edge is the
minimum of all velocities on this dimension. This ensures
that the MBR always encloses the underlying objects, but
it is not necessarily tight all the time. The TPR-tree
inherits the problems related to the R-tree, such as overlap
and dead space. Since the index structure is dynamic, its
query performance degrades quickly with time. The
algorithms for insertion and deletion are also similar to R-
tree, while the TPR-tree uses time-parameterized metrics
for parameters such as the area, perimeter, and distance
from the centroid [4]. For example, Figure 1a) shows the
MBRs and their velocities of TPR-tree at construction
time 0, and Figure 1b) shows MBRs of the same TPR-tree
at future time 1.

2.2 The Aggregate R-tree (aR-tree)

The aR-tree [8] improves the conventional R-tree by
adding aggregate information into intermediate nodes.
Figure 2a) shows an example, where for each intermediate
entry, in addition to the minimum bounding rectangle
(MBR), the tree stores the number of objects in its subtree
(i.e., count aggregate function). To answer a RA query q
(the shaded rectangle), the root R is first retrieved and its
entries are compared with q. For every entry, there are
three cases: 1) The MBR of the entry (e.g., e1) does not
intersect q, and thus its subtree is not explored further. 2)
The entry partially intersects q (e.g., e2) and its child
nodes are fetched to continue the search. 3) The entry is
contained in q (e.g., e3), then we simply add the aggregate
number of the entry (i.e., 3 for e3) without accessing its
subtree. As a result, only two node accesses (R and R2)
are necessary, while a conventional R-tree (i.e., without
the aggregate numbers) would also visit R3. The cost
savings increase with the window of the query, which is
an important fact because in practice RA queries often
involve large rectangles.

Figure 2 The aR-tree

3 Preliminary and Overview
We start with a concrete definition of aggregate query in
spatio-temporal databases before presenting the PRA-tree
index. By definition, a spatiotemporal object is a unified
object with spatial and temporal extent [2]. A pure spatial
object can be a point, a line, or a region in two or three-
dimensional space. The position and/or shape either
changes continuously (e.g., the motion of vehicles) or
discretely (e.g., the shrink of forest) with time. In this
paper we concentrate on the points (moving objects),
which have continuously moving positions, in two-
dimensional space. In spatio-temporal databases, a

GENESIS
텍스트 상자
26

moving object is represented as <Loc, Vec, A1, A2…An>,
where Loc, Vec denote the position and velocity vector
respectively, and A1, A2…An denote the non-spatial
properties of this object.

An aggregate function takes a set of tuples and returns
a single value that summarizes the information contained
in the set of tuples. Spatio-temporal aggregate query first
retrieves the qualifying objects that satisfy a spatio-
temporal query predicate and returns aggregation
information (e.g., count, average) on the non-spatial
properties of objects.

Given a range query q(qR,qT), which obtains the
objects lying in the query window qT and space area qR,
and a moving objects dataset P, a spatio-temporal query
predicate Sel(P) can be expressed as
Sel(P)={pi| RiT qtpthatsuchqt ∈∈∃)(}. Especially, if qT=tf,
where tf denotes a future timestamp, then the query q is a
predicted timestamp range query. Generally, the query
space area is a static rectangle. Therefore, we can define
predicted range aggregate query as the following.

Definition 1 (predicted range aggregate query). Given
a dataset P, in which each tuple is represented as <Loc,
Vec, A1, A2,…,An>, where the domain of Ai is Di, and a
aggregate function aggn DDDDf →××× K21: , where Dagg

denote the range of f. then an predicted range aggregate
query can be defined as follows:

f(q,P)=f(Sel(P))=f({pi| RiT qtpthatsuchqt ∈∈∃)(}).
Similar to the aR-tree, we enhance the conventional

TPR-tree by keeping aggregate information in
intermediate nodes. To answer a PRA query q(qR,qT), the
root node is first retrieved and its entries are compared
with q. For every entry, there are three cases: 1) the MBR
of this entry does not intersect query area qR all through
the query time qT, then this subtree is not visited further; 2)
the entry is totally contained in the query area qR during
qT , and we simply add the aggregate information without
accessing its subtree; 3) the entry partially intersects the
area qR during qT , then its child nodes need to be fetched
and continue searching until the leaf. Using this approach,
the cost of processing PRA queries can be significantly
reduced.

However, the TPR-tee is constructed merely in the
space domain, and slightly considering the velocity
distribution of moving objects. At construction time,
TPR-tree index clusters objects mainly according to their
spatial proximity into different nodes; however, the
velocities of objects in the same page are always
discrepant greatly. The minority of objects with higher
velocity make the velocity-bounding rectangle (VBR)
relatively larger. In addition, the MBR will increase
extremely with time, causing deterioration of the query
performance and dynamic maintenance. Actually, in most
applications PRA queries often visit unnecessary
intermediate TPR-tree nodes due to the extremely large
MBRs and massive dead space.

Figure 3 shows the moving objects in two dimensional
space with velocity vector (10, 0) and (-10, 0) for example.
Figure 3 a) illustrates the MBRs of TPR-tree constructed
merely in space domain. Obviously, the MBRs of
intermediate TPR-tree nodes extend extremely along the
horizontal direction, thus incurring the degradation of
query performance. Therefore, an effective aggregate
query indexing technique needs to consider the
distribution of moving objects in both velocity and space
domain to avoid the deterioration of query and dynamic
performance.

Motivated by this, we propose a predictive range
aggregate tree (PRA-tree) index structure. First, the
velocity domain is partitioned into buckets with about the
same objects number. Then moving objects are classified
into different velocity buckets by their velocities, and
objects with similar velocities are clustered into one
bucket. Finally, an aTPR-tree structure is presented for
indexing moving objects in each bucket.

Figure 3 b) and c) shows the MBRs of PRA-tree that
considers the distribution of velocity domain. The moving
objects are classified into two velocity buckets. The
bucket1 (as shown in figure 3 b)) contains the moving
objects with velocity vector (10, 0), while bucket2 (as
shown in figure 3 c)) contains the moving objects with
velocity vector (-10, 0). As seen, the MBR of each bucket
moves with time, but the shapes of MBR keep unchanged.
So PRA-tree can hold a good query performance during
all the future time.

Figure 3 MBRs of PRA-tree

In addition, existing TPR-tree update algorithms work
in a top-down manner. For each update, one index
traversal to locate the item for deletion and another
traversal to insert a new item are needed. The deletion
operation affects the disk I/O cost greatly, for the MBRs
of TPR-tree become looser with time, thus incurring lots
of area overlaps between MBRs, and the searching
operation for deletion needs to visit all the TPR-tree nodes
at worst case. The top-down approach for visiting the
hierarchical structure is very simple, and easy for dynamic
maintenance. Nevertheless, for TPR-tree like index
structures, the area between intermediate node MBRs
inevitably overlaps each other (which is not occurred in
other traditional indexes such B-tree), so that the top-
down searching strategy is inefficient in nature. This
manner results in the deterioration of TPR-tree, and is not
suitable in frequent update applications. Motivated by this,
we exploit the bottom-up delete strategy to improve the
dynamic performance of PRA-tree.

GENESIS
텍스트 상자
27

Figure 4The structure of PRA-tree

4. The PRA-tree
Section 4.1 discusses the structure of PRA-tree, while
Section 4.2 provides the construction method, Section 4.3
gives the insertion, deletion and update techniques,
Section 4.4 evaluates the effect factors of PRA-tree
performance.

4.1 The PRA-tree Structure

Specifically, in PRA-tree structure we keep the basic
TPR-tree index structure and add aggregate summary into
its intermediate nodes to make a new index, the aggregate
TPR-tree (aTPR-tree). The entries in aTPR-tree are
organized as vector <MBR, VBR, Agg, ptr>, where MBR,
VBR, Agg, ptr denote the space area, velocity range,
aggregate information of this node and pointer to its
subtree respectively. In addition, we introduce a main
memory linear queue for management of velocity buckets,
the items of which are formed as <MBR, VBR, Agg, tpr>,
where MBR, VBR, Agg, tpr denote the space area, velocity
range, aggregate information of this bucket and pointer to
its corresponding aTPR-tree respectively. To improve the
dynamic performance of PRA-tree, we supplement a disk-
based hash index structure to access the leaf node of
PRA-tree directly. Further, we modified the original TPR-
tree node item as vector <entry，…, entry, parentptr>,
where entry denotes the child nodes contained in this node,
and parentptr denotes the physical address of its parent
node. Compared with node page size, the space
consumption by pointer parentptr is trivial, and its effect
on the fanout of PRA-tree is ignorable.

Figure 4 illustrates the PRA-tree structure. The top
right corner is a velocity bucket queue, in which each item
describes the MBR, VBR and aggregate information (i.e.,
count) of its corresponding aTPR-tree. The bottom right
corner is a hash index constructed on IDs of moving
objects, the item is defined as vector <oid, ptr>, where oid
denotes the identifier of moving objects, and ptr denotes
physical offset of the object entry in leaf node; the left of
Figure 4 is the aTPR-tree structures pointed to by the
velocity bucket queue. In this figure, the pointer to parent
node is not clearly depicted for concision.

4.2 Construction

We use spatio-temporal histograms as mentioned in [9] on
two velocity dimensions to compute the velocity buckets
number and their velocity range. The main idea is to
divide the moving objects set into different partitions with
about the same objects number. Then the algorithm scans
the set of moving objects in sequence, and inserts objects
into the aTPR-tree pointed to by corresponding bucket
according to their velocities. To avoid redundant disk I/Os
caused by frequent insertion one by one, construction
algorithm exploits the bulk loading technique [9] to
construct the aTPR-tree. However, unlike the traditional
bulk loading method, the construction algorithm must
compute and store the aggregate information in the
intermediate nodes.

The foremost problem for PRA-tree is to choose the
number of velocity buckets. With too few velocity
buckets the PRA-tree can not gain the optimal query and
dynamic maintenance performance, while too many
velocity buckets may cause shifts between velocity
buckets when update, thus resulting in the deterioration of
index structure. So choosing a proper number of velocity
buckets can make the query and dynamic performance of
PRA-tree optimal. In the experimental section, we
evaluate the effect of velocity buckets number on the
query and dynamic maintenance performance.

4.3 Insertion , Deletion and Update

The insertion algorithm is straightforward. When inserting
a new moving object into the PRA-tree index, the
algorithm first scans the main-memory velocity bucket
queue to find the bucket that contains this object, and the
aTPR-tree related to this bucket can be obtained by the
pointer in the queue item. Then a new object entry is
produced and inserted into a suitable leaf node using the
standard TPR*-tree insertion algorithm. Finally, a new
item is produced and inserted into the hash index. If
overflow occurs while insertion, the aTPR-tree node must
be split with the method mentioned in [4]. In addition, the
algorithm must modify the aggregate information of this
bucket and aTPR-tree nodes along the searching path.

To delete an object entry from the PRA-tree, a simple
straight approach is to first find the velocity bucket that

GENESIS
텍스트 상자
28

contains this object and delete the object entry from the
aTPR-tree with standard deletion algorithm. However,
usually the searching path for deletion may be several, so
the algorithm must keep the searching path to perform
another operation to complete the modification of
aggregate information along the path, thus causing
redundant disk I/Os. Motivated by this, we exploit the
bottom-up deletion strategy like [10] to improve the
deletion performance. The deletion algorithm first locates
the leaf node that holds the object entry with hash index,
and then deletes the entry from this leaf node directly.
Then the algorithm ascends the branches of PRA-tree by
the pointer parentptr until the root node, and modifies the
MBR, VBR and aggregate information of intermediate
nodes along the path meanwhile. Finally, the
corresponding object item in the hash index must be
deleted to reflect the change and also the bucket item
related to this aTPR-tree must be modified.

The update algorithm uses the standard deletion-
insertion mechanism in TPR-tree. The algorithm first
deletes the old entry from the PRA-tree and then inserts a
new entry into the PRA-tree.

4.4 Effects on Index Performance

PRA-tree partitions moving objects into velocity buckets
that do not overlap each other in velocity domain. So the
index can perform a good concurrency when a large
amount of concurrent dynamic operations occur.
Obviously, the concurrency improves with the number of
velocity buckets. However, with too large a bucket
number the index structure is prone to instability. That is
to say, because the velocity range of each bucket is too
small, when an object is updated, the likely object’s shift
from one bucket to another bucket may cause excessive
disk I/Os. In addition, limited by the system memory, and
considering the space and velocity distribution uncertainty
of moving objects, too many velocity buckets do not
reduce node accesses for processing PRA query.
Therefore, PRA-tree with a proper number of velocity
buckets can obtain the optimal query and update
performance.

The cost of maintain the velocity bucket queue is
inexpensive. The queue is constructed along with PRA-
tree, when dynamic operations such as insertion and
deletion occurred, the summary in which must also be
updated. The queue is pinned in main memory, thus
decrease the visiting cost greatly. And the space
consumed by velocity queue is rather small and ignorable.

5 The Predicted Range Aggregate Query
Algorithm
We now illustrate the algorithm for answering a predicted
range aggregate query with PRA-tree. There are two types
of queries: predicted time-slice range aggregate query and
predicted window range aggregate query, which have

been thoroughly surveyed in [1]. For example, we
consider the following queries: i) “how many cars are
expected to appear at the center of city 10 minutes from
now?” and ii) “how many cars are expected to cross the
center of city during the next 5 minutes?” Section 5.1
presents the algorithm for queries as case 1, and section
5.2 details the algorithm for queries as case2.

5.1 Predicted Time-slice Aggregate Range Query
(PTRA Query)

PTRA query returns the aggregate information of objects
that will fall in a rectangle at a future timestamp based on
the current motion of moving objects. Obviously,
according to the current MBR and VBR of each node in
PRA-tree, we can get the MBR of this node at future
timestamp, and then an aggregate range search is
implemented under the PRA-tree at this timestamp.

Specifically, given a PTRA query q(qR,qT), the
algorithm first scans the velocity bucket queue, and for
each bucket we can get whether any object in this bucket
lies in the query area qR at timestamp qT according to the
bucket’s MBR and VBR. If qR does not intersect the space
area covered by a velocity bucket at future timestamp qT,
the aTPR-tree pointed by this bucket need not to be
visited. Or else if qR contains the space area covered by a
velocity bucket at future timestamp qT, the aggregate
information is returned from the bucket item directly and
added to the query result. Otherwise, if qR intersects the
space area covered by a velocity bucket at qT, the
corresponding aTPR-tree is obtained and then from the
root point, the algorithm recursively computes the
topological relation between the MBR of this node at
future timestamp qT and query area qR. If the MBR is
contained in qR, then the algorithm adds the aggregate
information in this node to the query result, or else if the
MBR does not intersect qR each other, then the node is
skipped; otherwise this subtree is explored further until
the leaf level.

5.2 Predicted Window Aggregate Range Query
(PWRA Query)

PWRA query returns the aggregate information of objects
that will fall in a query rectangle at a future time window
based on current motion of moving objects. To answer a
PWRA query, a straightforward method is to judge
whether the MBR of current node is totally contained in
the query area at some future time. If true, then the
algorithm only adds the aggregate information without
visiting this subtree; or else if the MBR of this node does
not intersect the query area at any future time, then this
node is skipped. Otherwise, this subtree is explored
further. This approach will access nodes whose MBR
partially intersect the query area while the moving objects
enclosed in totally lie in the query area at different
timestamp (as shown in figure 5),thus causing excessive
disk I/Os.

GENESIS
텍스트 상자
29

 Motivated by this, we present an enhanced predictive
range aggregate query (EPRA) algorithm with a more
precise branch and bound criterion. Before introducing
the EPRA algorithm, we give the following lemmas.

Lemma 1 Given a moving rectangle R with fixed edge
velocities and a static query rectangle q, let Φ≠∩ Rq . If
the four vertices of R lie in the query area q at different
future timestamps, then the moving points enclosed in R
will lie in the query area q during the future time.

Proof: As an illustration of Lemma 1, consider Figure
5 where the relationship between R(a, b, c, d) and query q
is shown as case a) and case b), since Φ≠∩ Rq .
Supposing the VBR of R is< +−+−

yyxx vvvv ,,, >, then the
direction of VBR can only be depicted as in Figure 5 a)
and b), for vertices a, b, c and d will lie in q at future time.

In case a), c has the velocity < +−
yx vv , >, for Rp∈∀

point p has the velocity < yx vv , >, where −> xx vv

and +< yy vv . If c lies in q at future timestamp tc, then c
must cross the line l2 and not cross the line l3 at tc. So that
for point p, it must have crossed line l2 before tc and still
not cross line l3, the p lies in q at some timestamp before
tc.

In case b): for a, b and c will lie in q at future times,
obviously at least either b or c must lies in q at some
future timestamp ts with d, then at ts the topological
relationship between R and q can be illustrated as Figure 5
a). According to the discussion above, we can conclude
that every point enclosed in R will lie in q at some future
timestamp.

Figure 5 Topological relations between R and q

Lemma 2 Given a moving rectangle R with fixed edge
velocities and a static query rectangle q, let Φ=∩ Rq . If
the four vertices of R lie in the query area q at different
future timestamps, then the moving points enclosed in R
will lie in the query area q during the future time.

Proof: Supposing vertex d to be the first point that will
lie in the query q, then at this timestamp the topological
relationship between R and q can be shown as in Figure 5.
So according to Lemma 1, we can deduce Lemma 2.

Heuristic 1: Given an intermediate entry E and a PRA
query q(qR,qT), the subtree of E totally satisfy query q if
the vertices of MBR in entry E lie in query area qR during
future time qT. If true, the query algorithm only returns the
aggregate information of E without accessing its subtree.

Heuristic 1 reduces the searching cost considerably,
while incurring rather small computational overhead.
Specifically, the algorithm first scans the velocity bucket

queue, according to the current MBR and VBR of this
bucket, the future timestamps when each vertex lies in the
query area qR can computed. If all the vertices can lie in
qR during the query window qT, then the algorithm only
need to return the aggregate information of this bucket; or
else if none of the vertices will lie in qR during the query
window qT, then the algorithm skips this bucket;
otherwise the bucket is explored further. Similarly, when
searching the aTPR-tree, from the root point the
timestamps when four vertices of MBR in each node lie in
qR is computed. If all the vertices can lie in qR during the
query window qT, then the algorithm only need to return
the aggregate information of this node; or else if none of
the vertices will lie in qR during the query window qT,
then the algorithm skips this node; otherwise this subtree
is explored further.

The Algorithm 1 describes the pseudo-code for
processing PWRA query as follows:

Algorithm 1
Input: a PWRA query q(qR,qT), output: Agg(q)

1. Initialize Agg(q), set 0)(←qAgg
2. For each item E in the velocity bucket queue
3. Compute the timestamps when each vertex lies in qR;
4. If all the timestamps lie between qT
5. Then AggEqAggqAgg .)()(+← ;
6. Else if none of the timestamps lies between qT
7. Then skip E;
8. Else get the aTPR-tree pointed by this bucket item E;
9. from the root point, for each entry E in this node
10. Compute the timestamps when each vertex lies in qR;
11. If all the timestamps lie between qT
12. Then AggEqAggqAgg .)()(+←
13. Else if none of the timestamps lies between qT
14. then skip E
15. Else explore the subtree recursively until leaf level
16. Compute the aggregate information in leaf node E
17. Set AggEqAggqAgg .)()(+←
18. End if
19. End for
20. End if
21. End for
 End algorithm 1

6 Experimental Results and Performance
Analysis

6.1 Experimental Setting and Details

In this section, we evaluate the query and update
performance of PRA-tree with aTPR-tree and TPR*-tree.
We use the Network-based Generator of Moving Objects
[11] to generate 100k moving objects. The input to the
generator is the road map of Oldenburg (a city in
Germany). An object appears on a network node, and
randomly chooses a destination. When the object reaches
its destination, an update is reported by randomly
selecting the next destination. When normalize the data
space to 10000×10000, the default velocity of objects is

GENESIS
텍스트 상자
30

equal to 20 per timestamp. At each timestamp about 0.8
% moving objects update their velocities. The PRA
queries are generated as follows: i) the query spatial
extent qRlen is set as 100×100,400×400,800×800,1200
×1200,1600×1600 respectively, and the starting point of
its extent randomly distributes in (10000-qRlen)×(10000-
qRlen).ii) the query time window is [Tisu，Tisu+qTlen]
(Tisu is the time when the query is presented), where
qTlen=20,40,60,80,100 respectively. The query perform-
ance is measured as the average number of node accesses
in processing ten PRA queries with the same parameters.
The update performance is measured as the average node
accesses in executing 100 moving objects updates.

Table 1 summarizes the parameters of PRA-tree
exploited for the workload. For all simulations, we use a
Celeron 2.4GHz CPU with 256MByte memory.

Table 1 PRA-tree parameters
Parameter Value Description
Number
of buckets

25/50/100/1
50/200/250

The velocity domain is split
into 5×5, 5×10, 10×10, 10×15,
and 10×25 respectively.

Page size 1k The page size of PRA-tree.
Fanout 21 The average fanout of PRA-tree

in intermediate node.
Average
height

3 The average height of PRA-
tree.

6.2 Performance Analysis

We compare the query and update performance of PRA-
tree, TPR*-tree and aTPR-tree by node accesses. In order
to study the deterioration of the indexes with time, we
measure the performance of PRA-tree, aTPR-tree and
TPR*-tree, using the same query workload, after every 5k
updates.

0 400 800 1200 1600
0

60

120

180

240
0 400 800 1200 1600

0

60

120

180

240

N
od

e
ac

ce
ss

es

qRlen

 TPR*-tree
 aTPR-tree
 PRA-tree

20 40 60 80 100
0

90

180

270

360
20 40 60 80 100

0

90

180

270

360

N
od

e
ac

ce
ss

es

qTlen

 TPR*-tree
 aTPR-tree
 PRA-tree

a) qTlen=50 b) qRlen=1000

Figure 6 comparison of PTRA query performance

Figure 6 a) and b) shows the PTRA query cost as a
function of qRlen and qTlen respectively. In Figure 6 a)
we fix the parameter qTlen=50 and in Figure 6 b) we fix
the parameter qRlen=1000. As seen, the query
performance of PRA-tree works best and TPR*-tree
exhibits a worst performance. This is because PRA-tree is
constructed both on the space and velocity domain, the
area of MBRs overlap relatively less than those of aTPR-
tree and TPR*-tree, thus having a good query
performance. While TPR*-tree and aTPR-tree may visit
many unnecessary nodes for the massive overlaps
between area of MBRs with time, causing a worse query

performance. In addition, the larger the query range area,
the better the PTRA query performance of PRA tree, for
the intermediate nodes in PRA-tree store the aggregate
information of this subtree, thus reducing the node
accesses needed by TPR*-tree. The aTPR-tree holds a
relative worse performance than PRA-tree for its larger
MBRs with time.

0 400 800 1200 1600
0

200

400

600

800
0 400 800 1200 1600

0

200

400

600

800

N
od

e
ac

ce
ss

es

qRlen

 TPR*-tree
 aTPR-tree
 PRA-tree

20 40 60 80 100
0

400

800

1200

1600
20 40 60 80 100

0

400

800

1200

1600

N
od

e
ac

ce
ss

es

qTlen

 TPR*-tree
 aTPR-tree
 PRA-tree

a) qTlen=50 b) qRlen=1000

Figure 7 comparison of PWRA query performance

Figure 7 a) and b) shows the PWRA query cost as a
function of qRlen and qTlen respectively. In Figure 7 a)
we fix the parameter qTlen=50 and in Figure 7 b) we fix
the parameter qRlen=1000. As seen, the query
performance of PRA-tree works best and TPR*-tree
exhibits a worst performance. This is because the MBRs
PRA-tree overlap relatively less than those of aTPR-tree
and TPR*-tree, thus having a good query performance.
While TPR*-tree and aTPR-tree may visit many
unnecessary nodes for the massive overlaps between area
of MBRs with time. Furthermore, PRA-tree exploits more
precise branch-and-bound strategy, thus having a best
performance.

5k 10k 15k 20k 25k
0

200

400

600

800

1000
5k 10k 15k 20k 25k

0

200

400

600

800

1000

N
od

e
ac

ce
ss

es

Number of updates

 TPR*-tree
 aTPR-tree
 PRA-tree

5k 10k 15k 20k 25k
0

10

20

30

40

50
5k 10k 15k 20k 25k

0

10

20

30

40

50
N

od
e

ac
ce

ss
es

Number of updates

 TPR*-tree
 aTPR-tree
 PRA-tree

 a) update cost b) query cost
Figure 8 comparison of update& query performance

Figure 8 compares the average PRWA query and
update cost as a function of the number of updates. As
shown in figure 8 a), the node accesses needed in PRA-
tree update execution are far less than TPR*-tree and
aTPR-tree. And PRA-tree and TPR*-tree have nearly
constant update cost This is because PRA-tree exploits the
bottom-up deletion strategy, avoiding the excessive node
accesses for deletion search, while TPR*-tree and aTPR-
tree process update in top-down manner, needing more
node accesses.

Figure 8 b) shows the node accesses in processing one
PWRA query as function of an interval of 5k updates
when fixing the parameters qTlen=50 and qRlen=1000. It
is clear that the query cost increases with the number of
updates. The PRA-tree has a slow increasing query cost,
while the cost of TPR*-tree and aTPR-tree increase

GENESIS
텍스트 상자
31

significantly. This is because the MBRs of PRA-tree
extend less than those of TPR*-tree and aTPR-tree, so the
degradation is not much expensive.

0 50 100 150 200 250
160

170

180

190

200
0 50 100 150 200 250

160

170

180

190

200

N
od

e
ac

ce
ss

es

Number of velocity buckets

 PRA-tree

0 50 100 150 200 250
5

10

15

20
0 50 100 150 200 250

5

10

15

20

N
od

e
ac

ce
ss

es

Number of velocity buckets

 PRA-tree

 a) effect on update cost b) effect on query cost

Figure 9 effect of velocity bucket number

Figure 9 shows the effect of velocity buckets number
on PWRA query and update performance of PRA-tree.
We fix the parameters qTlen=50 and qRlen=1000. As
shown in Figure9 a), the update cost of PRA-tree increase
slightly with the number of velocity buckets, because the
small velocity bucket window causes the shift of moving
objects between buckets, thus incurs excessive node
accesses. From Figure 9 b) we can see, the PWRA query
performance will degrade with too many buckets, this is
because of, as mentioned earlier, the uncertainty of
moving objects distribution in velocity and space, the
probability of overlaps between the area covered by
velocity buckets and query region don’t decrease linearly
as expected. However, it may bring more TPR-tree node
accesses. In this experiment, we set the number of
velocity bucket equal to 25.

7. Conclusion
This paper investigates the problem of PRA queries. Our
contribution is a novel indexing method, referred to as
predicted range aggregate R-tree (PRA-tree). PRA-tree
considers the distribution of moving objects both in
velocity and space domain. First, we partition the velocity
domain into velocity buckets, and then we use aTPR-tree
to index the moving objects in each bucket. To support
frequent updates a supplemented hash index on leaf nodes
is added to PRA-tree. Also an extended bottom-up
deletion algorithm is developed for PRA-tree.

An open problem is to extend our work to support
large scale of concurrent PRA queries efficiently. Further,
the PRA query results need to be revaluated for the
frequent object updates, so developing novel incremental
algorithms for PRA queries is also an interesting work.

References

[1] Yufei Tao and Dimitris Papadias, Range Aggregate
Processing in Spatial Databases. IEEE TKDE,
NO.12, pp.1555-1570, 2004.

[2] Ine´s Fernando Vega Lo´pez, Richard T. Snodgrass,
and Bongki Moon. Spatiotemporal Aggregate

Computation: A Survey. IEEE TKDE, NO.2,
pp.271-286, 2005.

[3] Simonas Saltenis, Christian S. Jensen, et al..
Indexing the Positions of Continuously Moving
Objects. Proc. SIGMOD Conf., pp.331-342, 2000.

[4] Tao Y., Papadias D., and Sun J.. The TPR*-Tree:
An Optimized Spatio-Temporal Access Method for
Predictive Queries. Proc. VLDB Conf., pp.790-801,
2003.

[5] Jignesh M. Patel, Yun Chen, V. Prasad Chaka.
STRIPES: An Efficient Index for Predicted
Trajectories. Proc. SIGMOD Conf., pp.635-646,
2004.

[6] Yufei Tao, Dimitris Papadias, Jian Zhai, and Qing
Li. Venn Sampling: A Novel Prediction Technique
for Moving Objects. Proc. Int’l Conf. Data Eng.,
pp.680-691, 2005.

[7] Yufei Tao, Jimeng Sun, Dimitris Papadias.
Selectivity Estimation for Predictive Spatio-
Temporal Queries. Proc. Int’l Conf. Data Eng.,
pp.417-428, 2003.

[8] M. Jurgens and H. Lenz. The Ra*-Tree: An
Improved R-Tree with Materialized Data for
Supporting Range Queries on OLAP-Data. Proc.
DEXA Workshop, 1998.

[9] Bin Lin and Jianwen Su. On bulk loading TPR-tree.
Proc. IEEE Conf. Mobile Data Management
(MDM), pp.114-124, 2004.

[10] M. Lee, W. Hsu, C. Jensen, B. Cui, and K. Teo.
Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach. Proc. VLDB Conf., pp.608-
619, 2003.

[11] Thomas Brinkhoff. A Framework for Generating
Network-Based Moving Objects. GeoInformatica,
Vol.6 (2), pp.153-180, Kluwer, 2002.

GENESIS
텍스트 상자
32

