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Abstract

Computational models of trust typically assume that an assessment of
the trustworthiness of an individual can be formed from learning from
the outcomes of a sequence of atomic tasks, as well as other evidence
such as reports from third parties. Further, they assume that an agent’s
trustworthiness can be modelled by a single probability distribution.
In this paper we explore alternative mechanisms that allow these as-
sumptions to be relaxed. We propose a trust assessment model based
on Markov Switching Regimes, where direct and third-party observa-
tions about an agent’s behaviour follow interrelated Autoregressive pro-
cesses. We argue that this offers a richer model of trustworthiness and
a means to combine trust assessment with within-task monitoring.

1 Introduction

In dynamic and open systems, diverse autonomous agents interact with their peers to achieve dependent in-
dividual, or shared objectives. In such an environment, agents might behave in an untrustworthy manner,
delivering unsatisfactory performance, whether this be to perform a task or to deliver an information service.
When choosing future partners to rely upon, therefore, agents must consider their likely future behaviour. The
uncertainties underpinning these decisions are often captured through computational models of trust. Various
forms of evidence have been posited as appropriate to inform trust assessments, including past observations of
behaviour given contractual expectations [cZYC09, LD12], assessments from third parties, correlations among
agent’s behaviour [BNS10, LDRL09], and other contextual factors.

We take a probabilistic approach to modelling trust assessment, and there is an extensive literature on mech-
anisms of this kind. Such models build primarily upon the Beta model [JI02, TPJL06] and its multivariate
generalization, the Dirichlet model [JH07, RPC06] either implicitly or explicitly. These models assume the out-
come of a delegated task/goal may be modelled as either a binary variable, representing success or failure, or a
multivariate outcome. The underlying Bayesian framework of these models assumes that an agent’s behaviour
can be approximated by a single, static probability distribution. Based on the outcomes of the interations, the
parameters of the prior distribution update over time, thus deriving the posterior distribution. The assumption
that an agent’s behaviour is static and represented by a single probability distribution thoughout future intera-
tions may, however, not be reasonable in many situations. A service provider may modify its behaviour over time
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according to changes occurring in its environment. A sensor system, for example, may provide highly trusted
target tracking data unless it believes that the target it is asked to track is from a specific organisation.

Rather than looking at an interaction between a consumer and a service provider in a macroscopic way,
and considering it as a single entity with an end result of failure or success, we take a more refined view. An
interaction between two agents is considered as a sequence of events/sub-tasks, and we assume that the consumer
may (partially) monitor progress periodically. After observing and evaluating progress a number of times, it is
possible for the agent to build a picture of the service provider’s behaviour, and hence predict, to some extent,
the likely future progress or result (success/failure) of the delegated task. Behaviour detection helps to provide
answers to questions such as whether a delegator/consumer wants to continue with the current interaction/task
allocation, or what types of task and when to delegate to this provider in the future. It could also capture any
learning over time on the part of the agent that may change/improve its performance.

Consider a scenario where an agent, enters into a contract with two agents capable of tracking objects of interest
within an environment. The environment is an area of coastline around a port, and the sensor agents may be
unmanned aerial vehicles (UAVs) or ground-based sensor systems. Suppose that two UAVs are delegated the
task of identifying, tracking and reporting the location of unauthorised boats within the area. This surveillance
task may continue for a substantial period of time with target tracking data (observations) being provided by
one or both UAVs during various sub-periods of the on-going task. Similar tasks, initiated by other agents, may
be active at the same time. Given this contract will continue over a period of time, there may be opportunities
to observe the agents’ behaviour such as through correlations between observations reported by the two UAVs.
This monitoring could show that the probability that one of the UAVs providing accurate reports has decreased.
Options to recruit an additional or replacement sensor agent may then be considered. A traditional trust model
can only learn about trust in UAVs identifying and tracking boats by looking at the number of successful
unauthorised boats observed, and the numbers of failures. It can’t tell you anything about the probability of
continued success given some observations of the agent’s behaviour while reporting.

A commonly-employed class of models applied to the analysis of time series of this kind are those based
upon a Hidden Markov Model (HMM) [SS13]. An important drawback to the application of HMMs in trust
assessment, however, is the maximum likelihood approach used in the parameter estimation of standard HMMs.
This approach is based the ‘equally likely’ assumption: it assumes each observation in the training data set is
of equal importance for a future prediction, no matter how big the training set. This is counter to our intuition
that more recent observations should represent more weight of evidence for a trust assessment, although this
approach might work well when training sets are relatively small or if the data series studied is not time-sensitive
in this manner. Beta, or Dirichlet-based models of trust assessment do not suffer from this limitation, however.
They tend to use the principle of exponential decay that discounts past observations, placing more weight on
recent evidence.

In this paper we explore the requirements of a trust assessment model where the relationships among time
series variables influence an assessment, but also where these statistical relationships are subject to change over
time. We discuss a model that integrates an autoregressive process with a Markov switching model [Ham94] to
exploit evidence from continuous behavioural monitoring. The autoregressive Markov switching model relaxes
the standard HMM conditional independence assumption by allowing observed variables that depend on the
current state to also depend on the past output/observation. In this way the autoregressive process weighs more
recent observations more highly, thus explicitly modelling some of the dynamic behaviour we are interested in.
Our conjecture is that this combination may lead to more accurate predictions.

Before exploring an initial trust assessment model, we formalise the underlying mechanisms that we build
upon: Autoregression and Markov switching models.

2 Autoregressive and Markov Switching Models

2.1 Autoregression and Vector Autoregression

Decision makers need to be guided by predictions about how the environment is likely to change. In forcasting
the values of important environmental variables, we can assume that the historical behaviour of that variable
over time contains information about its future development. This history of behaviour may be records of
successes/failures to meet requests, more structured outcomes, or more fine-grained samples of performance as
a request is being satisfied. Given the assumption that evidence of past performance can help in estimating
future behaviour, we can employ various methods to model, analyse and forecast variables of interest. An
autoregressive process [Ham94] is one such tool, which we refer to as AR(p) where p is the length of the window
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of past values that we use to predict the next value of some variable.

DEFINITION 1
If we know the parameters of an autoregressive process (α1, . . . ,αp), and if we have a sequence of p past
observations of the variable of interest, y, the autoregressive equation of order p, can be used to estimate the
value of y at time t.

yt = c+ α1yt−1 + α2yt−2 + · · ·+ αpyt−p + εt (1)

where c is a constant, and εt is white noise with zero mean and finite variance.

In the real world, however, the value of one variable not only depends on its own past values but also
of the past values of other variables. In order to model these interdependencies, we can extend this univariate
autoregressive process to model a set of time series variables simultaneously.

The vector autoregression model, VAR(p), [Ham94] is an extension of univariate autoregressive process,
AR(p), to model dynamic multivariate time series data, and hence capture the linear interdependencies among
multiple time series variables. The only prior knowledge that we require to employ this approach are the
variables can affect each other over time.

DEFINITION 2
A vector autoregressive process of order p, (V AR(p)) can be written as

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut (2)

where yt = (y1t, · · · , yKt)� is a K × 1 vector of time series variables, c = (c1t, · · · , cKt)� is a K × 1 vector of

constants (intercepts), each Ai is a time-invariant K × K coefficient matrix, Ai =




a11,i · · · a1K,i
...

. . .
...

aK1,i · · · aKK,i



 and

ut = (u1t, · · · , uKt)� is a K × 1 vector of error terms satisfying:

• E(ut) = 0, every error term has mean zero.

• E(utu�
t) = Σ, the contemporaneous variance-covariance matrix of error terms is Σ (a K × K positive-

semidefinite matrix)

• E(utu�
s) = 0, for any t �= s, there is no correlation across time; in particular, no serial correlation in individual

error terms.

Rather than being interested in a single variable, y, here each yt represents a vector of the variables that we
assume to depend on each other. Our coefficient matrices, A1, . . . , Ap, model the extent to which each variable
influences each other over the window of length p.

We can now apply this kind of model to explore domains in which there are multiple, interdependent variables.
If, for example, we anticipate that variables y1 and y2 are interrelated, we can use domain data to learn the
matrices c (intercepts) and A1, . . . , Ap (coefficients). From this model, we can then use this to anticipate how
variables y1 and y2 change together. For example, when we try to estimate the trustworthiness of a target
agent, we generally use two main sources of evidence, direct experiences and third party reputational reports.
Suppose that y1 represents our direct observation of an agent’s behaviour and y2 is some aggregation of third
party reports. Using this model, we can exploit the interdependencies between these two variables to predict the
future values of y1.

2.2 Switching regime models

In the vector autoregression model, VAR(p), it is assumed that the parameters of the model, capturing the inter-
relationships among the variables of interest, are fixed; i.e. the vectors c (intercepts) and A1, . . . , Ap (coefficient
matrices) do not vary. There may, however, be periods in which the interrelationships among variables change
significantly. Switching regime models are used to capture the dynamics of the observed variables of interest.
For example, the dynamic behaviour of an agent may fluctuate between trustworthy and untrustworthy states,
depending on its environment. The agent in question may be trustworthy when it has a medium or low load
due to other commitments, but untrustworthy when it has a high load. These unobserved states (low, medium

3



or high load) may be reflected in the patterns of behaviour, that are observed either by direct experience or in
reputational reports. Using these observations, and clustering techniques, the fluctuations in behaviour can be
modelled and their underlying unobserved state/regime can be detected with some level of confidence.

Parameters of the observed series will be time varying (they will take on different values in each different,
predetermined number, of regimes or states of the environment) and so fitting a linear model for each regime
may be used to approximate the non linear data. The regime at any point in time is an unobserved variable
but the stochastic process that determines the unobserved regime variables is known. In this work we consider a
vector autoregression time series model with changes in regime and the unobserved regime variable is generated
by a discrete-state homogeneous ergodic Markov chain.

Markov Switching Vector Autoregressive Model

DEFINITION 3
A M -state Markov switching, p-lag vector autoregressive process, MS(M)-VAR(p) [Kro00] is given by

yt = ν(st) +A1(st)yt−1 + · · ·+Ap(st)yt−p + ut (3)

where,

• yt is a K-dimensional time series vector, i.e.; yt = (y1t, · · · yKt)�.

• M is a finite number of predetermined, feasible regimes or states.

• The unobserved regime variable at time t is st, and st ∈ {1, 2, · · · ,M} follows a discrete, M-state homoge-
neous ergodic Markov chain.

• The K-dimensional intercept vector, ν(st), autoregressive parameter matrices, A1(st), · · · , Ap(st), and the
variance-covariance matrix, Σ(st), vary according to the regime (state) of the environment, which is con-
trolled by the unobserved regime variable st at time t.

• ut ∼ NID(0,Σ(st)) is a variance-covariance matrix, Σ(st) of the error terms ut, which also depends on the
unobserved regime variable st.

The two main components of the Markov Switching Vector Autoregressive Model model are, therefore:

1. A Markov chain as the regime generating process for unobserved state st.

2. A Gaussian vector autoregression as the data generating process of the observed variable yt, which is
conditional on an unobserved regime st.

The parameters of VAR(p) will, therefore, be time varying but the process is time invariant, conditional on
an unobserved state st.

Regime Generation Process

The unobserved regime st in a Markov switching model is assumed to be generated by an ergodic Markov
chain with a finite number of predetermined feasible states, say M , st ∈ {1, 2, · · · ,M}, which is defined by the
transition probabilities pij :

pij = Pr(st+1 = j | st = i),
M�

j=1

, ∀i, j ∈ {1, 2, · · · ,M} (4)

We collect all the transition probabilities between the states in the transition matrix, P .

P =





p11 p12 · · · p1M
p21 p22 · · · p2M
...

...
. . .

...
pM1 pM2 · · · pMM





Using this law for the regime generating process, the evolution of the unobserved regime can be inferred from
the observed time series data using clustering techniques. Let ξt be the vector representation of the unobserved
regime variable st ∈ {1, 2, · · · ,M} at time t. If st = j, then the unobserved regime vector ξt is the jth column of
an M ×M identity matrix. The M-dimensional vector ξt can also be written as ξt = (I(st = 1), · · · , I(st = M))�

where I is the indicator function.
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Data Generating Process

The time series process of the observed variable yt at time t is governed by the underlying hidden regime of
the environment, ξt. Therefore, for a given regime ξt and previous values of the observed variables up to time
t− 1, Yt−1 = (y�t−1, y

�
t−2, · · · , y�1, y�0, y�−1, · · · , y�1−p)

�, the conditional probability density function of yt is given by
p(yt | ξt, Yt−1). In the definition of the MS(M)-VAR(p) process we assumed that for each regime st at time t,
the error terms ut are normally distributed with mean 0 and variance that depend on the regime. This implies
that the conditional probability density function of yt, given an unobserved regime ξt, will also be normally
distributed. We collect all these Gaussian conditional densities of yt in an M-dimensional vector, ηt.

ηt = p(yt | ξt, Yt−1) = (p(yt | ξt = ι1, Yt−1), p(yt | ξt = ι2, Yt−1), · · · , p(yt | ξt = ιM , Yt−1))
�

2.2.1 Parameter Estimation

The parameters of the MS(M)-VAR(p) are estimated using the Expectation Maximisation algorithm introduced
by Dempster et al. [DLR77]. This is an iterative technique used to obtain maximum likelihood estimates of the
model’s parameters, where the observed time series data depends on some unobserved or hidden variable.

This two-step algorithm involves an expectation step, in which the optimal inference of the unobserved regime
sequence is determined, and a maximization step, in which the parameters of the model are updated by using
the maximum likelihood approach.

Expectation Step (E step)

Suppose full observation data up to time T is known and let λ be the parameter vector (to be estimated). During

each iteration the unobserved states ξt are estimated by their smoothed probabilitites, �ξt|T = Pr(ξt | YT ,λj−1).
These conditional probabilities are calculated using a forward recursive filter and backward recursive smoothing
algorithms (see below).

The filter probability is the conditional probability of the hidden regime ξt given the observed sample data
Yt = (y�t, y

�
t−1, · · · , y�1−p)

� up to time t, and the model parameters, �ξt|t = Pr(ξt | Yt) [Ham94].

�ξt|t =
ηt

��ξt|t−1

1�
M (ηt

��ξt|t−1)
(5)

The forward recursive filter can be used to infer the hidden regime for time t� ≥ t given the observed data set
up to time t. The optimal m-period forecast of ξt+m is given by �ξt+m|t = (P �)m�ξt|t, where P is the transition
matrix.

Similarly, the smoothed probability is the conditional probability of the hidden regime ξt given the observed
sample data YT = (y�T , y

�
T−1, · · · , y�1−p)

� up to time T , and the model parameters. Smoothing is, therefore, a
backward recursive process that infers unobserved states by including the sample information previously neglected
in filtering [Kro00].1

�ξt|T = Pr(ξt | YT ) =
�
P
�
�ξt+1|T � �ξt+1|t

��
⊙ �ξt|t (6)

Maximization Step (M step)

In the E step, the parameter vector, λ, was taken to fixed and known. Within the M step we compute the
maximum likelihood estimate for our model parameters. The parameter vector λ contains VAR parameters (i.e.
intercept, autoregressive matrices and error variance) and the initial and transition probabilities of the underlying
hidden Markov chain.

The log likelihood function is given by L(λ | Y, ξ) := p(YT | λ, ξ). To maximise the value of this function, the

latent/hidden variable will be substituted by its expectated value, �ξt|T . This means that the conditional regime
probability Pr(ξt | YT ,λ) will be replaced by smoothed probabilities, calculated in the previous expectation
step, thus eliminating non-linearities. The parameters for this function are derived from solving the first-order
conditions of a constrained log likelihood function (see Krolzig [Kro00] for detailed analytical solution).

1Functions � and ⊙ are element-wise division and multiplication respectively.
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2.2.2 Forecasting

Despite being a non-linear model, the attractive feature of Markov switching vector autoregression, is its sim-
plicity of forecasting. To obtain the optimal h-step forecast, the mean squared prediction error (MSPE) criterion
may be used (i.e. we minimise the squares of the forecast errors).

�yt+h|t := argmin
�y

E
�
(yt+h − �y)2 | Yt

�

Given the information Yt up to time t, therefore, the optimal h-step forecast of the observed time series is
given by the conditional mean:

�yt+h|t = E [yt+h | Yt]

Since the data generating process is nonlinear, the MSPE optimal forecast is a not a linear predictor of the
observed temporal data (see Krolzig [Kro00] for further details).

3 A simple Markov switching trust assessment model

We may now demonstrate how this general model, MS(M)-VAR(p), may be applied to trust assessment. Consider
a system with n agents, where A = {a1, a2, . . . , an} is the set of all agents. Agents interact with one another
and work together to acomplish various tasks. Direct experiences from these transactions can aid both parties,
say ai and aj , in forming opinions about the trustwortiness of each other. We consider these experiences to be
both the results of monitoring actions during a transaction and the transaction outcomes.

The rating that an agent gives to an element of an interaction (assessed through monitoring) may belong to
a discrete set of values or from a continous range, such as [0, 1]. Over time, interactions between agents produce
a history of direct evaluations and ratings, thus forming a time series of observations of that variable.

We may discretise the series of observations made by agent ai of agent aj such that for each time period
[t− 1, t], ai may make a direct trust evaluation of aj . A simple method would be to compute the average of the
outcomes of observations made during that time period, but other aggregation methods are possible. We refer
to the direct observation made by agent ai of agent aj at time t as Yij(t).

Evaluating the trustworthiness of an agent is time-varying process; more recent behaviour should have greater
influence on a trust assessment. An autoregressive process offers a means to model this. The output variable
of this process at time t depends on its own previous values, thus capturing any positive or negative effect
of the observed data. The dynamic, unobserved behaviour of a service provider may also change with time;
changes that may be manifest from observations acquired through monitoring. If positive observations are made
then the agent is more likely to be behaving in a trustworthy manner and vise versa. These observations may,
however, change dramatically away from long-run mean. This volatility could indicate a change in the regime of
the observed temporal process. The series is, therefore, assumed to be dependent on an unobserved stochastic
process. This unobserved process models the actual state of the agent’s behaviour and the evaluations of their
trustworthiness at time t are the observed data determined by this hidden variable at that time.

If two agents have interacted with each other within the society, then they will have a temporal data set
reflecting their observations of the encounter. Based on these direct experiences, an agent may build a model to
predict likely future behaviour.

Other forms of evidence may be exploited during trust assessment. Opinions, derived from behavioural
observations, about the target of a trust assessment may be acquired from third parties. Taking into consideration
such indirect evaluation about a service provider’s behaviour may improve the accuracy of a trust assessment.
Although useful evidence, the use of third party reports is not without its risks. It is possible that a recommender
can provide misleading or biased feedback about other agents in the society unintentionally or otherwise. These
reputation reports may undervalue the true behaviour of a peer or represent an unjustifiably positive opinion.

It is notoriously difficult to detect misleading recomendation reports, but failing to consider all feedback from
peers has its own risks. Ideally we would want to weigh the recomendations received from different agents to
mitigate the influence of biases and misleading reports, if not eliminate their effects entirely. We now discuss a
simple means to take into account such evidence within an MS(M)-VAR(p) process.

At time t, if the agent ai wants to assess the behaviour of another agent aj then it may seek opinions about
aj from all the other agents in the system. An aggregation of this feedback may then be integrated with its own
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view of the target agent, aj . Let Rij(t), denote agent ai’s estimate of the community opinion of agent aj at
time t obtained by aggregating the recomendation reports from its peers in the environment. A simple method
of obtaining Rij(t) is to compute the weighted average of all the reputation reports received.

Rij(t) =
1�

ax∈A
ax �=(ai,aj)

Wix(t)

�

ax∈A
ax �=(ai,aj)

Wix(t)Yxj(t) (7)

Here, Wix(t) is the weight given by agent ai to agent ax’s reputation report and Yxj(t) is the reported
behavioural observation of agent aj by ax at time t. These aggregated reports may then be exploited as a second
variable within the MS(M)-VAR(p) process that the predicted trustworthiness of the target agent depends upon.

There are, of course, other means to aggregate third-party opinions. The use of stereotypes [BNS10, LDRL09],
for example, may obviate the need to maintain weights for the opinions of other agents. Stereotypes can be used
to weigh reports from sources’ opinions based on the group to which they belong. Alternatively, we could model
each stereotypical group as a variable within the MS(M)-VAR(p) process, each of which influencing the variable
representing the trustworthiness of the target agent.

The MS(M)-VAR(p) process relies on a series of data points within the window of length p to forecast the
variable of interest, which, in our case, is the trustworthiness of the target agent. In trust assessment, this is
a challenge to the application of the model because there may be significant gaps in direct interaction between
agents. Although it is less likely that there are no third-party opinions to exploit, the observed time series data
from direct interactions will have missing values. To deal with this challenge, various interpolation techniques
may be employed such as using regression or spines [HK10].

Suppose an iteration between two agents in the society ends at time t and starts again at time t+ 4; we are
missing observations for 3 time steps. We first try to predict those missing values by using the data set up to
time t, estimate the model parameters, and then forecast the missing observations. Missing data is then replaced
with predicted data. We can then use this full time series of direct interactions along with the reputation reports
for trust assessment.

4 Illustration

To demonstrate the approach we propose, we simulated a multi-agent system in which reputation reports are
exchanged, interactions occur (over periods of time), and agents assess the trustworthiness of potential partners.
We simulate ten agents with different behaviour profiles. We investigated the process whereby one agent, a1,
attempts to evaluate the trustworthiness of another, a2. We simulated relatively long-term interactions happening
frequently between agents, to minimise the need for data imputation/interpolation. These transactions between
a1 and a2 produce time series of direct observations. In parallel a1 interacts with other agents in the society,
producing other observations over time of their behaviour.

At each time step, agent a1 will query other agents in the society for observations regarding a2. Agent a1
aggregates these third party reports using the simple weighted average method described above. This provides
a time series of aggregated reputation reports for a2. Using these two time seires data we will try to evaluate
the switches in the unobserved state of agent a2’s behaviour.

For the sake of simplicity, we assume there are two possible hidden states: trustworthy and untrustworthy.
The purpose is, therefore, to predict this unobserved state.

To select the vector autoregression lag length, we use the AIC criteria. The table below shows that, in this
simple illustration, VAR(1) had the smallest AIC value. Given we consider two variables (direct observations,
DO , and agregated third party reports, RR), we use a MS(2)-VAR(1) process; i.e. a 2-variable Markov switching
autoregressive model with a lag of 1.

AIC and BIC values for VAR
VAR Lag AIC Value BIC Value
1 -2.314199 -2.263234
2 -2.298469 -2.213529
3 -2.289073 -2.170156
4 -2.282472 -2.129579
5 -2.272324 -2.085454
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We collect the values acquired for our variables of interest (DO and RR) in a vector yt = (DO t,RRt). The
vector autoregression with lag 1 will create two VAR equations, where the temporal variable DO changes and
its future development depends on its own past outcomes and on the past outcomes of the RR variable. Thus
the marginal change in RR variable will effect DO , hence affecting the unobserved/hidden state of the agent’s
level of trust.
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Figure 1: Regime Probabilities

In the above graph, the first time series represents the direct observations of agent a1 regarding a2. The
second series is the time series of aggregated reputational reports about a2 received by agent a1 from the other
agents in the society. These reports can be biased, and so we marginalise each report according to agent a1’s
level of trust in the report provider.

The third graph shows the switches between the unobserved states of the agent’s trust and how these unob-
served regimes evolve over time based on the observed data. The black curve represents the probability that
service provider a2 is in the trustworthy state and the green curve represents the probability that a2 is in the
untrustworthy state. It can be seen from graphs that there seems to be a high correlation between direct inter-
action outcomes (the DO variable) and these hidden states. If the direct interaction ratings are high then the
probability of being in a trustworthy state is higher. At the same time, the second series (aggregated reputational
reports) also has the ability to pull down or push up the probability of being in a certain unobserved state.

5 Discussion

The most prominent existing research on probabilistic models of trust are grounded upon the Beta reputation
models or its multivariate extentions (for interatctions with multiple outcomes). They use either Beta or Dirichlet
distributions to represent the probability distribution over interaction outcomes [JI02] [JH07] [MMH02]. These
models have also been extended to deal with deception and unfair raitings [WJI05] [TPJL06] [RPC06]. Generally,
these models assume that agents’ behaviour is static; i.e. represented by a fixed probability distribution. The
limitations of this assumption are mitigated by treating recent interaction outcomes as more representative of
the likely future behaviour of an agent; e.g. the use of exponential decay or forgetting factor in Jøsang & Haller
[JI02].

Recently, a number of trust assessment models based on Hidden Markov Models (HMM) have been proposed.
El Salamouny & Sassone [SS13], for example, propose an HMM-based model of evaluating trust that exploits
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direct experiences and reputational reports from an agent’s peers. Moe et al. [MTK08] propose a trust model
that combines an HMM and with reinforcement learning. After learning about the environment from its RL
module, the parameters of the HMM module are restimated to detect an agent’s behaviour more reliably. Boer
et al. [SKN07] propose a computational trust model based on HMMs, comparing this with existing probabilistic
computational trust models, demonstrating that the non-HMM-based models were unable to deal with dynamic
behaviour. A similar study by Moe et al. [MHK09] provides results of a comparison of the effectiveness of Beta
models with decay factors and an HMM based trust approach; the conclusion being that the later was more
realistic and effective in dynamic environments. These HMM-based trust models focus on the interaction history
without considering the context of the interaction. Liu & Datta [LD12], however, consider an HMM-based context
aware trust model to predict an agent’s trustworthiness is dynamic environments. Empirical assessment of this
model, which uses multiple discriminent analysis to select appropriate features of the context, demonstrates that
it out-performs standard HMM-based models in detecting dynamic behaviour patterns.

We have presented an early exploration of the use of autoregression and Markov switching methods in trust
assessment. There are a number of simplifications in how we have applied these techniques to the trust assessment
problem such as in the aggregation of third party observations. Existing models propose clever fusion techniques
to aggregate these reports such as those used in TRAVOS [TPJL06], or evaluate reports separately and aggregate
the results [SS13]. Here, although we use a simple weighted average approach to combine reports, the use of
VAR enables us to simultaneously model this time series with that from direct experience and model the effects
that these temporal variables have on each other. In addition to exploring refinements of our model, we need to
thoroughly investigate the accuracy of forecasting future dynamic behaviour of a target agent.

6 Conclusion

We have proposed a novel approach to the development of computational models of trust grounded upon a Markov
Switching Regime model (equivalent to an HMM) where the observed data follows an Autoregressive process.
The means by which we generate the data that drives the Markov switching model relaxes the assumption used
in all HMM-based models of trust: that each observation is of equal importance to the assessment of trust.
By considering that the observed data follows an autoregressive process, we place more weight on more recent
evidence. The use of a Markov switching model enables us to model non-linear behaviour of a target agent
by constructing a vector of linear models of behaviour, given (ideally) distinct behavioural states or regimes,
along with a model of how the agents behaviour switches between these states/regimes. This means we are not
relying on the assumption made by most non-HMM-based models of trust: that the behaviour of each agent
can be modelled by a single, static probability distribution. Further, we do not need to treat interactions (or
transactions) between agents as atomic, and use final outcomes as evidence for future assessments. We can
exploit the techniques we propose to monitor progress of longer-term delegated tasks to inform interim decisions
regarding the dependency between agents.
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