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Abstract

In this work we address the concept of se-
mantic redundancy in linked datasets con-
sidering class assignment assertions. We
discuss how redundancy can be evaluated
as well as the relationship between redun-
dancy and three class hierarchy aspects:
the number of instances a class has, num-
ber of class descendants and class depth.
Finally, we performed an evaluation on the
DBpedia dataset using SPARQL queries
for data redundancy checks.

1 Introduction

The amount of interlinked knowledge bases built
under Semantic Web technologies and following
the linked data (Heath and Bizer, 2011) princi-
ples has increased significantly last years. These
knowledge bases (also known as linked datasets)
contain information that associates Web entities
(called resources) with well-defined semantics
that specifies how these entities should be in-
terpreted. In most linked datasets a substantial
amount of data corresponds to class assignment
assertions, that is, information that specifies re-
sources (or individuals) as instances of certain
classes. In this sense, resources are typified us-
ing classes usually defined through ontologies and
organized into class hierarchies. Several differ-
ent ontologies can be combined to classify re-
sources within the same dataset giving rise to huge
and complex interlinked structures that can suffer
from data quality problems (Hogan et al., 2010).
Thus, the use of practical mechanisms to handle
knowledge conciseness becomes increasingly im-
portant to improve the overall dataset quality and
the study of redundancy on class assignments as-
sertions aims to contribute in this way. From a
data quality perspective, class assignment redun-

dancy is related with the concept of extensional
conciseness which has been defined in (Zaveri et
al., 2015) as “the case when the data does not
contain redundant objects at instance level”. In
this scenario, redundancy means that a resource is
specified as member of a class when it is not nec-
essary, either because the information is explicitly
duplicated or because it can be derived from infor-
mation that already exists. Current works that have
dealt with semantic redundancy on linked datasets
implement algorithms based on graph pattern dis-
covering techniques. In contrast, our work pro-
poses a simplified approach based on SPARQL
queries and considering class assignment asser-
tions. We discuss how redundancy can be eval-
uated and perform an evaluation over the DBpe-
dia dataset (Lehmann et al., 2015) in order to un-
derstand the relationship between redundancy and
three class hierarchy aspects: the number of in-
stances a class has, the class depth and its number
of descendants. This approach may be useful for
linked data users who need to measure semantic
data redundancy in a practical way, understand its
origin and detect when it may be useful (e.g. to
improve performance) or when it can affect nega-
tively the knowledge base (e.g. misuse of classes
when typifying resources). The following sections
are organized as follows: sections 2 and 3 give
some background definitions and related work, re-
spectively. Section 4 introduces the redundancy
definition adopted and discusses some of the alter-
natives to address it on linked datasets. Section 5
shows the evaluation results. Finally, some con-
clusions and further work are given in section 6.

2 Background

In the linked data context, datasets are knowl-
edge bases described using the RDF1 data model

1https://www.w3.org/RDF/
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and published following the linked data princi-
ples2. These datasets are collection of assertions
about resources specified following the “subject
predicate object” pattern. Assertions are RDF
triples and resources may be anything identifi-
able by an HTTP URI. Knowledge representation
mechanisms like RDFS3 and OWL4 extend RDF
and allow datasets to be augmented with more ex-
pressive semantics. For example, it is possible
to describe ontologies by specifying classes and
relationships between them (e.g. “SoccerPlayer
rdfs:subClassOf Atlhete”) and to specify re-
sources as member of those classes (e.g. “Li-
onel Messi rdf:type SoccerPlayer”). From an
overall perspective, information contained in these
datasets can be split into two levels: schema level
and instance level. Schema level refers to ter-
minological knowledge (known as TBox), for ex-
ample, classes, properties and their relationships.
On the other hand, instance level refers to asser-
tional knowledge (known as ABox), that is, propo-
sitions about entities of a specific domain of in-
terest. An important type of assertional knowl-
edge corresponds to class assignments, that is,
RDF statements of the form “resource rdf:type
class” used to specify resources as members of
certain classes. The most common way to retrieve
this information from linked datasets is through a
SPARQL5 endpoint. These endpoints are web ser-
vices that accept SPARQL queries and return in-
formation that match with a given pattern. In this
work we will use this mechanism to detect redun-
dant class assignments.

3 Related Work

In the linked data literature, redundancy is re-
lated with the data quality dimension of concise-
ness (Zaveri et al., 2015) and has been studied
and categorized from syntactic to semantic and
from schema to instance levels (Pan et al., 2014).
From a syntactic perspective most of the existing
compression techniques focus on RDF serializa-
tion. On the other hand, from a semantic perspec-
tive, just a few works addressed redundancy. In
(Wu et al., 2014) authors propose a graph based

2https://www.w3.org/DesignIssues/
LinkedData.html

3https://www.w3.org/TR/rdf-schema/
4https://www.w3.org/standards/techs/

owl\#w3c\_all
5https://www.w3.org/TR/

rdf-sparql-query/

analysis method to identify graph patterns that can
be used to remove redundant triples and calculate
the volume of semantic redundancy. In (Joshi et
al., 2013) authors employ frequent itemset (fre-
quent pattern) mining techniques to generate a
set of logical rules to compress RDF datasets and
then use these rules during decompression. Both
works mention the idea of semantic compression
by removing derivable knowledge. Regarding the
use of SPARQL for quality assessment, (Fürber
and Hepp, 2010) and (Kontokostas et al., 2014)
use query templates to detect some quality prob-
lems but semantic redundancy is not included.
Inspired on the ideas of these works, we use a
SPARQL query oriented approach to evaluate re-
dundant class assignments and make this informa-
tion explicit to users.

4 Redundant class assignments

As we know, linked datasets are basically sets
of RDF triples and knowledge is specified using
mechanisms provided by RDFS and OWL, each
one with its own well-defined semantics (Hitzler et
al., 2009). In this way, schema and instance level
assertions can be considered as propositions to for-
mally describe the notion of derivable knowledge.
For example, the notation {p1, p2} |= {p3, p4}
(where |= is called entailment relation) states that
propositions p3 and p4 (also p1 and p2) are log-
ical consequences of propositions p1 and p2 ob-
tained under a certain set of rules (logic). Con-
sidering this, the concept of data redundancy can
be associated to what is known in mathematical
logic literature as independence, that is, the abil-
ity to deduce a proposition from other proposi-
tions. Formally, given a logic L (semantics) and a
set of propositions P , it is defined as independent
if for all proposition p

i

2 P does not hold that
{P � p

i

} |= p
i

. In this way, a non-independent
set of propositions can be considered redundant
since it contains extra information that may not be
necessary because if it is removed from the initial
set, it can be obtained from the remaining proposi-
tions applying an inference mechanism and keep-
ing the same logical consequences. Similarly, an
independent set of propositions can be considered
non-redundant.

As we mentioned in section 2, class assign-
ments are instance level assertions (or proposi-
tions) that specify resources as members of cer-
tain classes. Thus, given a resource r, its class as-
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signment set (CAS
r

) contains all the propositions
that specify the classes to which r belongs. The
idea of the previous paragraph can be applied to
class assignments to define semantic redundancy
since the non-redundant class assignment set of
a resource r (NRCAS

r

) is the independent set of
CAS

r

. Then, the redundant class assignment set
(RCAS

r

) can be considered as the difference of
those sets. In the following subsections, we dis-
cuss some techniques that can be used to compute
NRCAS

r

on linked datasets. Then, we will use
one of these techniques to perform our evaluation.

4.1 Using SPARQL queries
Using SPARQL, a simple query can be imple-
mented to get the NRCAS. For example, query
in listing 1 can be used to get the non-redundant
set of classes of a given resource (specified by re-
source URI).

SELECT DISTINCT ?c
WHERE {
<resource_URI> rdf:type ?c
FILTER regex(str(?c),"ont_URI","i")
FILTER NOT EXISTS {
<resource_URI> rdf:type ?sc .
FILTER regex(str(?sc),"ont_URI","i")
?sc rdfs:subClassOf ?c }

}

Listing 1: SPARQL query example to get non-
redundant class assignments

Note that the mentioned query example consid-
ers only one ontology (filtered by ontology URI)
and does not implement any inference mechanism
at instance or schema level. This means that the
query will work while all class assignments and
relationships between the involved classes will be
specified explicitly on the dataset. If this is not the
case and a transitive closure of sub/super classes
is needed, it is necessary to implement an algo-
rithm that iterates recursively over these queries
until it gets the required classes. Using SPARQL
property paths (e.g. rdfs:subClassOf* or
rdfs:subClassOf+) it is possible to check
connectivity of two classes by an arbitrary length
path (route through a graph between two graph
nodes)6. For example, it can be used to get all
the classes that are descendant (or subclasses) of
a given class (as shows example of listing 2) or to

6https://www.w3.org/TR/sparql11-property-paths/

get all the ancestors (or depth) of a given class (as
shows example of listing 3).

SELECT DISTINCT ?c
WHERE {
?c rdf:subClassOf* <class_URI>

}

Listing 2: SPARQL query to get class descendants

SELECT DISTINCT ?c
WHERE {
<class_URI> rdf:subClassOf* ?c

}

Listing 3: SPARQL query to get class ancestors

It is important to highlight that the performance
of SPARQL queries depends on its implemen-
tation and the dataset size. Although complex
SPARQL queries can become unacceptably slow
when working with large amounts of data, it is
currently the most practical mechanism to access
linked datasets.

4.2 Using graph based algorithm and
reasoners

Given a class hierarchy, a resource r and its CAS
r

,
a way to compute redundancy is by interpreting
the class hierarchy as a directed acyclic graph “G”
in which each node is a class and each edge is
the relation rdfs:subClassOf. A node “A”
of “G” can be considered a class if there exist a
triple with the form “A rdfs:subClassOf x”,
“x rdfs:subClassOf A” or “x rdf:type
A”. Then, a class “B” is subclass of a class “A”
if node “A” is reachable from node “B” in “G”,
that is, if exists a path between B and A in the
graph. Considering this, given a proposition set
Q that specifies the classes to which an instance i
belongs, a naive algorithm can be implemented to
compute a non-redundant proposition set R: first
set R=Q, then for each element q in Q check if
there is a path from some of the remaining propo-
sitions in Q to q, if so, q is deleted from R. Finally,
the algorithm returns R which is then the non re-
dundant class assignments set of r. Removing
redundancies can be associated with the problem
known as transitive reduction (Aho et al., 1972)
which has an unfortunate complexity class if it is
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implemented naively. If the given graph is a fi-
nite directed acyclic graph current approaches that
solve this problem are close to the upper bound
O(n2.3729) but if the graph has cycles the problem
belongs to NP-hard class.

Another alternative to compute redundancy is
by using Semantic Web reasoners that have been
implemented based on decidable fragments of
RDFS and OWL semantics. These tools imple-
ment inference mechanisms that can be used to
deduce if a resource belongs to a given class (in-
stance checking). The main advantage of using
reasoners is that the potential of the underling se-
mantics can be exploited (e.g. several ontologies
can be combined to get implicit knowledge). On
the other hand, the disadvantage of using these
tools in linked data scenario is its complexity: in-
ference techniques work well for small examples
with limited knowledge but they turn unacceptably
slow for large-scale datasets. Besides, when multi-
ples ontologies are combined, inconsistencies can
arise affecting the inference process and hamper-
ing the detection of redundant propositions.

5 Evaluation

To perform our evaluation we selected the En-
glish version of DBpedia7 and set up a local mir-
ror using a Virtuoso8 server (version 7.2) . The
mechanisms implemented to compute redundant
class assignment avoid the use of complex graph
based algorithms or RDFS/OWL reasoners and
use a SPARQL query oriented approach (see sec-
tion 4.1). Although resources in DBpedia are clas-
sified using several classes of different schema we
only considered the DBpedia9 core and YAGO10

ontologies because information about the involved
class hierarchies (subclass relationships) can be
obtained directly from queries through the dataset
SPARQL endpoint. DBpedia ontology is a shal-
low cross-domain ontology that covers more than
600 classes and was created based on Wikipedia
infoboxes. YAGO is a taxonomy used in the
YAGO knowledge base that currently covers more
than 350,000 classes. The evaluation is organized
in the next subsections as follows: we first per-
formed an overall redundancy evaluation consid-
ering DBpedia and YAGO ontologies and then a

7http://wiki.dbpedia.org/Downloads2015-04
8http://virtuoso.openlinksw.com/
9http://wiki.dbpedia.org/services-resources/ontology

10https://www.mpi-inf.mpg.de/departments/databases-
and-information-systems/research/yago-naga/yago/

further analysis was done per class groups but
only considering the DBpedia class hierarchy in
order to keep the number of classes manageable.
For each class group, we analyzed the relationship
between redundant class assignments (RCA) and
three class hierarchy characteristics: class depth,
class descendants and number of class assign-
ments per class.

5.1 Overall redundancy evaluation
The first overall evaluation was made by retriev-
ing all resources that belong to some class of
the DBpedia ontology (6,729,604 resources of
453 classes) and then we did the same with the
YAGO ontology (2,886,306 resources of 369,144
classes). For each resource we compute its CAS,
its NRCAS and its RCAS (see section 4) con-
sidering both ontologies separately. Information
about resources and its CAS and NRCAS were
obtained through SPARQL queries (see section
4.1) and RCAS was obtained by computing the
difference CAS � NRCAS. Results can be
viewed in table of figure 1. Each element of
each CAS was counted as a different class assign-
ment (nbCA column), each element of NRCA
was counted as a non-redundant class assignment
(nbNRCA column) and each element of RCA was
counted as a redundant class assignment (nbRCA
column). As we can see in chart of figure 1,
considering classes of the DBpedia ontology al-
most half class assignments are redundant. On the
other hand, considering the YAGO ontology 80%
of class assignments are redundant. In the latter
case, the amount of class assignments is higher
and the amount of concepts in the class hierar-
chy increases considerably. These results sug-
gest a relationship between the number of classes,
class assignments and redundancy: as the number
of classes and class assignments increases, so the
probability of redundancy.

5.2 Redundancy and class depth
To analyze the relationship between redundant
class assignments and class depth we categorized
classes into groups from 0 to 6 according to their
depth in the DBpedia class hierarchy (the distance
from the root to that class) and then we count
how many class assignments refer to those classes.
Classes with depth 0 are the most general and 6
is the max depth found in the class hierarchy. A
class assignment refers to (or belongs to) a class C
if it is a triple of the form (resource rdf:type
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Figure 1: DBpedia and YAGO redundancy evalu-
ations

C). To compute the depth of a class we used a
SPARQL query to count the number of ancestors
(see section 4.1 listing 3). Results can be viewed
in table 1, chart of figure 2 shows the relationship
between the class depth and the percentage of re-
dundant class assignments (%RCA) and chart of
figure 3 shows how these redundant class assign-
ments are distributed.

Depth nbClasses nbCA nbRCA
0 32 5,037,966 3,940,920
1 86 3,941,230 2,877,434
2 110 5,385,831 1,156,327
3 180 1,154,660 118,886
4 39 118,891 5,777
5 5 5,777 0
6 1 889 0

Table 1: Redundancy and class depth evaluation.

As we can see on chart of figure 2, as the class
depth increases (more specific a class is), the num-
ber of redundant class assignments decreases.

Figure 2: RCA vs class depth

Chart of figure 3 shows that more than 80% of
redundant class assignments refer to more general
classes (with less depth). For example, in table
1 we can see that there are 32 classes (nbClasses

column) of depth 0 (Depth column), 5,037,966
class assignments (nbCA column) that refer to
those classes and 3,940,920 of them are redundant
(nbRCA column). Examples of classes that belong
to that group are Agent, Place, Work, etc.

Figure 3: RCA distribution considering the class
depth

5.3 Redundancy and class descendants

To analyze the relationship between redundant
class assignments and class descendants we cat-
egorized classes into 10 groups according to the
number of descendants that they have. To compute
the descendants we used a SPARQL query to get
the subclasses of a given class (see section 4.1 list-
ing 2). Results are showed in table 2 and chart of
figure 4 shows the relationship between the num-
ber of class descendants and the percentage of re-
dundant class assignments (%RCA). Chart of fig-
ure 5 shows how these redundant class assign-
ments are distributed. Classes that do not have
descendants (330 classes) are the most specific
and class assignments that belong to that group
are not redundant. As we can see in chart of fig-
ure 4, when the number of descendant per class
increases, the number of redundant class assign-
ments also increases. For example, group named
“1 to 5” refers to classes that have between 1 to
5 descendants (78 classes) and redundancy is rela-
tively low. On the other hand, classes with several
descendants (e.g. class Agent) has a high level of
redundancy. As chart of figure 5 shows, only 3
classes have more than 100 descendants (Agent,
Person and Place) and they concentrates the 65%
of redundant class assignments.
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nbDesc nbClasses nbCA nbRCA
0 330 3,250,543 0
1 to 5 78 3,209,728 321,078
6 to 10 16 948,187 524,262
10 to 20 13 666,630 531,848
21 to 30 8 773,316 751,488
31 to 50 2 535,606 502,892
51 to 70 3 809,171 784,103
71 to 100 1 220,219 211,415
101 to 200 2 2,860,585 2,117,098
More than 200 1 5,231,844 4,472,258

Table 2: Redundancy and class descendants eval-
uation.

Figure 4: RCA vs class descendants

5.4 Redundancy and number of class
assignments

To analyze the relationship between redundant
class assignments and the number of class as-
signments per class we categorized classes into
10 groups according to the number of class as-
signments that refers to a class. Table 3 shows
the evaluation results and chart of figure 6 shows
the relationship between redundancy and the num-
ber of class assignments (or instances) per class.
Columns nbCA-acc and nbRCA-acc show the total
number of class assignments and redundant class
assignments in each group.

nbCA nbClasses nbCA-acc nbRCA-acc
0 to 10K 315 599,261 101,861
10K to 20K 35 484,931 120,512
20K to 30K 34 588,845 267,460
30K to 40K 25 384,601 220,270
40K to 30K 11 900,290 36,156
100K to 200K 7 906,730 365,085
200K to 300K 5 1,274,010 1,222,844
300K to 400K 1 396,046 395,804
400K to 500K 2 934,843 681,445
More than 500K 6 9,292,013 4,472,258

Table 3: Redundancy and number of class assign-
ments evaluation.

As we can see, most of classes (315) have

Figure 5: RCA distribution considering class de-
scendants

less than 10K class assignments. Besides, as
this number increases the number of classes in-
volved decreases but the percentage of redundant
class assignments increases. For example, classes
that have more than 500K class assignments (e.g.
Agent, Place, Person, etc.) concentrate most of
them (9,292,013) and 48% are redundant. We also
observe that the second group of most used classes
(between 200K and 500K class assignments) con-
sists of about 8 classes with high levels of redun-
dancy (between 70% and 95%).

Figure 6: RCA vs number of class assignments

6 Conclusions and future work

In this work we addressed the concept of seman-
tic redundancy considering class assignments as-
sertions in linked datasets. Based on a formal
definition we discussed how redundant (and non-
redundant) class assignments sets can be detected.
Inspired in previous related work, we conducted
an evaluation over the English version of DBpedia
based on SPARQL queries. We analyzed the re-
lationship between redundancy and three class hi-
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erarchy characteristics: the number of instances a
class has, its depth and its number of descendants.

Regarding the evaluation results, they suggest
that there is a relationship between redundancy
and depth of a class in a hierarchy: as more gen-
eral a class is (less depth), more redundant class
assignments can be found that refer to that class.
In a similar way, as the number of descendants
per class increases so does the number of redun-
dant class assignments related to that class. Par-
ticularly, we noted that this also occurs in most
populated classes (with more class assignments).
In this sense, datasets that use complex and large
class hierarchies to typify their resources in uncon-
trolled environments (such as crowsourced gener-
ated content) may be more prone to class assign-
ments redundancy. Considering this, we can make
the following observations:

• SPARQL queries as a mechanism to evalu-
ate redundancy offer practical ways to imple-
ment quality checks and get some statistics
of linked datasets. However, SPARQL in-
ference capabilities are limited: we can dis-
cover just some graph patterns using queries
but other implicit knowledge will be unreach-
able since we can not exploit all the semantic
capabilities or expressiveness of the used lan-
guages.

• Redundancy analysis can be used to detect
class assignments patterns and data publish-
ers behaviors. For example, in our evaluation
we detected that when a resource is assigned
to a very specific class, it is also assigned ex-
plicitly to the ancestors of that class. Discov-
ering these kinds of patterns may be useful to
improve the linked data generation process or
even to understand how classes described in a
given ontology are used on a specific dataset.

Future work will be focused on the development
and assessment of semantic redundancy metrics
that support our results on other linked datasets.
Besides, we plan to study how redundancy can
affect other data quality dimensions particularly
those related with semantic accuracy.
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