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Abstract. In this work we compare simple and ‘advanced’ algorithms that have
been used to perform various functions in connection with constraint satisfac-
tion problems (CSPs). These include algorithms for arc consistency, singleton
arc consistency, arc consistency used with MAC, maxRPC algorithms, and algo-
rithms for simple table reduction with non-binary constraints. In each case tested
so far, we find tradeoffs between efficient implementations of basic operations
like constraint checking and elaborations that allow a reduction in the number of
these basic operations but add bookkeeping expenses. It is argued that such trade-
offs must be given more thorough consideration. This also suggests that there are
interesting theoretical problems in this connection that have not yet received the
attention they merit. Finally, the possibility that certain psychological biases have
affected the analysis of algorithms in this area is considered.

1 Introduction

In the design of algorithms for constraint satisfaction, optimal time complexity has gen-
erally been taken as the gold standard for quality assessment. This has led to a history
of attempts to improve various algorithms guided by the determination of what is op-
timal in each instance. This began with the development of optimal arc consistency
algorithms [18]. Later, the same process occurred in connection with singleton arc con-
sistency (SAC)[5], search with maintained arc consistency (MAC) [14, 17], restricted
path consistency methods [1, 21], and generalized arc consistency for extensional con-
straints with simple table reduction (STR) [12].

From time to time there have been dissenting voices. A number of years ago, Wal-
lace [22] questioned the then conventional wisdom that since AC-4 was optimal, it was,
therefore, the algorithm of choice for establishing arc consistency. In the past decade
van Dongen [20] questioned whether it was always better to avoid constraint checks
while doing MAC in favour of other operations involving extra data structures. More
recently, Wallace [23, 25] showed that advanced methods for SAC were often inefficient
with larger problems in comparison with what he called “light-weight” methods such
as SACQ and even SAC-1, despite the higher time complexities of the latter.

An immediate inspiration for the present work was the author’s experience with
SAC algorithms. He found that when he tried to implement the advanced algorithms,
that were either optimal or nearly so by the usual standards, they turned out to be un-
wieldy, with poor scalability [23]. Even more telling has been the author’s experience
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with MAC-2001 as opposed to MAC-3, in connection with binary CSPs. Despite the
fact that the former is often touted as an improvement over the latter, the present au-
thor found that his version ran about 50% slower than his version MAC-3. This was
remniscent of the findings of von Dongen [20] based on well-tuned C code; the latter
author had found that MAC-2001 was 35% slower. After the experience of actually
coding the algorithm, this came as no surprise. MAC-2001 uses a large array in which
the last support found for each value and each constraint is stored. Constraint checking
involves checking this array as well as evaluating actual tuples. Moreover, maintaining
and restoring this data structure involves storing former last supports as well as indexes
into the array, in order to replace a supporting value in the right cell of the array.

On the basis of these experiences, it seemed worthwhile to look more closely into
the general problem of efficiency in these algorithms. Especially since other authors
have reported results that contradict those described in the last paragraph. The present
work is a collection of case studies involving the four algorithmic tasks mentioned in the
first paragraph. In each case, it appears that there are significant tradeoffs between re-
ducing the dominant operations (usually constraint checking) and increasing the amount
of bookkeeping required to handle the more complex data structures that always seem
necessary in these cases.

One conclusion from this work is that it is possible to use complexity analysis to
obscure as well as to illuminate. It seems to me that the way forward is to carefully con-
sider various implementations of these algorithms, in order to extract principles of good
algorithm design. Obviously, this effort must be coordinated with complexity analysis.
But when used in tandem, the result should be to clarify the latter.

The next section gives general background concepts and definitions. Section 3-6
discuss the various problems with purportedly optimal versions of AC, SAC, MAC,
and STR, respectively. Section 7 discusses some lessons learned from this exercise, and
suggests some ways to improve and systematize the design and analysis of algorithms
in this field. Section 8 gives conclusions.

2 Background Concepts

A constraint satisfaction problem (CSP) is defined in the usual way, as a tuple, (X,D,C)
where X are variables, D are domains such that Di is associated with Xi, and C are
constraints. A solution to a CSP is an assignment or mapping from variables to values
that includes all variables and does not violate any constraint in C.

In problems with binary constraints, arc consistency (AC) refers to the property that
for every value a in the domain of variable Xi and for every constraint Cij with Xi

in its scope, there is at least one value b in the domain of Xj such that (a,b) satisfies
that constraint. For non-binary, or n-ary, constraints generalized arc consistency (GAC)
refers to the property that for every value a in the domain of variable Xi and for every
constraint Cj with Xi in its scope, there is a valid tuple that includes a. One method
for establishing GAC is called simple table reduction (STR) [19]. Instead of checking
values against tuples to see if they are supported, this procedure builds up domains anew
by considering viable tuples, since if a tuple is viable then each of its constituent values
is supported.
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Singleton arc consistency, or SAC, is a form of AC in which the just-mentioned
value a, for example, is considered the sole representative of the domain of Xi. If AC
can be established for the problem under this condition, then it may be possible to find a
solution containing this value. On the other hand, if AC cannot be established then there
can be no such solution, since AC is a necessary condition for there to be a solution,
and a can be discarded. If this condition can be established for all values in problem P ,
then the problem is singleton arc consistent.

In binary CSPs, path consistency (PC) refers to the property that given a viable tuple
(a, b) between variablesXi andXj , then for any third variableXk in the problem, there
is a value c in the domain of the latter that will support both a and b. Restricted path
consistency (RPC) is a form of consistency in which the aforementioned PC property
holds whenever a value a in the domain of Xi has only one support in the domain of
Xj [3]. Max restricted path consistency (maxRPC) holds if for every value in every
domain, there is at least one path consistent value among its supports in every adjacent
constraint [11].

Maintained arc consistency (MAC) is a complete algorithm for CSP search, that
for any CSP either returns a solution or proves that the problem is unsatisfiable. It is
an example of a hybrid algorithm that interleaves depth-first backtrack search with lo-
cal consistency processing. Specifically, after a preprocessing step that establishes AC,
MAC assigns variables in accordance with the basic backtracking algorithm, and after
each assignment it re-establishes arc consistency. (There is also a variant that conducts
search in a binary fashion, in which if an assignment is retracted, AC is done on a ver-
sion of the problem with that value removed; here, we will limit the discussion to the
variant where each value of a domain is tried in turn.)

All algorithms tested in this paper were coded in Common Lisp. Experiments were
run in the XLispstat environment with a Unix OS on a Dell Poweredge 4600 machine
(1.8 GHz).

3 The Case of AC

This is probably the earliest example of the phenomenon of interest in this paper. When
AC-4 was first described in 1986, the authors were able to show that its O(ed2) time
complexity, was optimal for establishing arc consistency. After that, many people in
the field assumed that it had pre-empted earlier AC algorithms including AC-3. Hence,
trying to improve the performance of AC-3 was pointless. However, in 1993 the present
author was able to show with a simple statistical model that AC-3 outperformed AC-4
over a fairly wide range of contraint tightnesses in various problems [22]. There were
two basic reasons for this:

1. AC-4 requires a first phase in which its data structures are initialized. To do this,
it must carry out a complete evaluation of arc consistency for all values in the
problem. Hence, it always requires a full ed2 number of constraint checks.

2. AC-3’s worst case complexity holds only for extreme cases in which each domain
is reduced O(d) times, which requires that in each case all of its adjacent variables
(minus one) are put back on the queue. In the aforementioned paper, the author
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showed that even small perturbations of the worst-case conditions were sufficient
to create problems where AC-3 was again superior to AC-4.

At about this time a new AC algorithm was proposed, called AC-6 [4]. Despite its
cleverness, it didn’t really provide a major performance boost, and it was difficult to
incorporate into a hybrid search algorithm. As a result, it wasn’t taken up by the com-
munity at large. (Another algorithm, AC-7, tries to avoid redundant constraint checks
by maintaining dual supports. But it, too, is unwieldy and because of space and time
limitations it will not be discussed in this paper.)

Faced with this situation, various workers in the field eventually decided to have
another go at improving on AC-3. Interestingly, two independent groups of researchers
hit upon the same trick at almost the same time. Therefore, around the year 2000 two
papers appeared that described a variant of AC-3 that had optimal time complexity,
called AC3.1 or AC2001 [9].

The basic idea behind the improvement was to store the first support found. Then,
if a value had to be checked for support again in the course of consistency checking,
one could retrieve the value checked before, and provided it was still viable, one did
not have to perform more checks to find support. One therefore had to add a new data
structure in which the last support found was stored. For this purpose, an array can be
declared, but it must be large enough to hold a support for each value and constraint
in the problem. So, just as with AC-4, elaborate data structures were used to reduce
theoretical time complexity.

However, here as elsewhere there are tradeoffs, in this case in regard to the time re-
quired to carry out the procedure and establish arc consistency, Here, the basic tradeoff
is associated with the assumption of current viability. To assess this, one must do some
sort of test. Depending on the representation, the test can be done very quickly; how-
ever, the same is true for constraint checking, the operation one is trying to avoid. As a
result, we are once again in the situation where it’s not entirely clear whether we have
made a genuine advance that will be significant in practice. (The use of this elaboration
in connection with search is described in the next section.)

4 The Case of MAC

The last decade has seen two significant proposals for improving MAC-3 called MAC-
2001 and MAC with residues (here called MAC-xres, where x is either 3 or 011. MAC-
2001 uses AC-2001 instead of AC-3. MAC-xres is also based on the idea of storing
values that have been found to support a given domain value across a constraint. The
key innovation is not to try to restore the last-support array to a previous condition.
Instead, if the last-support is not in the current domain of the adjacent variable then the
algorithm proceeds to carry out constraint checks. The last-supports are called residues,
which gives the algorithm its name.

It’s worth noting that the basic rationale for saving the last support is that one might
have to perform lots of constraint checks otherwise. However, this doesn’t take into

1 Obviously, other AC algorithms than AC-2001 or AC-3 can be used with residues. In this paper
I will confine the discussion to these two forms.
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Fig. 1. Runtimes for three versions of MAC on random problems (constraint relations as lists).

account the possibility that the first support may be found early enough in the course of
constraint checking that the extra work required to save last values, check them, and to
maintain a last array may not be worth the trouble, especially if constraint checking can
be done with great efficiency.

The problem with MAC-2001 is due to the fact, that unlike AC-2001, the last array
needs to be maintained and restored constantly during search (specifically, whenever
an assignment is retracted and a new value tried). Because the last array has three di-
mensions even when constraints are binary, these indexes must be stored in order to
perform the necessary up-keep. Hence, storage and retrieval of indexes along with the
actual replacement of last-values involves a massive amount of overhead.

Nonetheless, early in the last decade it was claimed, and the claim was generally
accepted that MAC-2001 was an improvement over MAC-3. The one dissenting voice
that I know of at that time (about ten years ago) was Marc van Dongen, who found
that with an efficient version of MAC-3, the reduction in constraint checks afforded by
MAC-2001 was not sufficient to overcome the ‘overhead problem’ [20]. As noted in the
Introduction, this is consistent with my experience.

Nonetheless, there are published results that show that MAC-2001 is often better
overall than MAC-3 [14]. So what is going on? Recently, I realized that a key factor
in all of this may be the efficiency of constraint checking. In my implementation and
in van Dongen’s, constraint checking for table constraints is carried out with incident
arrays. In my case, I have a hash table of array addresses, which are accessed using the
integer variable labels. (It is set up so that there are no collisions.) Then, the integer
labels are used as indexes to a cell in the array whose value is TRUE or FALSE. Hence,
constraint checking is very fast, i.e. very cheap.
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Fig. 2. Runtimes for three versions of MAC on random problems (constraint relations as incident
arrays). Curves for MAC3 and MAC3res nearly coincide.

In order to evaluate this aspect of the algorithm, I implemented constraint checking
in a different way. In this new version, the constraint tuples are kept in a list, so the data
structure is a list of two-element lists. Constraint checking is done by composing the
two labels into a list and then using the Lisp member function to determine if that list is
in the constraint relations. Needless to say, this is much slower than the other method.

Using these two forms of constraint checking, the three algorithms, MAC-3, MAC-
2001 and MAC-3res, were compared. The problems were homogeneous random binary
CSPs with parameters <100,20,0.05,t>, where 100 is the number of variables, 20 the
domain size, 0.05 the density of the constraint graph, while the constraint tightness t
varied in steps of 0.05 between 0.1 and 0.9.

The results are shown in Figures 3 and 4. Note that when constraint checking is
very efficient, MAC-3 easily outperforms MAC-2001, and there is almost no difference
between MAC-3 and MAC-3res. On the other hand, when constraint checking is very
inefficient, one finds the usual pattern of results reported in the literature: MAC-2001
is somewhat better than MAC-3, while there is a marked reduction in time with MAC-
3res.

Now, I’m not claiming that other workers in the field employ a constraint checking
process that is as inefficient as my list processing procedure. These results are meant
to be a demonstration only. However, they are consistent with the pattern of results
reported elsewhere, and as far as I can tell with the “conventional wisdom” of the field.
In contrast, with very efficient constraint checking, the results (at least for MAC-3 and
MAC-2001) are consistent with those reported in [20].

Table 1 shows the number of constraint checks and the runtime for the three algo-
rithms, for the most difficult problems (t = 0.65). Obviously, the newer forms of MAC
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are enormously effective in reducing constraint checks (and MAC-3res is in fact better
than the “optimal” MAC-2001, as others have noted [14, 17]). Nonetheless, they are
still equalled or outperformed by MAC-3.

Table 1. Times and Constraint Checks for MAC Algorithms
on Random Problems with t=0.65 (Hardest Set)

algorithm ccks runtime
MAC-3 34,145,738 79.9
MAC-2001 20,741,750 123.6
MAC-3res 10,521,173 81.2

Notes. Constraint-checking with incident arrays. Means for
50 problems. Times in seconds.

5 The Case of SAC

In 1997 Debruyne and Bessière [11] proposed a new form of consistency that they
called singleton arc consistency (SAC). In this form, every value in every domain can
form an arc-consistent problem even if it is the only value in that domain. In order to
establish this state, an AC algorithm is run repeatedly, each time with one domain fixed
to a single value. If AC fails under these conditions, then that value cannot be part of
any solution, so it can be discarded. This process continues until it has been established
that every remaining value can support an arc-consistent problem.

What is intriguing about SAC is that it is still AC-based, which means that it rests
on a very efficient underlying procedure. At the same time, it can remove many more
values than an AC algorithm applied to the same problem. Of course, the number of
repetitions of AC required makes a SAC algorithm very expensive overall, so there is a
significant tradeoff problem between effectiveness and efficiency.

In the aforementioned paper, the authors described an algorithm with a simple repeat
loop, now called SAC-1. In this algorithm, the full procedure (i.e. a complete run of
SAC over all values in all domains) is repeated until no more values are deleted. It
seemed likely that this could be improved upon, and in fact a series of algorithms have
been proposed that are purported to give better performance, including an “optimal”
SAC algorithm. These will be described briefly.

The SAC-2 algorithm [2] was inspired by the arc consistency algorithm AC-4 [18].
In both cases, the basic idea is to gather and store information about support during
an initial processing phase (in the form of counters and “support lists”), to avoid per-
forming redundant and irrelevant constraint checks while establishing local consistency
throughout the problem. SAC-2 begins by running AC-4. Then, analogous to AC-4,
there is a SAC initialization phase followed by a SAC pruning phase.

Recall that during the initial phase of AC-4, any domain values with zero support
with respect to some constraint are removed and also added to a special no-support list.
Then, in the pruning phase, by decrementing counters and adding support lists to the
no-support list whenever a counter reaches zero, other domain values are removed until
the no-support list is empty, at which point the problem is arc consistent.
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In the SAC-2 SAC initialization phase, SAC support lists are built along with a list
of assignments that need to be checked, which corresponds to the no-support list of
AC-4. SAC support lists are constructed by placing each value that did not fail during
the SAC-test (in which that value was made the sole member of its domain) on the SAC
support list of every value in the remainder of the problem. If, on the contrary, the SAC-
test fails, then an AC4-style pruning phase is carried out; the only difference from AC-4
is that if a value’s support goes to zero, in addition to it being put on the AC no-support
list, all its SAC-supports are put on the SAC no-support list. Following all this, in the
SAC pruning phase, each value on the SAC no-support list is tested for SAC. During
this stage, if a value fails in a SAC test, this leads to the same procedures as during
SAC-initialization: AC-4-pruning and addition of all assignments on the support list of
this value to the SAC-no-support list.

The SAC-SDS algorithm [6, 7] is a modified form of the authors’ “optimal” SAC
algorithm, SAC-Opt. The key idea of SAC-SDS (and SAC-Opt) is to represent each
SAC reduction separately; consequently there are n×d problem representations (where
n is the number of variables and d is the maximum domain size), each with one domain
Di reduced to a singleton. These are the “subproblems”; in addition there is a “master
problem”. If a SAC-test in a subproblem fails, then the value is deleted from the master
problem and that problem is made arc consistent. If this leads to failure, the problem
is inconsistent; otherwise, all values that were deleted in order to make the problem
arc consistent are collected in order to update any subproblems that still contain those
values. Along with this activity, the main list of assignments (the ”pending list”) is
updated, so that any subproblem with a domain reduction is re-subjected to a SAC-test.
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Fig. 3. Mean runtimes for SAC algorithms on homogeneous random problems of increasing size.
Last segment of SAC-2 curve only shown up to 100-sec limit.
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SAC-SDS also makes use of queues (here called “copy-queues”), one for each sub-
problem, composed of variables whose domains have been reduced. These are used
to restrict SAC-based arc consistency in that subproblem, in that the AC-queue of the
subproblem can be initialized to the neighbours of the variables in the copy queue.
Copy queues themselves are initialized (at the beginning of the entire procedure) to the
variable whose domain is a singleton. In addition, if a SAC-test leads to failure, the
subproblem involved can be taken ‘off-line’ to avoid unnecessary processing. Subprob-
lems need only be created and processed when the relevant assignment is taken from the
pending list; moreover, once a subproblem is ‘off-line’ it will not appear on the pending
list again, so a spurious reinstatement of the problem cannot occur.

The SAC-3 algorithm [13] uses a greedy strategy to eliminate some redundant
checking done by SAC-1. The basic idea is to perform SAC tests in a cumulative series,
i.e. to perform SAC with a given domain reduced to a single value, and if that succeeds
to perform SAC with an additional domain reduced to a singleton, and so forth until a
SAC-test fails. (This series is called a “branch” in the original paper.) The gain occurs
because successive tests are done on problems already reduced during earlier SAC tests
in the same series. However, a value can only be deleted during a SAC test if it is an
unconditional failure , i.e. if this is the first test in a series. This strategy is carried out
within the SAC-1 framework: successive phases in which all of the existing assignments
are tested for SAC are repeated until there is no change to the problem.

Recently, another SAC algorithm was proposed in [24] called SACQ. SACQ uses
an AC-3 style of processing at the top-level instead of the AC-1 style procedure that is
often used with SAC algorithms. This means that there is a list (a queue) of variables,
whose domains are considered in turn; in addition, if there is a SAC-based deletion
of a value from the domain of Xi, then all values that are not currently on the queue
are put back on. Unlike the other SAC algorithms, there is no “AC phase” following a
SAC-based value removal.

SAC-1 and SACQ have been termed “light-weight” as opposed to “heavy-weight”
SAC algorithms [23]. The former use relatively simple data structures, while the latter
require elaborate data structures, as the descriptions above show. The question is, how
well do these different kinds of approach scale as problems become larger? Here, I
present some results taken from that paper.

The results of one experiment are shown in Figure 1. In this case, the problems were
homogeneous random CSPs. Problems had either 50, 75 or 100 variables. Each point
in the graphs is a mean of fifty problems.

It can be seen that there is a definite divergence in efficiency in favour of the light-
weight algorithms as problem size increases. The most spectacular increase in runtime
is for SAC-2. In this case, the last point (for the 100-variable problems) could not be
graphed without compressing the other curves, so it was omitted. (The value of the mean
in this case was 402 sec.) For SAC-3 and SAC-SDS the increase was much less dra-
matic, but for the largest problems there was a marked divergence from the light-weight
algorithms. For problems of this type, SAC-1 and SACQ had very similar average run-
times, although there is some indication of a divergence for the largest problems in
favour of SACQ. (As expected, SAC-SDS showed a dramatic reduction in constraint
checks, to about 50% of those generated by SAC-1.)
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Results for a further set of tests are shown in Figure 2. These were Radio Link
Frequency Allocation Problems (RLFAPs) taken from a set of standard benchmarks.
(At the site these are called graph problems.) These four problems all had solutions.
Problems 1 and 3 had 200 variables, problems 2 and 4 400. Problems 3 and 4 were
versions of 1 and 2, that were made more difficult by reducing the size of a few domains.

For these moderately large problems it was not possible to complete any runs with
SAC-2. SAC-SDS was also highly inefficient, and this inefficiency increased as problem
size and difficulty increased, to the point where the run with hardest problem could not
be completed. Another point worth noting is that the inflection for SAC-SDS is different
from the other algorithms; this undoubtedly reflects the fact that the second problem in
this series is much larger than Problem 3 although it is basically easier to solve. In this
case the space inefficiency of SAC-SDS is also reflected in the runtime.

SAC-3 as about as efficient as SAC-1 on these problems, but both are less efficient
than SACQ. These differences become clear for difficult problems that are also large.
Thus, runtimes for Problem No. 4 were 20,336, 21,244 and 13,664 sec for SAC-1,
SAC-3 and SACQ, respectively. Since SAC-1 begins to diverge from SACQ on the
most difficult problems, this indicates that here the queue-based strategy scales better
than the repeat-loop strategy.

From these experiments, I conclude that the light-weight algorithms scale much
more adequately than the heavy-weight algorithms despite the higher time complex-
ity of the former. This is true even for SAC-1 whose simple repeat-loop procedure
is guaranteed to result in considerable inefficiencies with regard to constraint checking.
Obviously, in this case the tradeoff between constraint checking and the extra bookkeep-
ing that comes with more elaborate data structures is critical for overall performance.
Again, a key factor may be the efficiency of constraint checking in my implementation.
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6 The Case of MaxRPC

Path consistency (PC) was one of the earliest forms of local consistency investigated,
having first been defined in the min-1970s by Montanari. The problem has always been
that it is too inefficient to be used except as a preprocessing step, and in addition in
contrast to AC it can alter the constraint graph.

About 20 years ago an interesting variation on path consistency was suggested by
Berlandier [3], which he called restricted path consistency (RPC). In this variant, PC is
only enforced when a value has a single support in an adjacent domain. Unfortunately,
this means that one has to count supports, and unless one is using AC-4 this is an extra
burden added to search effort.

A few years later, Debruyne and Bessière [10] suggested a way of finessing this
problem: always look for two supports instead of one. Whenever a second support for
a given value cannot be found, then this value must be tested for path consistency. On
the other hand, if two supports are found, then one doesn’t have to do this test.

In addition, these authors suggested a new form of RPC that they called maxRPC.
In this case, one always establishes that a value has at least one support that is also
path consistent; if no such support can be found, then the value can be discarded. This
has been perhaps the most widely studied form of path consistency over the past two
decades.

Subsequent to the introduction of residues in connection with MAC, Vion and De-
bruyne [21] introduced their use in connection with maxRPC. However, just as with
SAC support-lists for SAC-2, using PC residues with an RPC algorithm entails humon-
gous data structures and constant, complex checking and updating. So, again, it isn’t
clear that saving and checking residues of this sort will result in a more efficient algo-
rithm.

In the present work, I look at three different forms of maxRPC.

• A version that doesn’t use residues at all.

• A version that only saves AC residues.

• A version that saves both AC and PC residues.

In coding up these variants, I came up against a further issue. In the pseudocode
given in [21], consistency processing has an AC phase followed by a PC phase. But
to be complete, path consistency processing cannot be done independently of AC. The
reason for this is that when a value is deleted because it violates the path consistency
requirement, then the problem is no longer necessarily arc consistent. In this case, my
version differs from theirs in that AC and PC processing are interleaved throughout.
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Table 2. Times for Max-RPC Algorithms with/out
Residues on Random Problems

tightness

algorithm 0.60 0.65 0.70 0.75 0.80
AC 0.02 0.02 0.02 0.02 0.05
maxRPC no residues 0.04 0.04 0.05 0.09 0.22
maxRPC AC residues 0.05 0.06 0.07 0.10 0.23
maxRPC AC,PC resid 0.08 0.08 0.09 0.13 0.32

Notes. Preprocessing times, in sec. 50 problems at
each tightness value.

Some comparative results are shown in Table 2 for random problems with 100 vari-
ables, domain size 20, density about 0.03 and varying levels of tightness. Overall, these
are impressive times, only a little slower than AC. (In contrast, the fastest form of SAC-
based algorithm, NSACQ, requires about 1.5 sec on average with these problems.) The
slower times for tightness = 0.80 occur because in this cases maxRPC (unlike AC)
is able to prove 43 of the 50 problems unsatisfiable, thus avoiding search. Obviously,
this involved more processing (reflected in the number of values deleted) since more
elements had to be added to the AC queue.

However, the pertinent fact here is that saving residues doesn’t save time, at least
not with the present implementations. Moreover, when PC residues are used, the times
increase, which must be due to the extra bookkeeping involved.

7 The Case of STR

Over the past five years, several improvements to the simple table reduction (STR) al-
gorithm of Ullmann [19] have been suggested. The first was STR2 [12]; this algorithm
avoids some constraint checks by excluding certain variables, but this involves member-
ship tests, and therefore it does not permit a straightforward run through the variables in
a constraint while checking a tuple. STR2w [15] attempts to improve best-case behav-
ior by means of watched values. This avoids rebuilding domains in the fashion of STR
and STR2, but involves extra data structures that must be maintained during search. Fi-
nally, STR3 [16] uses a radically different approach based entirely on watched values,
but like some SAC algorithms this involves humongous data structures, which must be
maintained during search. In addition, both STR2w and STR3 assume that the problem
has already been made GAC-consistent, so preprocessing must be done with a different
algorithm.

To date, I have coded STR2 and STR2w and subjected them to limited tests; so far
I have not seen any great advantage, but it is too early to draw definite conclusions.
Because of the complexity of the implementation, I have not finished coding STR3.
However, at this point it is clear that again there are issues with regard to extra book-
keeping in the advanced methods that may compromise overall efficiency.
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8 On Strategies for Algorithm Improvement

Needless to say, the point of the previous demonstrations is not to question time com-
plexity analysis. Instead, the question is how to use such analyses to illuminate rather
than obfuscate.

One way of looking at the problem, which is perhaps clearest in the case of MAC, is
that one needs to consider additive versus multiplicative features of the algorithm. Addi-
tive components include both setting up basic data structures and, if search is involved,
the initial preprocessing step. For example, in the MAC case study described above, the
extra work in setting up an efficient structure for constraint checking has a tremendous
effect on performance. And it doesn’t figure at all in the time complexity analysis. But
the significant fact is that this procedure changes the character of performance Most
significantly, during the subsequent search it changes the relation between time to per-
form a constraint check and time to perform alternative tasks. Although this may still
not affect asymptotic time-complexity, it will affect actual performance regardless of
how large the problems are because the coefficient of proportionality is smaller.

Indeed, what often happens – as clearly shown with SAC algorithms – is that as
problem size grows, the cost of bookkeeping increases more rapidly than the cost of
basic operations like constraint checking, provided that the latter are carried out with
reasonable efficiency.

Another important theme that can be discerned in this work (and which to my
knowledge has not received the attention it merits) is the implicit versus explicit use
of information by an algorithmic procedure. One of the most effective general strate-
gies in designing algorithms seems to be: to design procedures that take advantage of
information that is implicit in the way the problem is represented, the way that data
structures have been set up, or even in the basic features of machine memory. Perhaps
the best example I know of is the design of the basic backtracking algorithm. This is
reflected in its description as “implicit enumeration”. In this case one does not need any
explicit information, such as counters or the like, to ensure that the algorithm covers the
entire search space. Instead, this occurs automatically given the monotone character of
unsatisfiability and the testing of variables and values in an orderly fashion.

It is also observable in comparisons between coarse-grained and fine-grained con-
sistency algorithms. For example, in the coarse-grained AC-3 supports are not repre-
sented explicitly, while they are in AC-4. This leads to a very interesting tradeoff in that
search time can be greatly reduced if supports are available (MAC-4), but the time to
do this setting up can sometimes outweigh the gain during search even for fairly large
problems (see [8]).

There is a third theme, which wasn’t dealt with specifically in these demonstrations,
but is worth mentioning here. This is the generality (or range of applicability) of algo-
rithmic strategies. In the case of the SAC algorithms, it was found that the advanced
methods could not be generalized to perform neighbourhood SAC without compromis-
ing some of their basic features (see [23, 25]. This is because they involve SAC-based
assumptions, especially the assumption that the entire problem has been made arc con-
sistent at each step, which do not hold in the case of neighbourhood SAC. As a result,
it was found that alterations had to be made to ensure that they achieved the full level
of consistency, and these alterations greatly compromised performance. In contrast the
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simpler, ‘light-weight’ methods could be used without compromising their basic proce-
dures.

9 Concluding remarks: On algorithms and narratives

Most papers on algorithmic efficiency in this field follow a fairly set strategy when
they attempt to demonstrate the superiority of Algorithm X over Algorithm Y. First,
complexity results are given; then tests are run using various problem classes. When, as
usually happens, the experimental results are consistent with the complexity analysis,
the author concludes that the superiority of Algorithm X has been demonstrated – both
theoretically and empirically.

However, this appearance of consistency may sometimes be deceiving. Time com-
plexity differences are, after all, asymptotic differences, and they therefore don’t guar-
antee that a particular experiment will follow the asymptotic pattern. In fact, if one is
off-loading operations in order to reduce what is normally the dominant operation (here,
checking a tuple against the constraint relation), and the number of these operations also
increases with increasing search effort, then it is not necessary for any experiment to
match the analysis no matter how large or difficult the problems are.

Moreover, in this situation there is always a chance that confirmation bias is influ-
encing the experimental results. This may have been the case for the alleged improve-
ments to MAC-3, since as I have argued, they seem to depend on how efficiently one
does constraint checking.

In these cases, we may be dealing with the general problem of distinguishing be-
tween carrying out a causal analysis versus building a narrative. Apparently because of
deep-seated biases in the human thinking process, the tendency for narrative-building
to creep into one’s arguments is an ever-present problem. In particular, the narrative
closure that is obtained with the usual presentation may blind one to any limitations
and alternative explanations for the results.

Perhaps I don’t have to say that, in sharp contrast to some fashionable contemporary
exponents of science practice, I do not wish to see narratives take the place of careful
causal analysis. What is necessary, perhaps, is the cultivation of a greater sensitivity to
the possibility of such problems arising (even in an apparently cut-and-dry field like
algorithmics!) and less complacency regarding the results of any particular experiment.
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