
Exploiting a touchless interaction to drive a wireless

mobile robot powered by a real-time operating system

Davide Calvaresi
Scuola Superiore Sant’Anna

d.calvaresi@sssup.it

Andrea Vincentini
Scuola Superiore Sant’Anna

a.vincentini@sssup.it

Antonio Di Guardo
Scuola Superiore Sant’Anna

a.diguardo@sssup.it

Daniel Cesarini
Scuola Superiore Sant’Anna

d.cesarini@sssup.it

Paolo Sernani
Università Politecnica delle Marche

p.sernani@univpm.it

Aldo Franco Dragoni
Università Politecnica delle Marche

a.f.dragon@univpm.it

Abstract

Nowadays, touch-based user interfaces are
widely used in consumer electronics. Recent
trends confirm the high potential of touch-
less interface technologies to manage also
Human-Machine Interaction, in scenarios such
as healthcare, surveillance, and outdoor activ-
ities. Moving from pointers, keyboards or joy-
sticks to touch-screens represented a signifi-
cant challenge. However, a touchless approach
needs to ensure intuitiveness and robustness.
This paper describes a framework enabling the
wireless control of a mobile robot through a
contactless controller. The data provided by a
complex sensor, composed of two stereo cam-
eras and three IR sensors, are processed with
custom algorithms that recognize the move-
ments of users’ hands. The result is promptly
translated into commands for the robot run-
ning a real-time operating system. Usability
tests confirm the compelling employment of
contactless controllers for mobile robots and
drones both in open and closed environments.

1 Introduction

In the recent decades, human beings are living in
a technological revolution. The frenetic advent of
technological devices is changing peoples daily life.
Widespread consumer devices, new generation sensors,
single-board computers, and other components, foster
the design of many heterogeneous and different user-
centered systems.

Although there are different kinds of systems with
different peculiar goals, even within the same domain,
they all face a common challenge: interaction with
the users [Suc87] guaranteeing the compliance with
their needs [CCS+16]. Indeed, all systems involv-
ing human interaction provide a way to support a
two-sided communication: human to machine (inter-
faces to manage inputs, command, etc.) and ma-
chine to human (interfaces to perceive the systems’
feedback) [Min02, WG95]. To have robust, depend-
able and usable interfaces, they have to be accessi-
ble, as much intuitive as possible, and to respond in
a time coherent with human requirements (if the in-
teraction is too fast or too slow the user gets easily
lost) [Fis01, Dix09].

Over the years, to produce more powerful inter-
faces, programmers tried to couple syntax and seman-
tics, trying to associate the dynamics of a command to
the actual output (gesture or movement) [Bro98]. In-
deed, around the 40’s, multi-purpose systems only em-
ployed panels with buttons (evolved into the modern
keyboard), while systems dedicated to more specific
contexts required properly designed interfaces. For ex-
ample, in the case of moving mobile objects, both di-
rectly or indirectly, the joystick (emulating the older
cloche employed in the aviation) became in the 80s the
default choice for electronic controllers [Wol88, Gra81].
Even tough it was widely declared a big failure when
employed as a pointer [CEB78], it kept evolving (main-
taining its original basic features) becoming a standard
interface for systems moving/driving objects.

The advent of the new touchscreen devices radi-
cally changed the human experiences when approach-
ing technological devices. However, to face specific
tasks like moving objects (e.g., gaming, etc.), even

tough the touchscreen revolutionized the way of think-
ing about “how to perform an action”, a simulated
joystick still represents the more intuitive means to
translate an intention to an action. In line with the
current technological trends, this paper aims at mov-
ing a further step on behalf of the old joystick, bringing
it in the touchless era [MBJS97].

The presented solution is a system, based on mul-
tiple devices, which detects hands movements, trans-
lating them into joystick-like commands, and finally
communicating them to a mobile robot, that behaves
accordingly to the received instruction. The rest of the
paper is structured as follows: Section 2 presents an
overview of the framework, its structure and its main
components and functionalities. Section 3 addresses
the system’s requirements, functionalities and chal-
lenges. Section 4 presents the conducted tests sum-
marizing their results. Finally, Section 5 concludes
the paper, presenting the lesson lernt and the future
works.

2 System overview

This section introduces the framework, presenting an
overview of its structure, its main components and
their functionalities.

The framework is mainly composed of three mod-
ules:

• the User Interface Module (UIM) , Figure 1(x);

• the Communication System (CS), Figure 1(y);

• the Mobile Robot (MR), Figure 1(z).

The interactions between the components of the
framework are represented by the blue arrows in Fig-
ure 1.

Currently, the technological market offers a broad
range of solutions for gathering and processing hands’
position in space/time. Vokorokos, et al. [VMC16] an-
alyzed the efficiency of the three most relevant devices
on the market: the Leap Motion Controller [Leab],
the Microsoft Kinect [Zha12] and the Myo Arm-
band [Nuw13]. Depending on scenarios and settings,
those devices showed up different peculiarities. For
example, the Microsoft Kinect enables to track the
entire body motion within a detection range of 0.5m
and 4.5m [FP11], the Myo Armband is a wearable
bracelet reading the muscular’ electric impulses, that
guarantees a high level of comfort, however limiting
the amount of information that can be acquired. Com-
pared with the previous ones, the Leap Motion Con-
troller represents a better trade-off between flexibility,
time-to-prototype, and precision [MDZ14], and thus it
has been chosen for the presented project.

The applications in the virtual reality domain are
increasing remarkably, both in presence [EFAA15] or
in absence [PBAR15] of haptic feedback. Such solu-
tions mainly aim at moving and virtualizing real ob-
jects or their models, and entire environments while
enabling interactions with them. The Leap Motion
Controller is massively employed in those systems, like
the presented one, providing a visual rather than a
haptic feedback [BGG+14, FSLS+16].

Briefly analyzing the Leap Motion Controller, it is
a sensor composed of two stereo CMOS image sensors
and three infrared LEDs. Such a sensor, coupled with
a set of libraries, besides exporting the image of the
area over the sensor, exposes APIs to get the kinemat-
ics of the hand and all its joints, thus enabling the
hands’ acquisition as in Figure 1(a). The Command
Generator Module in Figure 1(b), running on a PC,
operates over the obtained data to extract relevant
information, and decide which commands to send to
the mobile robot through the Communication Client
in Figure 1(c). The communication system, running
a custom Communication Protocol over an XBee con-
nection [Fal10], Figure 1(d), transfers the commands
detected by the User Interface Module to the Commu-
nication Server, Figure 1(e). The Decoding Module,
Figure 1(f), elaborates the received information which
is then transferred to a buffer shared by the two Motor
systems, Figure 1(g), in charge of finally performing
the robot’s motion.

2.1 System’s timing requirements

Robotic actuation and motion are widely known as
safety-critical systems. Thereby, the guarantee that
any task in the system respects its deadline, or at
least that the system remains operative during pos-
sible deadline misses, is mandatory. To operate cor-
rectly, the system has to perform a series of periodic
tasks. Those can be characterized as follows:

• ∆tdet ≤ 50 ms is the interval of time between the
instant at which the user performs a command
and its detection.

• ∆tel ≤ 20 ms is the interval of time between the
command detection and the message transmission
to the robot.

• ∆tcom is the time required for the communication
to take place. It is unpredictable, but it can be
minimized accepting that some data can be lost.

• ∆tact ≤ 50 ms is the time between the reception of
the message by the robot and the actual motion.

To obtain a smoother speed profile of the robot, a filter
operation can be performed with an additional delay
∆tsteady ≤ 150 ms.

Mobile Robot(Z)

Communication
Server

Communication
Client

Data acquisition

Decoding
Module

Motor_Sx
System

(a)

(b)

Dependable
Communication

Protocol

User Interaction Module

(c)

Command
Generation

Communication System

(X)

(Y)

Motor_Dx
System

(d)

(e)

(f)

(g)

Figure 1: Frameworks’ components

2.2 System’s timing implementation

Meeting the timing requirements expressed in Sec-
tion 2.1, the Robot Module and the User Interac-
tion Module are implemented using real-time poli-
cies [But11]. The threads composing the User Inter-
action Module are Posix compliant [Har] and have pe-
riods of:

• 15 ms: thread handling the serial communication
(thread tick);

• 50 ms: thread detecting the hands’ motion and
the commands creating the messages to be sent

(thread hand).

A Rate Monotonic scheduler is employed to
schedule the threads composing the Robot Module,
which is powered by the Embedded Real-Time OS
ARTE [BBP+16]. The threads periods are:

• 10 ms: thread handling the serial communication;

• 40 ms: thread decoding new messages and man-
aging the two servo motors.

3 System design

The User Interaction Module, the Mobile Robot Mod-
ule and the Communication System can be charac-
terized by different requirements, functionalities and
challenges, that are presented in this section.

3.1 User Interaction Module

The User Interaction Module (UIM) is intentionally re-
leased without a GUI, since a more natural interaction
is obtained by simply having the user actions reflected
by the movements of the mobile robot. The UIM is
implemented in the C++ language, and is platform
independent. The only requirement is the support for
the library of the Leap Motion Controller [Leaa]. Since
the User Interaction Module is touchless, the user is
supposed to be able to perform at least basic hands’
movements. The interaction area is about one cubic
meter centered above the sensor. The hands are con-
tinuously tracked within this area, and when specific
paths, positions or movements recalling the semantic
of a joystick are identified, the related commands are
communicated to the robot.

The Data acquisition and Command generation
recognition enable three functional units:

The Controller detects the hands’ position, move-
ments, speed, and rotation radius expressed accord-
ing to the Cartesian axis placed as shown in Figure 2.
Custom messages’ structures defined by the Commu-
nication Protocol encapsulates such parameters.

Such a Communication Protocol, detailed in Sec-
tion 3.2, manage a circular buffer containing the afore-
mentioned messages, discriminating which have to be
sent or deleted because out of date.

Two modalities have been implemented to drive the
robot:

• Normal mode - the robot is driven like a normal
3-wheel car. The commands are: stop, go forward
or backward, turn right or left.

• Rotatory mode - the robot rotates around itself,
and the only commands are: rotate or stop.

Figure 2: Leap Motion’s axis

Normal Mode

The stop, “rest” state of the joystick, is established
with a minimum margin of tolerance of 1 cm, around
(0, 20, 0) cm on the area above the Leap Motion Con-
troller [WBRF13]. If the hand is perceived in such an
area (no movements are required) a single message is
sent requiring the robot to hold the position.

The go forward or backward is determined by the
hand’s position on the z axes: −z move forward and
+z move backward. The distance of the hand from the
origin of the z axes defines proportionally the speed of
the robot.

The turn left or right is similar to go forward or
backward but it is referred to the x axes: −x turns left
and +x turns right. The distance of the hand from the
origin of the x axes defines proportionally the rotation
radius to be followed by the robot.

Rotatory Mode

By rotating the hand upside down and then back again
activates the rotating mode. The command “rotate”
defines the rotation speed by moving the user hand
along the ± x axis.

3.1.1 Enhancement of usability and fluidity

The information acquired from sensors like the Leap
Motion might introduce uncertainty or noise. Such a
noise can generate incorrect or redundant information.
Thus, undesired behavior might take place, generat-
ing feedback different from the expected. To avoid
this possibility and ensuring a consistent reading, two
techniques have been designed and implemented: the
first is sampling in frequency, and the second is sam-
pling the interaction area. The sampling frequency is
about 20Hz, and to be sure that the identified com-
mand is correct, the user’s hands have to be detected
in the same position for at least 3 consecutive frames
provided by the Leap Motion sensor. Recalling that
the interaction area above the Leap Motion sensor is

about a cubic meter, it is linearly clustered. Such a
choice ensures fewer variations of the hand’s position,
thus generating fewer messages. The size of the parti-
tions of the area are chosen accordingly to the feedback
provided by the motors: passing from one area to an
adjacent one results in a change of speed by a factor
of 5. Such solutions provide a higher reactivity and a
smoother and more usable mobile robot.

3.2 Communication Protocol

The users’ experience and the actual system usabil-
ity gain significant benefits by employing a wireless
communication (by exchanging messages) between the
UIM and the Robot. The proposed protocol aims at
being robust.

Indeed, the TCP [KR07] inspired its design (in
terms of ACKnowledgement mechanism and of tim-
ing constraints). This protocol aims at guaranteeing
that if more than one message is queued in the buffer
(more than one command is detected in a relatively
short period, or possible communication delays hap-
pened) only the most recent is delivered to the robot.
These behaviours are modeled by the state machine in
Figure 4.

3.2.1 Protocol operating principles

One of the requirements for the custom designed
protocol were the ability to handle undesired re-
transmissions in order to avoid delays and to guaran-
tee the highest possible responsiveness of the system.
Thus, during its development we have taken some con-
cepts from the TCP protocol. In fact, the implemented
mechanism to reduce the communication overload and
the number of unneeded computations performed by
the robot is shown in Figure 3(b).

In particular, the developed protocol allows to use
16 different message formats. The formats employed
in this system’s version are two: one communicating
the ACK, Figure 6(a), and one communicating speed
and rotation angle, Figure 6(b). The messages’ struc-
tures are detailed in Section 3.2.2 and represented in
Figure 6.

If a message is available, it is sent from the User In-
teraction Module to the Robot. The Controller keeps
generating new messages (related to the identified
commands) while it is waiting for an ACK from the
Robot.

If the Controller receives an ACK with the expected
Id (equal to the sent one), it means that the sent com-
mand has been received by the robot, so the buffer
is scanned looking for the next message to be sent,
Figure 3(a). On the Robot side, the Communication
Server receives the messages sharing the information
with the Decoder Module through a shared buffer while

sending an ACK message (containing the same Id)
back to the User Interaction Module.

(a)

Msg
[Id = 1]

Msg
[Id = 2]

Missing message or Id not matching

Message sent and Id matching

t

Msg
[Id = 1]

Circular Buffer Message Sent

Msg
[Id = 2]

(b)

Msg
[Id = 3]

t

Msg
[Id = 3]

Circular Buffer Message Sent

Msg
[Id = 7]

Msg
[Id = 2]

Msg
[Id = 1]

Msg
[Id = 7]

Msg
[Id = 6]

Figure 3: Communication protocol: (a) Normal sce-
nario, (b) error or delay handling scenario.

If the Id contained in the ACK received by the Com-
munication client does not match the expected one, or
if no ACK is received before a predetermined period
of time (named timer), the last message (the most re-
cent) inserted in the controller buffer is sent removing
all the older messages, Figure 3(b). Moreover, an in-
ternal timer is set once a message is sent. If such a
timer expires before the UIM receives a proof of re-
ception (ACK), the message is sent again.

Figure 4: State machines of UIM’s communication be-
haviours - Simulink model

Promoting the robustness analysis through formal
verification, two virtual state machines are used to
model the Communication Client (UIM), Figure 4,
and the Communication Server (MR), Figure 5.

3.2.2 Messages structure

The structure of the messages has been inspired by the
message structure of the MIDI protocol [Mid] (MSB to
LSB). As aforementioned, the system uses two formats
for the messaging, Figure 6.

Similarly to the MIDI protocol, the messages are
composed of StatusByte (Figure 6(x)) and DataByte
(Figure 6(y)). The StatusByte (8bits) contains:

• Header identifier [1 bit]
The value identifying header is 1;

• Message Id [3 bits]
Used for feedback mechanism;

• Type of message[4 bits]
If the message is an ACK the value is 0b0000, if
the message contains data the value is 0b0001.

1
By

te

1 bit - Header identifier

3 bit - Id

4 bit - Type of message
1

By
te

1 bit - Validity
1 bit - Sign for direction

0000 - ACK
0001 - Data

1 bit - Data identifier (c)

1
By

te

5 bit - Rotation angle absolute value

1 bit - Sign for direction
1 bit - Data identifier (b)

6 bit - Speed absolute value

H
ea

de
r (

x)
Pa

yl
oa

d
(y

)
Figure 6: Messages architecture and formats: (x) Sta-
tusByte, (y) Payload [Speed (b) and Rotation radius
(c)]

If the Type of message has value 0b0000, the Robot
knows that the message is complete (there are no more
bytes/information to be read). An ACK message is
generated by the Robot and it contains only the Sta-
tusByte. If its value is 0b0001, the Robot knows that
the payload contains two more bytes of information.
When a message is sent from the UIM to the Robot,
3 bytes are sent: one StatusByte and two DataByte as
payload.

The Speed format, Figure 6(b), is composed of the
following three parts:

Figure 5: Communication Server’s (Robot Module) state machine - SySML model

• Data identifier [1 bit]
The value identifying data is 0;

• Direction [1 bits]
Go forward is identified by 0 and go backward by
1;

• Speed value [6 bits]
The absolute value of the speed to be approached;

The Rotation radius format, Figure 6(c), is com-
posed of the following three parts:

• Data identifier [1 bit]
The value identifying a data is always 0;

• Validity [1 bits]
The straight motion (rotation = ∞) is identified
by 0;

• Direction [1 bits]
Turn left is identified by 0 and turn right by 1;

• Rotation radius [5 bits]
The absolute value of the rotation angle to be ap-
proached;

3.3 Robot Module

The Robot operates on horizontal or reasonably sloping
surfaces. The possible Robot’s movements, described
in Section 3.1, are powered by two continuous speed
step motors, controlled by the Arduino board running
ARTE and finally equipped with a Li-po battery.

The system powering the Robot is composed of four
elements:

• the Communication Server receives the messages
as presented in Section 3.2;

• the Decoding Module elaborates information
about speed and rotation radius encoding the ac-
tual commands for the Motor Modules;

• the two Motor systems (one for each motor) man-
age the servo dynamics.

3.3.1 Decoding Module

The Decoding Module elaborate the commands de-
pending on the required behaviour:

• curving;

• straight motion;

• motion around itself.

Normal mode: Curving

Rotating the robot around the axes centered on itself
requires different speeds on the wheels (Figure 7(a)).
Defining speed (v) and rotation radius (r), the wheels’
speed is calculated as shown in equation 1:

Vright = v − δ(v, r)
Vleft = v + δ(v, r)

(1)

Figure 7(b) identifies the differential speed enabling
the turning action (named δ(v, r)) which is obtained
as shown in equation 2:

δ(v, r) = C
v

r
(2)

where C is the distance between the wheel and the
center of the robot wheelbase.

Normal mode: Straight motion

The speed of two motors is simply set equal to v.

v

r

v+dx v v-dx

C C
r

(a)

(b)

Figure 7: Speeds diagram in the case of Curving (Nor-
mal mode) and positive rotation radius.

Rotatory mode: Motion around itself

The velocities of two motors are opposite and their
absolute value is equal to v (the sign depends on the
direction of rotation).

3.3.2 Motor system

When the Motor System receives a command, it con-
verts the speed or rotation radius into engines’ instruc-
tions. Thus, developing a linear profile for the wheels’
velocities, it needs particular care to prevent sliding
and overturns.

Figure 8 exemplifies how a speed profile can be re-
alized when a new desired speed is requested before
the previous one is reached:

• at t = 0 a speed request arrives, Figure 8(a). The
system provides to the motors a linear speed pro-
file to satisfy the request in a fixed ∆T ;

• at t = 3 (with t < ∆T) a slower speed request
arrives, Figure 8(b). The system calculates a new
profile starting from the current robot’s speed;

• finally, the stop command arrives at t = 6, Fig-
ure 8(c). Since no more new requests arrive in a
period where t < 6 + ∆T , the robot is stopped
within the expected ∆T , holding that speed (in
this case 0) till a new command arrives.

Δt

Δt

Δt

Δt

t

ve
lo

ci
ty

t = 0
v = 10

t = 3
v = 8

t = 6
v = 0

(a)

(b)

(c)

Figure 8: The speed profile produced by the controller
in the cases of three different speed requests arrived
before the robot reach such values

4 Testing and Results

The presented system is composed of several elements.
Considering that design and implementation errors
can happen in several of those elements proper test-
ing is needed. As manual testing is a cumbersome
procedure, test automation is highly needed. Thus,
we searched for existing test automation frameworks
and decided to adopt the CUnit [Ham04] and the gcov
systems [Rid04]. Furthermore, Usability Testing is a
key aspect when dealing with HMI systems. In the
rest of this Section we present what has been adopted
in this work.

4.1 CUnit Test e gcov

Performance analysis and dynamics verification are
two strategic tests. A useful framework to automati-
cally test functions code is CUnit. Such a framework
has been employed to check the coherence of the ex-
pected outputs of Command detection and messages
generation, reception and transmission which are im-
plemented as state machines. Code Coverage Analy-
sis [CCA] is crucial to identify and purge the dead or
obsolete code from the system. Moreover, the coverage
analysis counts the number of times each program’s
statement is executed. Finally, the profiling tool Gcov
is used to increase the code optimization.

4.2 UIM usability test

The User Interaction Module aims at proposing a set
of manageable and effective commands.

To test their functionality several approaches are
viable, and the most effective are the usability
test [DR99] and the usability inspection [Nie94]. The

first approach is a user-based method that involves the
end users in the testing phase, while the second is an
expert-based method that during the testing phase in-
volves only experts and context aware users. Both
of them aim at identifying possible issues related to
the usability. They mainly differ in the categories of
the identified problems. Indeed, although the usability
test identifies fewer issue’s occurrences, these are more
general and frequent issues [JMWU91].

The first usability test conducted concerns the types
of commands: different semantics (joystick, steering
wheel, etc.) were taken into account. This first exper-
iment, named A/B test, consisting in executing the ba-
sic commands as move forward or backward and turn
left or right with different speed and rotation radius,
was useful to gather testers’ opinion about efficacy,
accuracy, and personal perception. Indeed, 27 testers
out of 30 expressed their preference for the joystick-like
interface. The second test, named Hallway testing, in-
volves different groups of testers randomly selected to
test the whole system. The test consists of driving the
Robot between a series of obstacles. After a few com-
mands, the testers gained confidence with the system
and easily accomplished the test. Imagining to use
a Cartesian system to represent the lessons learned,
putting on the vertical axes the number of attempts
and on the vertical axes the coefficient of experience
matured during tests, the output is a learning curve
which can be approximated by an exponential func-
tion. Finally, even though the current system does
not provide a GUI (the system’s feedback is directly
provided by the motion of the robot) all the testers ap-
preciated the system’s response, classifying the system
as “user-friendly”.

5 Conclusion

The presented project aimed at bringing a tradition-
ally physical user interface for human-machine inter-
action like the joystick in the touchless era. In the pro-
posed work, a touchless joystick has been realized and
employed to drive a wireless mobile robot customized
for that purpose. All the system’s components have
been tested and satisfied the conducted formal verifi-
cations. Thanks to the adoption of real-time policies,
the timing constraints have been respected throughout
all tests. Moreover, according to the testers’ feedback,
the whole system was easy-to-use, responsive and ef-
fective. The current system’s version perceives both
the user hands, but it uses only one of them to get
the commands to guide the robot. The next step is
introducing the acquisition and elaboration of the sec-
ond hand in charge of handling sensors equipping the
robot. An initial idea we are working on is to equip the
robot with a mobile camera. Such a camera could be

handled (zoom, movements, taking pictures, etc.) by
the user with one hand while driving the robot with
the other. This new feature involves updates in the
data acquisition, communication protocol, and the ac-
tuation module. While the data acquisition and the
actuation modules have to be restructured, the com-
munication protocol, thanks to its implementation, re-
quires only to be extended with the definition of the
new types of messages. An alternative might be in-
cluding voice commands to control the camera and
empower the interaction with the robot [CSM+16]. Fi-
nally, the introduction of a GUI is under evaluation to
enrich the user experience when operating on the mo-
bile camera.

References

[BBP+16] Pasquale Buonocunto, Alessandro Biondi,
Marco Pagani, Mauro Marinoni, and Gior-
gio Buttazzo. Arte: arduino real-time ex-
tension for programming multitasking ap-
plications. In Proceedings of the 31st An-
nual ACM Symposium on Applied Com-
puting, pages 1724–1731. ACM, 2016.

[BGG+14] D Bassily, C Georgoulas, J Guettler,
T Linner, and T Bock. Intuitive and adap-
tive robotic arm manipulation using the
leap motion controller. In ISR/Robotik
2014; 41st International Symposium on
Robotics; Proceedings of, pages 1–7. VDE,
2014.

[Bro98] C Marlin Brown. Human-computer in-
terface design guidelines. Intellect Books,
1998.

[But11] Giorgio Buttazzo. Hard real-time com-
puting systems: predictable scheduling al-
gorithms and applications, volume 24.
Springer Science & Business Media, 2011.

[CCA] CCA. Code Coverage Analysis. http://
www.bullseye.com/coverage.html.

[CCS+16] Davide Calvaresi, Daniel Cesarini, Paolo
Sernani, Mauro Marinoni, Aldo Franco
Dragoni, and Arnon Sturm. Exploring the
ambient assisted living domain: a system-
atic review. Journal of Ambient Intelli-
gence and Humanized Computing, pages
1–19, 2016.

[CEB78] Stuart K Card, William K English, and
Betty J Burr. Evaluation of mouse, rate-
controlled isometric joystick, step keys,
and text keys for text selection on a crt.
Ergonomics, 21(8):601–613, 1978.

http://www.bullseye.com/coverage.html
http://www.bullseye.com/coverage.html

[CSM+16] Davide Calvaresi, Paolo Sernani, Mauro
Marinoni, Andrea Claudi, Alessio Balsini,
Aldo F. Dragoni, and Giorgio Buttazzo.
A framework based on real-time os and
multi-agents for intelligent autonomous
robot competitions. In 2016 11th IEEE
Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–10, 2016.

[Dix09] Alan Dix. Human-computer interaction.
Springer, 2009.

[DR99] Joseph S Dumas and Janice Redish. A
practical guide to usability testing. Intel-
lect Books, 1999.

[EFAA15] Ruffaldi Emanuele, Brizzi Filippo, Fil-
ippeschi Alessandro, and Carlo Alerto
Avizzano. Co-located haptic interaction
for virtual usg exploration. In 2015 37th
Annual International Conference of the
IEEE Engineering in Medicine and Bi-
ology Society (EMBC), pages 1548–1551.
IEEE, 2015.

[Fal10] Robert Faludi. Building wireless sensor
networks: with ZigBee, XBee, arduino,
and processing. O’Reilly Media, Inc., 2010.

[Fis01] Gerhard Fischer. User modeling in
human–computer interaction. User mod-
eling and user-adapted interaction, 11(1-
2):65–86, 2001.

[FP11] Valentino Frati and Domenico Prat-
tichizzo. Using kinect for hand tracking
and rendering in wearable haptics. In
World Haptics Conference (WHC), 2011
IEEE, pages 317–321. IEEE, 2011.

[FSLS+16] Ramon A Suỳrez Fernỳndez, Jose Luis
Sanchez-Lopez, Carlos Sampedro, Hriday
Bavle, Martin Molina, and Pascual Cam-
poy. Natural user interfaces for human-
drone multi-modal interaction. In Un-
manned Aircraft Systems (ICUAS), 2016
International Conference on, pages 1013–
1022. IEEE, 2016.

[Gra81] J Martin Graetz. The origin of spacewar.
Creative Computing, 18, 1981.

[Ham04] Paul Hamill. Unit Test Frameworks: Tools
for High-Quality Software Development.
O’Reilly Media, Inc., 2004.

[Har] Michael González Harbour. Programming
real-time systems with c/c++ and posix.

[JMWU91] Robin Jeffries, James R Miller, Cathleen
Wharton, and Kathy Uyeda. User inter-
face evaluation in the real world: a com-
parison of four techniques. In Proceedings
of the SIGCHI conference on Human fac-
tors in computing systems, pages 119–124.
ACM, 1991.

[KR07] James F Kurose and Keith W Ross. Com-
puter networking: a top-down approach.
Addison Wesley, 2007.

[Leaa] LeapMotion. Leap Motion documenta-
tion. https://developer.leapmotion.

com/documentation/cpp/index.html.

[Leab] LeapMotion. Leap Motion. http://www.
leapmotion.com.

[MBJS97] Mark R Mine, Frederick P Brooks Jr,
and Carlo H Sequin. Moving objects
in space: exploiting proprioception in
virtual-environment interaction. In Pro-
ceedings of the 24th annual conference on
Computer graphics and interactive tech-
niques, pages 19–26. ACM Press/Addison-
Wesley Publishing Co., 1997.

[MDZ14] Giulio Marin, Fabio Dominio, and Pietro
Zanuttigh. Hand gesture recognition with
leap motion and kinect devices. In 2014
IEEE International Conference on Im-
age Processing (ICIP), pages 1565–1569.
IEEE, 2014.

[Mid] Midi Association. Midi Association - The
official midi specification. http://www.

midi.org/specifications.

[Min02] David A Mindell. Between human and
machine: feedback, control, and comput-
ing before cybernetics. JHU Press, 2002.

[Nie94] Jakob Nielsen. Usability inspection meth-
ods. In Conference companion on Human
factors in computing systems, pages 413–
414. ACM, 1994.

[Nuw13] Rachel Nuwer. Armband adds a twitch
to gesture control. New Scientist,
217(2906):21, 2013.

[PBAR15] Lorenzo Peppoloni, Filippo Brizzi,
Carlo Alberto Avizzano, and Emanuele
Ruffaldi. Immersive ros-integrated frame-
work for robot teleoperation. In 3D
User Interfaces (3DUI), 2015 IEEE
Symposium on, pages 177–178. IEEE,
2015.

https://developer.leapmotion.com/documentation/cpp/index.html
https://developer.leapmotion.com/documentation/cpp/index.html
http://www.leapmotion.com
http://www.leapmotion.com
http://www.midi.org/specifications
http://www.midi.org/specifications

[Rid04] Marty Ridgeway. Using code coverage
tools in the linux kernel. 2004.

[Suc87] Lucy A Suchman. Plans and situated
actions: The problem of human-machine
communication. Cambridge university
press, 1987.

[VMC16] Liberios Vokorokos, Juraj Mihal’ov, and
Eva Chovancová. Motion sensors: Ges-
ticulation efficiency across multiple plat-
forms. In Intelligent Engineering Systems
(INES), 2016 IEEE 20th Jubilee Inter-
national Conference on, pages 293–298.
IEEE, 2016.

[WBRF13] Frank Weichert, Daniel Bachmann,
Bartholomäus Rudak, and Denis Fisseler.
Analysis of the accuracy and robustness
of the leap motion controller. Sensors,
13(5):6380–6393, 2013.

[WG95] Matthias M Wloka and Eliot Greenfield.
The virtual tricorder: a uniform interface
for virtual reality. In Proceedings of the
8th annual ACM symposium on User in-
terface and software technology, pages 39–
40. ACM, 1995.

[Wol88] William Wolf. German guided missiles
henschel hs 293 and ruhrstahl sd1400 x
fritz x, 1988.

[Zha12] Zhengyou Zhang. Microsoft kinect sensor
and its effect. IEEE multimedia, 19(2):4–
10, 2012.

	Introduction
	System overview
	System's timing requirements
	System's timing implementation

	System design
	User Interaction Module
	Enhancement of usability and fluidity

	Communication Protocol
	Protocol operating principles
	Messages structure

	Robot Module
	Decoding Module
	Motor system

	Testing and Results
	CUnit Test e gcov
	UIM usability test

	Conclusion

