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Abstract 

Nowadays, a challenge for programmers is to 
make their programs better. The word "better" 
means more simple, portable and much faster 
in execution. Heterogeneous computing is a 
new methodology in computer science field. 
GPGPU programming is a new and 
challenging technique which is used for 
solving problems with data parallel nature. In 
this paper we describe this new programming 
methodology with focus on GPU 
programming using C++ AMP language, and 
what kinds of problems are suitable for 
acceleration using these parallel techniques. 
Finally we describe the solution for a simple 
problem using C++ AMP and the advantages 
of this solution. 

1. Introduction 

The process of implementation of an algorithm as a 
solution for a difficult problem, requires a deep 
analysis. Although, today there are many tools that 
facilitate this work for the analysts and the process of 
translation into a programming language for the 
programmers. There are always difficulties when the 
execution speed is important. When the execution 
speed is not the main condition, then for programmers 
is easier and they can faster find a solution by building 
a source code, which contains instructions that are 
executed in series. When the primary condition of the 
proposed algorithm is the execution speed, then 
parallel programming becomes more important. 
Besides parallel source code, whose instructions are 
executed in parallel from CPU (Central Processing 
Unit), a new methodology is GPGPU programming.  
General-purpose computing on graphics processing 
units (GPGPU, rarely GPGP or GP²U) is the use of a 
graphics processing unit (GPU), which typically 
handles computation only for computer graphics, to 

perform computation in applications traditionally 
handled by the central processing unit (CPU)1. The 
architecture of graphics processing units (GPUs) is 
very well suited for data-parallel problems. They 
support extremely high throughput through many 
parallel processing units and very high memory 
bandwidth. For problems that match the GPU 
architecture well, it common to easily achieve a 2× 
speedup over a CPU implementation of the same 
problem, and tuned implementations can outperform 
the CPU by a factor of 10 to 100. Programming these 
processors, however, remains a challenge because the 
architecture differs so significantly from the CPU. This 
paper describes the benefits of GPU programming 
using C++ AMP language, and what kinds of problems 
are suitable for acceleration using these parallel 
techniques. 

2. Performance Improvements 
The world "Personal Computer" was introduced for the 
first time in 1975. Over the decades, the idea of having 
a personal computer become possible and real. 
Nowadays every person possesses various electronic 
machines from desktop computer, laptop up to 
smartphones. Over the years, the technology evolution 
made these electronic machines to work much faster. 
Manufacturers continued to increase the number of 
transistors on a single chip, but this faced with the 
problem of heat produced from this chips. Due to this 
problem, manufacturers started to produce multicore 
machines with two or more CPUs on a computer. 
However, adding CPU cores did not make everything 
faster.  

We can divide softwares in two groups: parallel-
aware and parallel-unaware. Parallel-unaware 
softwares use almost 1/4 or 1/8 of available CPU cores, 
while parallel-aware softwares can reach an execution 
speed 2x or 4x more than softwares of the second 
category, proportional to the numbers of CPU cores. 

                                                                    
1 General-purpose computing on graphics processing 



2.1 Heterogeneous Platforms 

In the last years, also the graphics cards have 
encountered a powerful development. A graphics 
processing unit (GPU) is a computer chip that performs 
rapid mathematical calculations, primarily for the 
purpose of rendering images2. GPU has a powerful 
parallel processing architecture, so it can render images 
more quickly than a CPU. GPU is a programmable and 
powerful computational device in its own right. The 
resulting performance improvements have made GPUs 
popular chips for other resource-intensive tasks 
unrelated to graphics. 
GPU-accelerated computing is the use of a graphics 
processing unit (GPU) together with a CPU to 
accelerate deep learning, analytics, and engineering 
applications. If CPU is the brain of the PC, GPU is 
called it's soul. Nowadays, we can find machines with 
two, four, seven CPU cores, but GPUs can have 
hundreds of cores. If we want to know the difference 
between a GPU and a CPU, let's see how they process 
tasks. A CPU consists of a few cores optimized for 
sequential serial processing, while a GPU has a 
massively parallel architecture consisting of thousands 
of smaller, more efficient cores designed for handling 
multiple tasks simultaneously. Imagine a mix of GPU 
cores and CPU cores in a machine, in the same chip or 
not, this is a heterogeneous supercomputer. 
In computing, FLOPS or flops (Floating-point 
Operations per Second) is a measure of computer 
performance, useful in fields of scientific calculations 
that make heavy use of floating-point calculations. For 
such cases it is a more accurate measure than the 
generic instructions3. So a 1 FLOP machine will do one 
"operation" in a second. Floating-point 
operations involve floating-point numbers and typically 
take longer to execute than simple binary 
integer operations.  1 Gigaflops has 1 billion FLOPS, 
and 1 Teraflops has 1000 Gigaflops. A typically CPU 
can achieve 100 GFLOPS. A typically GPU has 32 
cores and has twice as many transistor as the CPU and 
can achieve 3000 GFLOPS. 
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  /GPU-graphics-processing-unit 
3 FLOPS - https://en.wikipedia.org 

 
Figure 1: CPU vs GPU 

The reason why GPU achieves this performance lies 
not in the number of transistors or the number of cores. 
Memory bandwidth is the rate at which data can be 
read from or stored into a semiconductor memory by 
a processor. Memory bandwidth is usually expressed in 
units of bytes/second4.  The memory bandwidth of a 
CPU is roughly 20 GB/s, compared to the GPU’s 150 
GB/s. The CPU supports general code with 
multitasking, I/O, virtualization, deep execution 
pipelines, and random accesses. In contrast, the GPU is 
designed for graphics and data-parallel code with 
programmable and fixed function processors, shallow 
execution pipelines, and sequential accesses. 
A strong point of GPUs is power consumption. A GPU 
can do 10 GFLOPS/watt, a CPU can do 1 
GIGAFLOPS/watt. The battery life of a machine is 
very important, especially in handheld devices. In most 
cases, users prefer not to use applications that consume 
battery fast, replacing them with similar applications 
that do not consume the battery. If we study the 
memory accessed from this chips, CPU has a large 
cache for the data that it access, in order to not wait for 
the execution of the processes that read data from 
primary or secondary memory, since the CPU use often 
the same data. GPUs have smaller caches, but use a 
massive number of threads and some threads are 
always in a position to do work. GPUs can prefetch 
data to hide memory latency. Different from CPU, a 
GPU have small cache, because the probability to 
access the same data more than once is small. 
Nowadays we can find a lot of CPU programming 
languages. C++ is a popular CPU programming 
language. It is a main language of choice when it 
comes to power and performance. Choices are few 
when it comes to general-purpose GPU programming 
(GPGPU). Developers need a way to increase the speed 
of their applications or to reduce the power 
consumption of a particular calculation. A solution is 
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using heterogeneous computation with GPUs, in 
association with CPUs. One bad side of this choice is 
the restriction on the nature of softwares that can be 
built using this methodology. 

2.2 GPU Architecture 

GPUs have shallow execution pipelines, small cache, 
and a massive number of threads performing sequential 
accesses. Threads are arranged in groups. This groups 
are called warps. 

 
Figure 2: GPU Architecture 

 

Warps run together and can share memory and 
cooperate. A powerful ability is that GPUs can switch 
these groups of threads extremely fast, so if a group of 
threads is blocked, another group of threads executes. 
When adjacent threads use adjacent memory locations, 
the way the memory is read provides good speed 
performance. The bad side is when threads in a group 
are accessing memory that is not near the memory 
being accessed by other threads in that group, 
performance will suffer. 
Developers of high level programming languages do 
not have the necessary to now the architecture of CPUs 
as long as there are tools like compilers. If a developer 
wants to write code that will be executed on GPUs, he 
should know basics from GPU architecture.  

2.3 Performance improvement through parallelism 

CPU works with both parallel code with parallel data 
and sequential code. GPU works best on problems that 

are data-parallel. There are problems that can easily be 
divided into sub-problems which can be executed in 
parallel and independent of each other. But there are 
also problems that if you treat them in a manner, you 
will not be able to divide them into units that can be 
executed in parallel, but they must be treated in another 
way, so you will be able to divide them into 
independent units that can be executed in parallel. The 
conclusion is that when programmers think about the 
solution (source code) of a problem and the execution 
speed is the priority, they must think about a parallel 
solution. They need to design the algorithm differently 
to create work that can be splited across independent 
threads. 
For example, a problem with a parallel nature is the 
addition of two matrices. If we want a quick and simple 
solution, in C++ it would be as follows: 

 

int M1[n][n],M2[n][n],M_sum[n][n]; 
for(int i=0;i<n;i++) 
{ 
   for(int j=0;j<n;j++) 
      M_sum[i][j]=M1[i][j]+M2[i][j] 
} 

 
If we have two matrices 100x100, with 10000 integer 
numbers, the above code will take 10000 additions, 
10000 operations that will be executed one by one. If 
we want e fast execution, we can think about a parallel 
solution, so we can split the operations among 10000 
threads and all the additions could be done at once.  
Another example is the problem of finding the highest 
value in a vector (array, collection). The fast solution is 
to traverse the array one element at a time and 
comparing each element to a maximum value 
(represent the currently highest value), then updating 
the maximum value with the current element of the 
array, if it is larger. If the array has 100000 elements, 
this will take 100000 comparisons. If the priority is the 
fast execution of the algorithm, we can think for a 
parallel solution, so we can select 1000 threads and 
they can take on 1000 items each. After the 
calculations, each thread will select the highest value of 
its portion of the array. That way you could evaluate 
every number in the time it takes to do just 1000 
comparisons. After that, a 1001st thread could compare 
all the results from the threads for finding the highest 



value. Problems that involve large quantities of data are 
candidates for parallel processing. Some fields where 
we can find this kind of problems are: 

• Real-time control systems 
• Scientific modeling and simulation 
• Gaming 
• Financial Simulation 
• Image processing 

One way to reduce the amount of time spent in the 
sequential portion of your application is to make it less 
sequential—to redesign the application to take 
advantage of CPU parallelism as well as GPU 
parallelism. 

3. GPU Programming frameworks 
Nowadays exists some GPU programming languages 
that developers can use to build parallel softwares. 
These parallel programming languages have their 
advantages and disadvantages. Some of these platforms 
are: 

3.1 OpenCL 

OpenCL is the dominant open general-purpose GPU 
computing language. OpenCL is supported on Intel, 
AMD, Nvidia and ARM platforms. It is a framework 
for writing programs that execute across heterogeneous 
platforms. 

3.2 CUDA 

CUDA is a parallel computing platform and application 
programming interface (API) model created by NVidia. 
The CUDA platform can work with C, C++, 
and FORTRAN programming languages. 

3.3 C++ AMP 

C++ AMP (C++ Accelerated Massive Parallelism) 
[Mil1] accelerates the execution of C++ code by taking 
advantage of the data-parallel hardware that's 
commonly present as a graphics processing unit (GPU) 
on a discrete graphics card5.  C++ Accelerated Massive 
                                                                    
5 https://msdn.microsoft.com/en-us/library/ 
  hh265137.aspx 

Parallelism (C++ AMP) is a native programming 
model that contains elements that span the C++ 
programming language and its runtime library. C++ 
AMP is a library implemented on DirectX 11 and 
an open specification from Microsoft for implementing 
data parallelism directly in C++. This language is 
easier to use and contains many libraries for building 
data-parallel applications. 

4. A C++ AMP Solution 
To show more clearly how to use C++ AMP for 
solving a data-parallel problem6, I will present the 
following example. The problem is simple and has a 
parallel nature, matrix multiplication.  
Let’s take a mathematical or financial application 
where part of a process is the multiplication of 
matrices, but possible scenarios are multiplication of 
matrices with small sizes and the multiplication 
operation will not be executed many times, then a 
serial source code for this operation would not take a 
long execution time and the parallel source code would 
be excessive. But, imagine a scenario with 200 
matrices with 40000 elements each. From here we have 
100 multiplication operations and the serial source 
code would take a long execution time, while if 100 
operations would be executed in parallel, utilizing the 
facilities that GPU provides, the execution time would 
be smaller.  
Below is a simple un-parallel function in C++ for the 
multiplication of two matrices:  
 

multiplication(vector<vector<int>>& T1, 
vector<vector<int>>& T2, vector<vector<int>>& 
T3, const int n, const int m, const int k) 
{ 
      for(int i=0; i<n; i++) 
      { 
            for(int j=0; j<k; j++) 
            { 
                 int sum = 0; 
   for(int z=0; z<m; z++) 
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        sum += T1[i][z]*T2[z][j]; 
  T3[i][j] = sum; 
            } 
   } 
} 
 

If the size of the matrices T1 and T2 would be 
200x200, the execution time of this function in a 
moderate computer would be 3.36 sec. If we take the 
scenario explained above, thus 100 multiplication 
operations, the execution time would be 336 sec, or 5.6 
minutes. 
Let’s see the C++ AMP parallel function for the 
multiplication of two matrices:  
 

multiplication_parallel(vector<vector<int>>& T1, 
vector<vector<int>>& T2, vector<vector<int>>& 
T3, const int n, const int m, const int k) 
array_view<const int, 2> a(n, m, T1), b(m, k, T2); 
array_view<int, 2> c(n, k, T3); 
c.discard_data(); 
parallel_for_each(c.extent, [=](index<2> idx) 
restrict(amp) 
{ 
  int row = idx[0]; int col = idx[1]; 
  int sum = 0; 
  for(int i = 0; i < b.extent[0]; i++) 
    sum += a(row, i) * b(i, col); 
  c[idx] = sum; 
}); 
c.synchronize(); 
 
This version use the array_view data structure of C++ 
AMP library. The parallel_for_each function is the 
main function that does all the parallel job from the 
computer’s GPU [Gas2]. This function operates over 
an extent—the shape of the extent is what controls the 
number of threads that do the work. In a moderate 
computer, the execution time is 20x faster than the un-
parallel solution. The difference in execution time 
between the first function and the second is obvious. 

5. Conclusions 

If the primary condition of the proposed algorithm for a 
problem is the execution speed, then parallel 
programming becomes important. GPGPU 

programming is a new and challenging technique 
which is used for solving problems with data parallel 
nature. Some fields where we can find this kind of 
problems are: real-time control systems, scientific 
modeling and simulation, gaming, financial simulation, 
image processing, etc. For problems that match the 
GPU architecture well, it is common to easily achieve a 
2× speedup or more over a CPU implementation of the 
same problem, and tuned implementations can 
outperform the CPU by a factor of 10 to 100.  GPU is a 
programmable and powerful computational device in 
its own right. GPU has a massively parallel architecture 
consisting of thousands of smaller, more efficient cores 
designed for handling multiple tasks simultaneously.  
The memory bandwidth of a CPU is roughly 20 GB/s, 
compared to the GPU’s 150 GB/s. A strong point of 
GPUs is power consumption. A GPU can do 10 
GFLOPS/watt, a CPU can do 1 GIGAFLOPS/watt.  
If we want to build code that will be executed in 
parallel, GPGPU is a good candidate as a new 
technology and C ++ AMP is a language that provides 
facilities while programming and necessary libraries. 
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