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Abstract. The ubiquitous presence of sensor networks, control units
and detection devices allows for a significant availability of data. The
increased computational power also encourages a wider development of
deep neural networks that represent data in multiple levels of abstraction.
In this contribution we present a tool that process the daily precipitation
amount in Tuscany region and the emergency situations reported in web
news, in order to detect emergency situations. The results are encour-
aging and show how machine learning can help in predicting emergency
situations and to reduce the impact of critical situations.

1 INTRODUCTION

The possibility to collect and store large amount of data captured by sensor
networks enables the search of connections among data and the effects of nat-
ural events that generate great damages to people and things. Here we aim at
detecting emergency situations processing data sampled by a set of pluviome-
ters through Deep Convolutional Neural Network. A recent survey about Deep
Neural Networks has been published by Schmidhuber [1]. Many different appli-
cation domains are taken into account in the work, with the notable exception
of meteorological emergency alerts and risk. Kang et al. proposed a system for
the emergency alert system based on a deep learning architecture that takes as
input images from closed circuits camera images and detects events bound to
fire or car accidents [2]. Basha et al. use data from a sensor network to predict
river flood through linear regression models [3]. The emergency situations can
also be characterized as outliers in a network of sensors analyzed as a minimum
spanning tree [4].

In this work we considered the data from a set of pluviometers and we desire
to assess if the given pattern in the input will produce a sort of emergency
or not. We use a new deep convolutional architecture and compared it with a
more traditional neural network as the multilayer Perceptron(MLP) in order to
understand whether there are applications that require one or the other kind of
network in the field of time-series processing.



We trained the networks using freely available measurements by Servizio
Idrogeologico Regionale della Toscana (SIR)1, gathered by sensor networks with
emergency notifications commonly found online newspapers and weblogs. We
tested the technique on a dataset of Tuscanian meteorological data ranging from
2012 to 2014, and we have compared these values with the emergency detection
in the same region along the same years, with promising results. [5]

The paper is organized as follows. The next section presents a description
of Deep Learning Neural Networks. In Section 3 we describe the approach used
for the classification of emergencies and the operations of pre-processing for the
construction of the dataset, in Section 4 the experimental results are presented.
Finally, in Section 5 discusses the future directions of this work.

2 NEURAL NETWORKS FOR EMERGENCY
CLASSIFICATION

Deep-learning methods typically employ from 5 to 20 non-linear modules that
extracts a set of features from the input and transfer them to the next module. [6]
The weights of the layers of features are learned directly from data, allowing to
discover intricate structures in high-dimensional data, regardless of their domain
(science, business, etc.). With this mechanism very complex functions can be
learned combining these modules: the resulting networks are often very sensitive
to minute details and insensitive to large irrelevant variations.

2.1 MLP Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward network that maps sets of in-
put data onto a set of appropriate outputs; it consists of at least three layers
of fully connected nodes in a directed graph: an input layer, an hidden layer
and an output layer. Except for the input nodes, each node is a neuron (or
processing element) with a nonlinear activation function - usually a sigmoid, or
the hyperbolic tangent, chosen to model the bioelectrical behaviour of biological
neurons in a natural brain. Learning occurs through backpropagation algorithm
that modifies connections weights in order to minimize the difference between
the actual network ouput and the expected result.

2.2 CNN-Convolutional Neural Network

Convolutional Neural Networks (CNN) are a variant of multilayer perceptrons
inspired by visual mechanisms found in living organisms, where arrangements
of dedicated cells of very different complexities are found: each one of them is
assigned to small, overlapping sub-regions of the visual field. This processing
behaviour can be reproduced using a convolutional filter over a given signal,
hence the name of the network configuration.

1 http://www.sir.toscana.it/

http://www.sir.toscana.it/


With respect to MLP, neurons in CNN are arranged in three dimensions, and
only some of the layers they form are fully connected to each other; connectivity
patterns reflecting spatial local correlation are actively sought. Moreover, to
achieve translational invariance - very useful in image processing - each filter is
replicated across the entire visual field.

In a CNN we can find three kinds of layers:

– Convolutional layers are driven by a set of learnable filters with very
specific purpose spanning over the whole input matrix. The convolution of
each filter across the input gives an activation map as output that is used
to determine which feature is detected by a given neuron;

– Pooling layers perform a non-linear downsampling to progressively reduce
the spatial size of the representation in order to use less parameters and
computations and prevent overfitting. It is common to use a pooling layer
between 2 convolutional layers: the dropout technique is often used.

– ReLU layers increase the non-linearity of the decision function by applying
the activation function f(x) = max(0, x). Other functions may be used.

– Fully connected layers are stacked after several nonlinear layers to per-
form high-level reasoning

3 EMERGENCY DETECTION THROUGH
CLASSIFICATION

A neural network-based approach is presented for the detection of emergency
situations, through rainfall level measurements. The approach is based on the
training of a neural network with a set of data relating to the rainfall level mea-
surements coming from a network of sensors, together with a series of emergency
notifications that are commonly found in online newspapers and weblogs. A neu-
ral network uses a mathematical pattern recognition paradigm to learn complex
interactions between inputs and outputs. The purpose of the implemented neural
network is to detect potential risk situations, taking the rainfall levels as input.

The methodology is applied to actual data obtained from a set of hundreds
of meteorological stations placed in Tuscany, made available by SIR-Toscana
in 2012-2014 period. This sensor and surveillance network, can provide both
real-time and historic samples from hydrometric, pluviometric, thermometric,
hygrometric, freatimetric and mareographic sensors, allowing a general charac-
terization of hydroclimatic phenomena.

In this work we focused on data relating to the rainfall levels. We assumed
that traces of past emergency situations can be found in the World Wide Web
as online newspaper articles, forums or personal blog. We collected two set of
words that we used to compose the queries in the web: the set A is formed by
key words about hydrogeological emergencies such as: esondazione (overflow),
violento temporale (cloud burst), diluvio (deluge), allagamento (flooding), inon-
dazione (flood), rovinosa tempesta (severe storm), violento acquazzone (violent
downpour); the set B is formed by the names of the cities in the Tuscany region



Fig. 1: Deep Neural Network architecture for Emergency classification

such as: Firenze, Pisa, Livorno, Grosseto, Lucca, Siena, Massa, Carrara, Pistoia.
We have automatically queried the Bing™search engine, through its Search API,
using keywords in the set given by the Cartesian product of the set A for the
set B,C = A × B. We dated the resulting pages using a supervised approach,
after duplicate URLs had been removed. An approach based on regular expres-
sions applied over the text-only description extracted by the Bing bot has first
been used, with mixed outcomes. Excluding erroneous and mixed matches, there
was no real guarantee that the writers would not have altered a date for their
own reasons so, a further control based on the Last-Modified HTTP header has
been used. Finally, we used the subset of search results that employed so-called
pretty URLs, in particular those with day, month and year information separated
by forward slashes, as they require a little more expertise to get altered after
publication.

To define the pattern classification problem, we have arranged a set of input
vectors as rows in a matrix. Each row contains a label for the input sequence
(typically its detection date), a k-day-long sequence of measurements for all the
stations in a given area, a label to indicate emergency/not emergency and a label
to identify the quadrant in which emergency is verified.

In order to test the behaviour and efficacy of the Convolutional Neural Net-
work, 4 different experiments were performed:

– The first experiment, called “original” in the following section, uses raw data
without any preprocessing;

– The second experiment uses a “balanced” version of the original dataset
having an equal number of emergencies and “quiet days”. This dataset has
been randomly formed discarding a set of negative days in order to have a
comparable number between the positive and negative examples.



– The third,“quantized” experiment, was performed on the result of the use
the Adaptive Extended Local Ternary Patterns (AELTP) quantization algo-
rithm on the original dataset.This processing tends to enhance the differences
among near values and highlight the derivatives [7].

– The fourth and final “balanced-quantized” experiment of tests combines the
balancing technique of the second experiment and the quantization of the
third.

To implement the above architectures and perform the tests, we used Keras,
an high-level Python neural networks library, capable of running on top of two of
the most important libraries for numerical computation used for deep learning:
TensorFlow and Theano. The use of higher level libraries like Keras allows devel-
opers and data scientists to rapidly produce and test prototypes, while relaying
most implementation details to the chosen lower level library.

Modular structure facilities to build both convolutional networks and recur-
rent networks and these are available as well as combinations of the two. The
models built with Keras are understood as a sequence of modules like neural lay-
ers, cost functions, optimizers, initialization schemes, activation functions and
regularization schemes, that can be plugged together.

The convolutional neural network we adopted takes as input the collection
of the pluviometric data for a single day in form of a matrix. In fig.1 is shown a
schematic representation of the network.

The net architecture has two main convolutional stages followed by the sub-
sampling and a fully connected stage. The first convolutional stage is performed
with thirty two kernels with size 3x3 followed by a processing with rectified linear
units and a dropout with parameter equal to 0.25. The second convolution stage
is performed with sixty four kernels with size 3x3 followed by a processing with
rectified linear units. Before the fully connected step a dropout with parameter
equal to 0.25 is performed. The last stage of the net, with fully connected units
is formed by linear rectified units followed by a dropout step with parameter
equal to 0.5 and a set of units with softmax activation function.

4 EXPERIMENTAL RESULTS

Experiments were conducted using different batch sizes in the training phase to
evaluate if the training is stable versus different training settings. The experi-
mental results are reported in an tabular form in tables 1 and 2 where the results
in terms of Accuracy, Precision, Recall and F1 score. For these quantities the
mean and the variance, while the batch size varied, have been calculated. In 1,
the experiments with the original dataset and the dataset with quantized val-
ues, obtained through [7] algorithm, are compared. The results with the original
dataset are better than the results with the “quantized” dataset for both net-
works. The CNN does not detect any emergency (positive) sample showing that
this processing is negative for the learning performance of these models. Accu-
racy is high for both the models and also for the experiment with the quantized
dataset. Somehow, since the dataset is strongly asymmetrical, this parameter



Original Quantized
dataset dataset

CNN MLP CNN MLP
µ σ µ σ µ σ µ σ

Batch size=3 Accuracy 93.3% 0.3% 92.1% 0.5% 0% 0% 89.4% 1.2%
Precision 90.0% 31.6% 42.1% 5.6% 0% 0% 10.0% 2.5%
Recall 7.4% 4.4% 21.6% 3.0% 0% 0% 5.3% 0.0%
F1 score 13.4% 7.6% 28.3% 2.9% 0% 0% 6.8% 0.7%

Batch size=6 Accuracy 93.1% 0.2% 92.2% 0.9% 0% 0% 89.4% 2.3%
Precision 80.0% 32.2% 43.5% 11.1% 0% 0% 11.6% 3.3%
Recall 6.8% 3.6% 20.0% 4.2% 0% 0% 5.8% 1.7%
F1 score 12.4% 6.0% 27.2% 5.8% 0% 0% 7.4% 1.1%

Batch size=9 Accuracy 93.1% 0.4% 92.9% 0.6% 0% 0% 88.4% 3.9%
Precision 62.5% 37.1% 54.3% 10.0% 0% 0% 11.0% 2.5%
Recall 7.9% 5.7% 22.6% 2.5% 0% 0% 6.8% 3.6%
F1 score 13.7% 9.5% 31.8% 3.9% 0% 0% 7.7% 1.0%

Batch size=12 Accuracy 93.3% 0.4% 91.1% 3.8% 0% 0% 88.5% 4.7%
Precision 87.5% 31.7% 44.8% 21.0% 0% 0% 11.3% 2.9%
Recall 8.4% 5.7% 21.6% 3.9% 0% 0% 7.4% 6.7%
F1 score 15.0% 9.4% 28.2% 9.0% 0% 0% 7.8% 2.1%

Batch size=15 Accuracy 93.6% 0.3% 91.1% 2.9% 0% 0% 89.7% 1.4%
Precision 96.7% 10.5% 42.7% 23.5% 0% 0% 11.6% 4.1%
Recall 12.1% 3.6% 20.0% 4.2% 0% 0% 5.8% 1.7%
F1 score 21.3% 5.8% 26.3% 9.1% 0% 0% 7.6% 2.3%

Batch size=18 Accuracy 93.4% 0.3% 93.0% 1.0% 0% 0% 90.2% 0.6%
Precision 93.3% 14.1% 56.4% 13.2% 0% 0% 11.8% 2.1%
Recall 11.1% 3.9% 21.1% 3.5% 0% 0% 5.3% 0.0%
F1 score 19.5% 6.4% 30.5% 5.5% 0% 0% 7.2% 0.4%

Table 1: CNN and MLP performance with Original and Quantized dataset

loses importance as the overwhelming number of negative samples hides the
performance on the limited set of positive samples. It can be seen that the MLP
network has a better performance than the CNN, obtaining a maximum peak of
F1 score of 31.8% with batch-size equal to nine.

Although the performance of the MLP decreases a using quantized dataset
(third experiment), its performances are still higher compared to CNN that
has not been able to recognize any true positive and false positive, because the
network did not properly learn.

Result of the other experiments are shown in table 2. Using the balanced
dataset, with a number of positive samples equal to the number of the negative
samples that have been randomly reduced, the CNN network always has better
performance than the MLP network, obtaining a maximum peak with batch-size
equal to twelve.

Considering the F1 measure alone, a synthetic value for the result the value of
71.9% is the highest value for all the experiments and let us draw the consequence



Balanced Balanced-Quant.
dataset dataset

CNN MLP CNN MLP
µ σ µ σ µ σ µ σ

Batch size=3 Accuracy 72.9% 3.6% 66.7% 12.3% 58.1% 3.9% 52.9% 7.3%
Precision 88.1% 9.1% 75.3% 16.9% 36.9% 40.6% 49.7% 8.3%
Recall 47.4% 9.9% 54.2% 12.7% 13.7% 15.9% 48.4% 5.4%
F1 score 60.7% 8.1% 60.1% 4.7% 19.1% 21.0% 48.3% 2.8%

Batch size=6 Accuracy 73.3% 2.9% 65.2% 13.3% 57.1% 4.6% 52.4% 6.1%
Precision 78.8% 6.5% 75.8% 18.3% 43.4% 26.6% 48.6% 6.3%
Recall 57.4% 10.7% 52.6% 16.5% 17.9% 16.1% 47.9% 7.2%
F1 score 65.6% 6.2% 58.0% 5.5% 24.3% 19.8% 47.6% 3.6%

Batch size=9 Accuracy 73.8% 3.7% 68.1% 11.0% 54.3% 2.5% 54.5% 5.8%
Precision 82.6% 8.0% 77.3% 13.8% 34.3% 47.2% 50.4% 6.0%
Recall 54.2% 7.9% 51.1% 11.7% 3.2% 5.1% 50.5% 3.7%
F1 score 65.0% 6.0% 59.4% 6.0% 5.3% 7.8% 50.2% 3.6%

Batch size=12 Accuracy 74.8% 2.8% 64.0% 12.6% 59.0% 2.5% 58.3% 3.2%
Precision 72.6% 4.2% 73.8% 17.3% 63.3% 13.9% 54.6% 4.0%
Recall 71.6% 5.7% 50.5% 16.3% 29.5% 9.0% 48.9% 7.0%
F1 score 71.9% 3.4% 56.0% 5.0% 38.6% 8.8% 51.3% 4.5%

Batch size=15 Accuracy 76.7% 2.5% 64.3% 14.0% 54.8% 4.2% 51.0% 8.3%
Precision 83.2% 4.4% 73.1% 17.2% 47.5% 26.7% 47.4% 8.2%
Recall 61.1% 6.2% 52.6% 14.7% 18.9% 14.3% 48.9% 2.5%
F1 score 70.2% 4.0% 57.7% 4.9% 24.8% 16.6% 47.8% 4.2%

Batch size=18 Accuracy 76.4% 3.3% 61.9% 15.0% 56.0% 3.2% 50.2% 8.4%
Precision 79.5% 6.7% 69.8% 19.6% 51.9% 5.5% 46.8% 8.7%
Recall 65.3% 3.7% 55.8% 16.1% 33.7% 12.2% 47.9% 4.6%
F1 score 71.5% 3.3% 57.5% 5.8% 39.5% 12.1% 46.8% 4.5%

Table 2: CNN and MLP performance with Balanced and Balanced-Quantized
dataset

that the CNN, although with an increased computation cost, has the best results
for this problem. In general F1 has been chosen since its value takes into account
Precision and Recall values and allows a general comparison. A classification with
Support Vector Machines [8] has been done and the results are shown in table 3.
The values of F1 score is increased when the balanced dataset is used. Moreover,
the performance with the balanced and quantized dataset obtained a value that
is comparable. In both cases the results with SVM (55.2% and 48.7%) are lower
if compared with the CNN results where a balanced dataset is used showing that
a linear separation is not the best solution for this problem.

Figure 2 shows the plots of the F1 measure for all experiments with the
neural networks. The plots are just a more detailed version of the values shown
in the above tables and they show how the best results are got the the CNN
with a balanced dataset and in particular with a batch size equal to twelve but
also with other values of the batch size the F1 is higher that 60% and in any



Original Orig.-Quant. Balanced Balanced-Quant.
dataset dataset dataset dataset

SVM Accuracy 88.9% 83.9% 69.1% 53.7%

SVM Precision 22.2% 17.1% 80.0% 50.0%

SVM Recall 21.1% 31.6% 42.1% 47.4%

SVM F1 Score 21.6% 22.2% 55.2% 48.7%

Table 3: Performance of Classification of the datasets with support vector ma-
chines

case the performance of CNN overcome the values of the MLP. For all the other
experiments the values obtained with MLP are more stable and the statistics
of the box plot show values that are near the average value. The results of the
CNN are more variable and can be also less good than the result of the MLP.
The experimental set with CNN when a balanced dataset is used allows the best
result and should be chosen for this kind if problems.

5 CONCLUSIONS

Looking at overall experimental results, we can say that, with this specific
dataset and the quantization method that we have chosen, both types of neural
network showed a significant loss of performance in the classification of emergen-
cies. The best results are obtained when a reduced number of negative samples
are used and the number of positive samples and the negative samples is quite
similar. Since the dataset is unbalanced we cut off a set of negative samples so
that the quantity of samples in the two set is equal. In this case less in more,
since the results are the best we obtained limiting the overfitting over the neg-
ative samples and suitably learning the positive (emergency) cases. Moreover,
in this first approach we worked with data from a wide geographic area. Given
the promising results obtained, we would like to extend the tests using a larger
dataset, for example relating to hourly measurements of rainfall, and using mul-
tiple parallel networks, to be able to classify the various stages that precede a
possible emergency and alert a specific geographic area.
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(a) MLP with Original
Dataset

(b) CNN with Original
Dataset

(c) MLP with Quantized
Dataset

(d) CNN with Quantized
Dataset

(e) MLP with balanced
Dataset

(f) CNN with balanced
Dataset

(g) MLP with Quantized and
balanced Dataset

(h) CNN with Quantized and
balanced Dataset

Fig. 2: F1 Score evaluation versus training batch sizes with different data pre-
processing


