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Abstract. Clinical gait analysis studies human locomotion by characterizing move-
ment patterns with heterogeneous acquired gait data (e.g., spatio-temporal pa-
rameters, geometry of motion, measures of force). Lack of semantic integration
of these heterogeneous data slows down collaborative studies among the labora-
tories that have different acquisition systems. In this work we propose a semantic
integration methodology for gait data, and present GaitViewer - a prototype web
application for semantic analysis and visualization of gait data. The proposed
semantic integration methodology separates heterogeneous and mixed numeri-
cal and meta information in gait data. Ontology concepts represent the separated
meta information, while numerical information is stored in a NoSQL database.
Parallel coordinates visual analytics technique are used as an interface to the an-
alytics tools proposed by the NoSQL database. We tailor GaitViewer for two
common use-cases in clinical gait analysis: correlation of measured signals for
different subjects, and follow-up analysis of the same subject. Finally, we discuss
the potential of a large-scale adoption of frameworks such as GaitViewer for the
next generation diagnosis systems for movement disorders.
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ization, visual analytics, information filtering, information retrieval

1 Introduction

The intricacy of human locomotion has captivated a great number of scientists over
the years. At first glance, human motion or human gait may seem natural, graceful,
rhythmic, and even effortless. However, it is such an extremely complex process that,
despite more than a century making developments in this field, much remains to be
uncovered. Indeed, the human gait is a distinct, unique and remarkably precise process,
controlled by the central nervous system. It comprises three dimensional motions in
a multiple linkage system involving the coordination of a great number of different
muscles acting on different joints. As a result, the research community is still working
on understanding and unfolding the underlying mechanisms that allow people to move.

Gait analysis [1] is one such effort from the research community, which involves
instrumented measurement of the movement patterns by characterizing human motion
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Fig. 1. Visualization of heterogeneous gait data in VICON (commercial software), from top to
bottom in clockwise order: video sequences, motion capture skeleton animation, muscle activa-
tion timeseries, joint angles timeseries

(e.g., walking, running, jumping, hopping). Human motion is usually characterized by
spatio-temporal parameters (distance, speed, cadence, stride length), geometry of mo-
tion (kinematics), measures of force (ground reaction forces and joint moments), mus-
cles activation and sometimes energy expenditure. Subsequent computational analy-
ses of the aforementioned parameters contribute to diagnosis and treatment of various
movement disorders [17]. As a result, gait analysis has expanded from a purely aca-
demic discipline into a useful tool to physicians and therapists which is distinctively
referred as clinical gait analysis.

Undoubtedly, technological advancements have made acquisition, processing and
analysis of gait data easier and faster. As described by Simon [14], nowadays there is a
wide variety of new instrumentation and computer technology for observation and mea-
surement of human motion, which include: motion capture, digital video camcorders,
accelerometers, forceplates and electromyography (EMG). Well-established commer-
cial gait data acquisition systems include Vicon (Motion Capture systems, Oxford-
United Kingdom, Figure 1), Motion Analysis (Motion Analysis Corporation, Calfornia-
United States), Qualysis (Qualysis AB, Gothenburg-Sweden), Codamotion (3D Mo-
tion Analysis systems, Leicestershire-United Kingdom), and zflo (zlomotion, Boston-
United States). The usual scenario of gait data acquisition involves a patient undergo-
ing an acquisition session, with a specific acquisition protocol, which produces large
amount of heterogeneous data characterizing human motion. Each acquisition system
follows its own ad-hoc data model for gait data analysis and visualization (Figure 1).

Need for semantic integration techniques. Commercial software accompanying acqui-
sition systems provides basic means for gait data exportation as text files or spread-
sheets, containing mixed meta and numerical information. The variety of exported data
ranges from meta information (e.g., acquisition session number, acquisition protocol
trial number, anatomical region of the marker) to the actual numerical information



(e.g., timeseries). Such a disorganized and heterogeneous representation imposes prob-
lems on efficient consumption and interoperability of gait data. Before the numerical
information can be fed into numerical packages for further analysis, several data prepa-
ration routines are usually performed manually. The data preparation routines involve
separating signals corresponding to a specific acquisition session of a given subject,
acquired with a desired anatomical marker. The results of the subsequent analysis are,
in most cases, stored manually following an ad-hoc data model, if any, in text files
and/or spreadsheets. The data sharing between the collaborating laboratories usually
takes place via exchange of emails, with explanations on the structure of the gait data,
which are prone to be ambiguous. The interoperability among the acquired data is crip-
pled even more when different acquisition systems are used, which is a common case
when different laboratories have different acquisition systems and they want to share
data.

Gait data could benefit from the semantic integration techniques for a more efficient
data consumption. For instance, an ontology describing gait data acquisition procedures
could help organize acquired data sets, which relate to the same subject/acquisition ses-
sion/anatomical marker, however have different encoding and/or representation. Prin-
cipled and structured ways of storing raw numerical gait data could facilitate gait data
analysis, visualization, and data exchange among the collaborating laboratories. A se-
mantic integration methodology which combines conceptual classification of gait data
with a more low-level (semi-) structured organization of numerical data, could likely
open up new collaborative scenarios for the human motion researchers and clinicians
alike, by facilitating data exchange, interpretation, and visualization.

In this work we propose a semantic integration methodology for gait data, and
present GaitViewer - a prototype web application for semantic analysis and visualiza-
tion of gait data. The proposed semantic integration methodology separates heteroge-
neous and mixed numerical and meta information in gait data. We use ontology con-
cepts to represent the separated meta information, while numerical information is stored
in a NoSQL database. GaitViewer leverages ontologies as a common semantic layer to
access low-level numerical gait data stored in the database, and provides interactive vi-
sual interface, based on parallel coordinates plots, to the analytics tools proposed by
the NoSQL database. We apply GaitViewer to two use-cases in the clinical gait analy-
sis: correlation of measured signals for different subjects, and follow-up analysis of the
same subject. This work has been a collaboration between biomedical engineers prac-
ticing clinical gait analysis, and computer scientists working on biomedical applications
of semantic data analysis and visualization.

2 Related Work

Commercial gait data acquisition systems provide basic analysis tools that usually en-
ables the user to create, edit and export data. These tools are mainly intended as a quick
means of data quality inspection and report editing tool for gait laboratories; however
they lack more complex visualization tools as well as analysis capabilities. More re-
cently, free software, applications or toolboxes for Matlab have been developed to pro-
vide a wider range of analysis tools, hence increasing the potential to share data between



laboratories that have different acquisition systems. For example, toolboxes for Matlab
such as BTK and Mocap were created to facilitate gait data visualization and process-
ing; nevertheless the user must have certain level of programming skills in order to work
with the functions provided by the toolboxes [6, 2]. Barre and Armand [2] went a step
further developing Mokka (Motion kinematic and kinetic analyzer), an open-source and
cross-platform software that utilizes the BTK toolbox to analyze biomechanical data,
but designed for scientists with non-programming skills. iGait, another Matlab appli-
cation tool developed to derive numerous features uniquely from acceleration data, in-
cluding spatio-temporal features, regularity, symmetry and spectral features [18].

In terms of gait data visualization, Federolf et al. [7] apply timeseries visualiza-
tion and skeleton animation in order to study the temporal variability in gait. Spahi¢ et
al. [15] provide gait visualization system based on Paraview (free available software).
And Manal and Stanhope [10] suggested an alternate method of reporting movement
pattern deviations relative to normative data by color-coding the magnitude and the
direction of the difference (color coded deviations).

Open-source initiatives and Matlab toolboxes provide a solid toolchain for complex
gait analysis and visualization, which mainly focus on gait data of one subject at time.
Although they do address, to some extent, the problem of gait data sharing among the
laboratories that have different acquisition systems, such solutions do not go as far as
to support collaboration scenarios in which disparate repositories of gait data are mined
and searched through a common interface.

In other bioinformatics domains conceptual semantic integration techniques have
already contributed to collaborative analysis and data interoperability. In particular, Se-
mantic Web based methods have been introduced, which are designed to add meaning to
the raw data by using formal description of the concepts, terms, properties and relation-
ships encoded within the data [3]. Ontology Based Data Access Approach (OBDA [9])
demonstrates an integration of high-level conceptual layer (ontologies) and low-level
layer for storing raw data in relational database management systems (RDBMS).

3 Semantic integration of gait data

In this section we present the developed methodology for the semantic integration of
gait data. Our methodology consists in: i) semantic characterization of the acquisition
session workflow for the gait analysis, encoded in an ontology, ii) semantic charac-
terization of signals subject’s movement via critical points computations per distinct
phase of a gait cycle, iii) human movement signal persistence to a document-based
(NoSQL) database [13] to support subjects measurement comparison via querying and
aggregation framework, iv) web-based visualization of multivariate subject’s movement
measurement using parallel coordinates [8].

Ontology of gait data collection. A common scenario of gait data acquisition involves
a patient undergoing an acquisition session, where specific acquisition protocols are
employed for a specific study. As the result heterogeneous data characterizing hu-
man motion are acquired. To increase the semantic interoperability of gait data we
separate meta information from numerical information. We first model the extent of



meta information one could extract from gait data, i.e., the medical background knowl-
edge, consisting of patients/subjects undergoing acquisition sessions, (e.g., pre total
knee replacement, 3 months after total knee replacement). Such that, these acquisi-
tion sessions produce numerical measurements of human motion, registered by the sen-
sors placed on patients anatomical markers (e.g., joints and muscles) in different body
planes (e.g., flexion-extension, internal-external rotation). This medical background
knowledge is captured by the MultiScaleHuman Ontology [11], developed within the
EU FP7 "MultiScaleHuman" project, whose goal is to associate multi-scale biomed-
ical data with anatomical entities, patient and acquisition session/protocol informa-
tion to support CAD and Visualization systems for diagnosis of musculoskeletal dis-
eases of a human knee. We have set up a Stardog triple store (Knowledge Base) with
gait data at http://stardog.plumdeq.xyz/mshOntology#!/browse/ontology\
%3AKnee_angles (username: anonymous, password: guest). Currently, we take into
account two common types of numerical measurements: angle variation in joints, and
muscle activation (Figure 2).
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Fig. 2. Semantic interpretation of a typical gait data acquisition workflow, encoded in an ontology
(excerpt of the ontology visualized). The acquisition workflow produces mixed meta and numer-
ical data (visualized in a spreadsheet). Examples of muscle activation (EMG) and joint angles
timeseries are provided.

Representation of gait data. Acquired numerical gait data may be represented as signals
of different dimensions. In our work we consider 1D timeseries of two types: smooth
and noisy. Joint angles (Figure 2, timeseries annotated with Joint angles ontology
concept) and joint moments are smooth one-dimensional signals, while the muscle
activation (EMG) (Figure 2, timeseries annotated with Muscle activation ontol-
ogy concept) are noisy (contain measurement and calibration errors, resulting in many
high frequencies) one-dimensional signals. We can represent 1D signals as sequences
z[n],n = 0,1,...,N — 1 or as vectors * = [zoz1...7xx_1]T. All angles/moment



signals, belonging to the same subject and acquired within the same acquisition ses-
sion and trial, have the same number of sampled points and thus share the index set
T € Z*. In the rest of the paper we refer to the acquired numerical gait data as signals
and timeseries interchangeably.

Semantic characterization of signals. Because walking is such a fundamental skill as-
sociated with quality of life, it is the most common motion analyzed in health mobility
centers. The walking pattern can be characterized by studying one full gait cycle, which
is initiated by leaning the body above the legs, and continued with the contraction of
leg muscles. The propulsive power of ankle muscles provoke controlled forward shift
of the center of body mass, and the subsequent controlled fall of the body, which is only
stopped by the initiation of the next gait cycle.
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Fig. 3. Schematic (left) and digital (right) representations of the semantic characterization of one
full gait cycle into the stance and swing phases (left part of the figure adopted from [12])

We use Mummolo’s [12] semantic characterization of a gait cycle which divides
every full gate cycle into two phases: stance and the swing phases, which roughly con-
stitute 60% and 40% of the length of a signal (left part of the Figure 3). During one
gait cycle, the stance phase is associated with two events: heel strike (HS) in the be-
ginning, and toe off (TO) in the end. The swing phase of the gait cycle takes place
between the toe off and the next heal strike (left part of Figure 3). We can thus rep-
resent each signal z as two subsignals (right part of the Figure 3) 2!, 22, such that
! = [zg...7;],2% = [xj...2n], where i = [0.6 x |z|] and j = |0.6 x |z|| (i.e., i
- index of end of stance phase, j - start of swing phase). Subdivision of one signal into
its swing and stance components allows us to perform refined analysis and comparison
of signals. In particular, patient’s gait data can be characterized by the critical points
of the components, i.e., min(z!), max(x!), min(x?), max(z?). We also register the in-
dex of the critical points (i.e., arg min 2!, 2, arg max 2!, 22) to visualize them on the

timeseries plot as bold points (right part of the Figure 3).



subject: Subject 1 E acquisition session Pre total knee replacement 2] sequence S1-10 B

signal type Angles or moments [ body plane | internal-External rotation [ anatomical region  RipMoment [
{

id: ObjectID("qsd$éskdfi..."), J
subject: "Subject 1", B SON to OWL
acquisition: "PRE", .
body plane: "Internal-External rotation", Vla JSON_LD
anat_region: "RHipMoment",
signal_type: "Angles or moments", — stance phase
sequence: "S1-10", — swing phase
gait_cycle: [0.2, M full signal
swing start: 2.7, 4 ® e min at stance
stance_start: 1.0, ® ® max at stance
swing min x: 1.5, ® o min at swing
swing min_y: -17.0, C d 6::@: max at-swing

stance_min_x: 3.3,
stance_min_y: -0.0,
swing_max_x: 2.2,

swing_max_y: 12.0, 0
stance_max_x: 3.7,
stance max_y: 10.0, €1 -
data: Binary({
shape: (350, 1), .
dtype: "float32", 350
__ndarray__: "7qksjd*QLSJD..." &5

b,
time: Binary({

shape: (350, 1), D
dtype: "float32", BT 26 28 30 32
__ndarray__: "L823gsdpgs*..."

, T
} h p (tl,...,t350)

Fig. 4. Semantic characterization and JSON representation of gait signals. A: user interface (UI)
for AJAX queries to remotely fetch gait signals (JSON objects). B: mapping between the JSON
objects and instances of the ontology in the triple store via JSON-LD. C: semantic characteriza-
tion of the signal. D: binary numerical data for the signal (time and signal values).

Persistence of gait data to a document-based database (NoSQL). The gait data which
we need to store are not uniform data sets. We recurred to NoSQL database rather than
a RDBMS, because NoSQL databases provide an agile management of heterogeneous
data, as well as multiple analytical tools (aggregation pipeline) [5]. We represent each
signal as one JSON object, which contains names of the concepts from the ontology
(Figure 4, B), semantic characterization of the signal (Figure 4, C), and the raw numer-
ical data for the signal (Figure 4, D). The raw numerical signal data are represented as
two distinct vectors for the time and the value domains, and stored in binary format.

Storing gait data as JSON objects, among other things, enables network transmis-
sion of gait data, and thus allows service-oriented software architectures. We provide a
simple user interface (UI) which consists of a set of dropbox lists (Figure 4, A) whose
values are populated from the knowledge base. The values of these dropbox lists consti-
tute a url query, through the AJAX interface for remote fetching of JSON objects. Exam-
ple state of the dropbox list set to Signal type: Angles or moments, Subject:
1, Acquisition session: Pre total knee replacement, Sequence: S4-05,
Body plane: Flexion-Extension, Anatomical region: LHipMoment will pro-
duce aurl query http://gaitviewer.plumdeq.xyz/gaitview/angles\_moments/
1/PRE/S4-05/Flexion-Extension/LHipMoment/. The backend replies with a JSON
document containing the signal (navigating your browser to the above-mentioned link
will fetch the JSON document). The user interface (UI) which consists of a set of drop-



box lists (Figure 4, A) whose values are populated from the knowledge base is available
athttp://gaitviewer.plumdeq.xyz/gaitview/subjects/.

Mapping (Figure 4, B) between JSON objects and instances of the ontology in the
triple store is realized via JSON linked data technology (JSON-LD), which converts
JSON documents annotated with literal strings to RDF (Resource Description Frame-
work) triples. To do so, we define JSON-LD context objects which contain rules of lit-
eral string to RDF triples conversion, i.e., transformation of literal strings Left Knee
stored in JSON objects into respective set of RDF triples. This rule-based RDF triple
generation is automatic, and can be modified (i.e., writing appropriate rules) to fit any
given ontology vocabulary.

4 Semantic and Interactive Gait Data Visualization and Analysis

We have applied GaitViewer to a dataset consisting of 5 subjects. Each subject has un-
dergone three acquisition sessions: i) before the total knee replacement (TKR) surgery
(PRE), 3 months later (POST3M) and 6 months (POSTEM) after the surgery. During each
acquisition session, in order to improve the quality of measurements, a subject was
required to perform the same walking pattern three times, thus for each acquisition
session we have three sequences (e.g., S1-10, S1-11, S1-12). To perform analysis
of data we have focused on joint angles, joint moments variations and on muscle ac-
tivation (EMG) data. Each type of a biomedical measurement (signal) was recorded
with the help of a marker placed on subject’s body. Each marker represents a specific
anatomical entity (e.g. left hip, gastrocnemius muscle).

Aggregation pipeline for the analysis of gait data. One of the main requirements for a
gait analysis framework was the ability to group data over multiple trials per subject,
and aggregate computed parameters (features) values for further analysis. We thus pro-
posed to employ the elements of split-apply-combine strategy for data analysis [16].
To do so, GaitViewer leverages the aggregation pipeline framework which operates on
JSON objects, and is available in some NoSQL databases. In Figure 5 we give an in-
formal and a visual demonstration of the two main operators f,g : O +— O acting on
a set of JSON objects O, such that f filters objects which satisfy a certain predicate
p, while g aggregates filtered objects o1, . .. 0y, into one object o. The filter and ag-
gregation functions are operators acting on JSON objects and thus can be composed
(i.e., f o f' o g) to produce a rich calculus for a wide range of data processing tasks. A
formal treatment and semantics of such calculi for NoSQL languages can be found in
Benzaken et al [4].

The aggregation pipeline could be applied to many use-cases, common in data anal-
ysis in the human motion research field. We present a use-case in which a user wants
to first filter (or group by) each signal by a specific acquisition session, and then to
compute (aggregate) average critical points per trial (sequence). We apply (Figure 5)
the filter f with a predicate p which checks if the attribute value is equal to "PRE"
(acquisition session which took place before the total knee replacement), returning the
filtered set of objects O,, with all its elements satisfying p, corresponding to the three
trials of the same walking pattern (sequences: S1-10, S1-11, S1-12). We then ap-
ply the aggregation function g on O, which computes the mean value of the critical
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subject: "Subject 1",
acquisition: "PRE",
sequence: "S1-10", {
swing min_y: 0.0 subject: "Subject 1",
acquisition: "PRE",
} sequence: "S1-10",
<
subject: "Subject 1",
acquisition: "PRE", f } g {
sequence: "S1-11°, { subject: "Subject 1",
swing_min_y: 0.5 subject: "Subject 1", acquisition: "PRE",
acquisition: "PRE", sequence: "S1-10",
T
subject: "Subject 1", }
acquisition: "POST3M", }
sequence: "S1-12", {
swing_min_y: -1.0 subject: "Subject 1",
acquisition: "PRE",
} sequence: "S1-12",
0
subject: "Subject 1",
acquisition: "PRE", 3}

sequence: "S1-12",
swing min_y: -0.2

Fig. 5. Application of the aggregation pipeline to compute the average critical points of the swing
phase for several trials of a specific acquisition session. Composition of the filter operator f with
the aggregation operator g on the gait dataset is schematically presented.

point in the swing phase (swing_min_y). Manually, such a data inspection task would
have taken relatively small amount of time, however the aggregation pipeline is a more
reproducible and a scalable solution.

Visual analytics for gait data correlation with interactive parallel coordinates plots. A
recurrent task in movement science is to correlate relevant differences among the sub-
jects, which requires grouping of data over multiple trials per subject, as well as the
aggregation of computed parameters (features) values for further analysis. We opt for
visual analytics techniques to perform such correlation tasks, for a more intuitive and
interactive experience. Since there might be many features or dimensions to consider,
we use parallel coordinates [8], a visual analytics tool to summarize this multivari-
ate dataset. For demonstration purposes in this paper, we selected two acquisitions: 3
months and 6 months after the total knee replacement. We characterize all the angles
variations of the left hip of 5 subjects during flexion or extension of the hip. We use
the aggregation pipeline to average the results. Parallel coordinates (Figure 6 A) help
us visually summarize these signals for 5 subjects in a compact manner (due to space
limitations we do not show all the coordinates (dimensions)). We us the interactive fo-
cus+context visualization technique to separate visually one subject from all others.
Whenever the user hovers on a specific subject, the other subjects are becoming more
transparent (In Figure 6, B, the Subject 2 is the focus, while all the other subjects are
the context).

Visual interface for the aggregation pipeline. We provide a visual interface for the
aggregation pipeline, which is implemented via the brushing tool technique, usual to
data analysts using parallel coordinates. In Figure 7 we show how the user can iden-
tify visual regions on each coordinate, which are then translated into the composition
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Fig. 6. A: Parallel coordinates visualization of aggregated signals for all 5 subjects. B: Interactive
focus+context visualization, where Subject 2 signals is focus and all other subjects’ signals are
context drawn more transparent.

of filter and aggregation operators. For instance, in Figure 7 there are two selected
ranges f o g, f' o ¢’ on coordinates post6 stance min and post6 swing max re-
spectively. Each visually selected range represents a composition of filter and aggre-
gation operators. f o g, first filters (f) all signals corresponding to the acquisition ses-
sion 6 months after the total knee replacement (post6), and whose minimum value in
the stance phase falls in the period min(post6siance) € [—4,—10]. Finally, g com-
putes the averages for the filtered signals for all trials. f’, analogously first selects
post6 signals and those whose maximum value in the swing phase falls in the pe-
riod maz(postbswing) € [25,31], and ¢’ computes the averages for all the filtered
signals. Since all operators act on and return JSON objects, we can take the union of
the results f o g U f’ o ¢’, which contains all the signals satisfying the filtering and
aggregation constraints imposed by f o g and f’ o ¢’. Note, that the table with all the
values is updated accordingly, i.e., only the signals satisfying the constraints are visu-
alized both in the parallel coordinate plot and in the table. Interactive visual selections
and parallel coordinates interface, and the underlying aggregation pipeline are available
athttp://gaitviewer.plumdeq.xyz/par_coords/.

Follow-up analysis of gait data. The proposed aggregation pipeline and interactive mul-
tivariate visualization via parallel coordinates can be applied for the follow-up analysis
of gait data of the same subject. In the follow-up analysis we plot critical values per
acquisition session, i.e., the rows are signals corresponding to different acquisition ses-
sions. In Figure 8 we can observe how the critical values of the left hip angles differ
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Fig.7. Visual interface to the aggregation pipeline. Visually selected ranges on the coordinates
are translated into data processing operators f o gU f’ o g’.

in three different acquisition sessions: prior to the total knee replacement, three months
after and six months after the surgery. By analyzing the influence of the surgery on sub-
ject’s gait pattern, i.e., variations of the critical values for different acquisition sessions,
we can monitor the recovery progress of the subject. Aggregation pipeline and interac-
tive multivariate visualization could support the practitioners in the follow-up analysis
of gait data.

acauisi[inn stance_min stance_max swing_min swing_max
before TK| 31

e

3 months after TKR

6 months after TKR

Fig. 8. Variation of the critical values of left hip angles for the subject 1 per three acquisition
sessions: before, 3 and 6 months after the total knee replacement (TKR).

5 Conclusion and Discussion

GaitViewer is a collaborative initiative between biomedical engineers, practicing clin-
ical gait analysis, and computer scientists working on biomedical applications of se-
mantic data analysis and visualization. In this work we studied the potential of applying
semantic integration techniques, coupled with knowledge discovery and visual analyt-
ics techniques for scenarios of collaborative diagnosis of movement disorders. Gait data
addressed in this work: joint angles variations, muscle activation - are unstructured text
data, each recorded differently, and containing both meta and numerical information.



The heterogeneity of these human motion measurements hinders data interoperability
and integrated analysis of gait data for a more complete assessment of patient’s loco-
motion.

We proposed a semantic integration methodology, which separates heterogeneous
and mixed numerical and meta information in gait data, such that ontology concepts
represent the separated meta information, while numerical information is stored in
a NoSQL database. Numerical information is stored as JSON objects in a NoSQL
database and is annotated with concepts from the ontology, enabling thus semantic
data interoperability of gait data. Parallel coordinates visual analytics technique has
been used as an interface to the analytics tools proposed by the NoSQL database. We
tailored GaitViewer for two common use-cases in clinical gait analysis: correlation of
measured signals for different subjects, and follow-up analysis of the same subject.

The experts feedback and their opinion on the methodology and the approach have
been continuously taken into account during the design. From the technical point of
view, the experts particularly liked the interactivity of GaitViewer. Indeed, the interac-
tive visual selections and parallel coordinates provide an easy to use interface, which
hides all the technical complexity of the underlying aggregation pipeline. The data pro-
cessing operators are composed interactively and intuitively, and the users are not lost in
the complex syntax of NoSQL querying languages. Users also liked that, unlike other
state of the art gait analysis and visualization tools, which focus on gait data of one
subject at a time, GaitViewer provides an integrated environment for analysis and visu-
alization of multiple subjects, taking into account different acquisitions, multiple trials
and semantic signal characterizations (stance and swing phases of a gait cycle).

The role of the semantic integration methodology for a large scale open gait data
analysis has been regarded as a good potential direction for the human movement re-
search. However, a large-scale adoption of frameworks such as GaitViewer will require
involvement of different actors in the field. First, the clinical gait analysis depends on
well-established commercial acquisition systems, and their standards for representing
gait data. Adoption of a shared semantic layer (ontology of gait data acquisition in this
case) will highly depend on the flexibility of the manufacturers, and possible creation
of an international consortium responsible for issuing recommendations for the open
gait data standards. Second, creation of an online and open portal for gait datasets will
require approval from medical ethical committees, and creation of rules for online pub-
lishing of anonymized subjects datasets.
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