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Abstract. One of the most important problems in the field of social
network analysis, and one of the most discussed ones, is community de-
tection, aimed at clustering the nodes on the basis of their social relation-
ships. Community detection is relevant in various fields, including: rec-
ommendation systems, link prediction and suggestion, epidemic spread-
ing and information diffusion, sybil detection. In this paper, we discuss
various ego-based community detection algorithms and propose a new
one, named PaNDEMON , to exploit the parallelism of modern archi-
tectures. Comparing its performances with other algorithms, we show
that PaNDEMON demonstrates good scalability, while preserving the
quality of results.
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1 Introduction

Community detection is one of the most popular applications of social network
analysis. A large number of algorithms and different approaches have been pro-
posed and studied. In many algorithms, community detection is based on the
concept of modularity. Social network analysis can be also applied at a local
scale, as in the case of Ego-centered analysis. In this approach, the basic as-
sumption is that, if two nodes are grouped together in the view of most of their
neighbors, then they should be considered as actual members of the same com-
munity. Some algorithms use local scale analysis to infer communities also at a
global scale.

As an interesting application, community detection can also be applied to
the protection of social platforms, in particular those subject to so-called sybil
attacks. In fact, existing algorithms for sybil defence are essentially community
detection algorithms, distinguishing sybil nodes from legitimate ones. Apart from
sybil detection, applications of community detection algorithms are many and



varied, including: recommendation systems, link prediction and suggestion, epi-
demic spreading and information diffusion.

This paper presents PaNDEMON as a new parallel randomized algorithm
for community detection and merging, derived from the DEMON sequential
randomized algorithm presented in [5]. The performance of these algorithms,
both adopting a local-first approach, is compared in terms of computational
complexity, community detection granularity, running time and result quality.

In particular, the rest of the paper is organized as follows. In Section 2, back-
ground information is provided. Namely, the problem of community detection
in general, its application as a countermeasure against sybil attacks, and the
importance of multi-agent systems in the field of social media are discussed.
In Section 3, both DEMON and PaNDEMON are illustrated. In Section 4,
their performance analysis is presented. Finally, concluding remarks and future
research directions are provided in Section 5.

2 Background and Motivation

A large number of algorithms for community detection have been proposed and
studied [8]. The traditional approach is to solve the problem of community de-
tection at the global scale, based on analysis of the whole social graph. Many
algorithms try to maximize modularity, a concept proposed by Newman [4, 14].
Other algorithms, such as Infomap [20] and Cross Associations [15], apply in-
formation theory to social graphs. Similarly to InfoMap, Walktrap [18] is also
based on random walks. Label propagation [19] is another quite popular ap-
proach. In this approach, labels are spread through the edges of the graph. A
label is attached to a node according to the majority of labels attached into its
neighborhood, iteratively.

The idea of label propagation also paves the way for an alternative approach
to community detection. In fact, global-scale algorithms for community detection
may perform badly in the case of medium and large scale networks: since social
graphs become too complex at the global level, it is very hard to produce a
good analysis about the network topology. Consequently, these algorithms may
produce low-quality results. Instead, social network analysis can be still applied
at a local scale [5]. Intuitively, a social network user can quite easily distinguish
some groups of friends, e.g., schoolmates, colleagues, online acquaintances, family
and other kinds of relatives. Quite obviously, the central user (i.e., the ego node)
participates himself in all these groups. Typically, a local community detection
scheme works on the assumption that, if two nodes are grouped together in the
view of most of their neighbors, then they should be considered actually members
of the same community.

In Section 3, we analyze in detail two ego-based algorithms, namelyDEMON
and PaNDEMON . In the following sections, instead, we discuss some possible
application fields of such algorithms. Practical applications of community detec-
tion algorithms are many and varied. For example, they include: recommendation
systems, for suggesting specific resources to potentially interested users; link pre-



diction and suggestion, for enriching a social graph with missing links; epidemic
spreading and information diffusion, which can adapt the patterns of messag-
ing to the actual network topology; detection of groups of outliers or malicious
users, characterized by different metrics. Among these various applications, the
study of community detection is also at the core of many sybil defense schemes,
aimed at distinguishing sybil nodes from legitimate ones in distributed social
platforms. The problem is also relevant for multi-agent systems, whose model is
often applied to the case of distributed social platforms.

Sybil attacks. Especially when lacking a centralized authority, distributed
social systems may be subject to so-called sybil attacks [7]. In this case, the at-
tacker manages to create a large number of identities, using them to subvert the
basic functionalities of the system. Completely distributed systems — in partic-
ular peer-to-peer (P2P) systems and Distributed Hash Tables (DHT) — often
rely on redundancy mechanisms. These mechanisms become ineffective when an
attacker controls a large number of identities in the system. Sybil identities —
i.e., scam nodes in the network — can collude and create an artificial majority,
under an attacker’s control.

In a number of research works, different schemes are proposed to detect and
isolate sybil identities. They exploit properties of the social graph among nodes
[10], if such graph exists or can be inferred. Social relationships among nodes
are interpreted as trust bounds, which can replace the role of a central authority
within the scope of sybil detection.

In fact, these defense mechanisms do not prevent an attacker from creating
sybil identities. Instead, they rely on the fact that an attacker can forge a large
number of identities, while he/she cannot easily create social links with non-sybil
identities. Consequently, non-sybil nodes tend to share only few connections with
sybil nodes, thus forming two quite distinct groups. These groups can be dis-
tinguished using various graph analysis techniques. In fact, social-based sybil
defense schemes highlight the topological fracture of the social network, by ex-
ploiting the limited ability of attackers to create links with the legitimate nodes
of the system.

Among distributed sybil defense schemes, random walks are a common mech-
anism for estimating the ranking of a given suspect node, starting from a trusted
local node. The ranking is then compared with a threshold to decide whether the
node is a sybil or not. One of the most known scheme based on random walks
is SybilGuard [29]. In this scheme, each node is associated with a public/private
keypair generated locally. A suspect node is marked as a sybil if random walks
starting from it and from the trusted local source do not intersect. Otherwise,
the node is considered trustworthy. SybilLimit [28] was developed as an im-
provement of SybilGuard. In this case, multiple independent random walks are
performed from each node. Trustworthy nodes have to satisfy two conditions: (i)
an intersection condition, i.e., two random nodes of the trusted node and the
suspect node must intersect in their last edge, and (ii) a balance condition, i.e., a
limit on the variation of counts associated with each random walk of the trusted
node. SumUp [24] is essentially a sybil defense mechanism for securing peer-to-



peer voting. In principle, such a system could be subverted by sybil identities,
which can also outnumber legitimate ones. Differently from other sybil defense
systems, SumUp does not rely on random walks. Instead, it uses an adaptive
vote flow technique to classify nodes. If the votes of a node are accepted, then
the node is classified as trustworthy. Otherwise, it is classified as a sybil node.

In [25], authors argue that sybil defense schemes, in distinguishing sybil nodes
from legitimate ones, solve in essence a community detection problem. In fact,
such algorithms assign a rank to nodes in the local community around a trusted
node, filtering out nodes with a low rank, acknowledged as sybil identities. If
compared with a well known generic community detection algorithm, such as
Mislove’s algorithm [13], sybil defense schemes perform similarly, i.e., they show
a similar accuracy. In [25], the authors focus in particular on local community
detection algorithms, which do not require a global knowledge of the social graph,
but instead operate on a local view. Mislove’s algorithm starts with a single node
in a local community. Then, nodes in the neighborhood are added iteratively, if
they raise the conductance metric.

Software Agents and Social Network Analysis. In the field of social
media, multi-agent systems have been used as (i) an underlying layer or a mid-
dleware for developing social networking platforms, (ii) a technology to increase
the autonomous and intelligent behaviour of existing systems and (iii) a tool
to develop simulation environments for studying both online and offline human
social networks.

For the first type of solution, an example is MAgNet [3], a multi-agent sys-
tem built using JADE and FOAF. Poggi et al. [16] discuss some existing issues,
mainly in terms of overlay infrastructure, management of the social graph, exis-
tence of specific ontologies. In particular, if global knowledge of the social graph
is not centralized, community detection and social network analysis in general
are particularly difficult.

In the second case, a number of research works propose multi-agent tech-
nology for augmenting existing social platforms [9, 11, 26, 27]. In particular, the
model of multi-agent systems has been often used to study the problem of trust
and reputation [2, 17, 21, 23], which is another aspect of social network analy-
sis. In [6], authors extend the concept of Coalition Logic to deal with hidden
coalitions among autonomous agents. This approach is orthogonal to specific
sybil detection mechanisms, allowing to define various policies to block or defer
individual actions bringing the system to a state identified in general as insecure.

Finally, multi-agent systems are a powerful tool for simulating the behaviour
of social networks, either based on direct or online relationships [12, 22]. Ascape,
NetLogo, MASON, Repast and Swarm are among the best known platforms for
agent simulation, often used to study emerging behaviours and features of social
networks.



3 Algorithms

3.1 Ego-based Community Detection

Regarding local community detection, we selected the DEMON algorithm re-
cently proposed by Coscia et al. [5], because of its highly appealing proper-
ties (correctness, completeness, determinacy, order insensitivity, composition-
ality and incrementality). DEMON ’s pseudo-code is illustrated in Algorithm
1. Initially, the set of discovered communities is empty. For each node v, the
EgoMinusEgo function is applied, obtaining a graph e. Such a graph is then
passed to the LabelPropagation function, which returns a set of v-related com-
munities C(v). The union of every community C ∈ C(v) with v itself is then
performed. At the end, set C is filled with communities.

Algorithm 1 Pseudo-code of DEMON ’s core algorithm [5].

1: C ← ∅
2: for all v ∈ V do
3: e← EgoMinusEgo(v,G)
4: C(v)← LabelPropagation(e)
5: for all C ∈ C(v) do
6: C ← C ∪ {v}
7: end for
8: end for

The time complexity of DEMON ’s core algorithm is O(nK3−α), in case of
scale free networks with n nodes, degree distribution pk = k−α and maximum
node degree K [5]. After this phase, the DEMON complete algorithm still
requires to merge overlapping communities in C. This task is performed by the
DEMON ’s FlatOverlap algorithm, described in Subsection 3.2.

Starting from the original code kindly provided by the authors, we designed
and implemented a parallel version of the complete DEMON algorithm, in-
cluding both phases of label propagation and community merge. Our algorithm
is called PaNDEMON (PArallel Non − deterministic DEMON). In fact,
it is derived from DEMON , but with significant differences in parallelism and
non-determinism. In the core part of PaNDEMON , the for all v ∈ V loop is
split over n concurrent tasks. Thus, the theoretical speedup, with respect to the
sequential version, is equal to the number of available processing units p.

3.2 Community Merging

The result of the community detection algorithm is a set of local communities
C, from the perspective of all network nodes. Such communities are potentially
overlapping and do not represent the actual community coverage of the network.
Further processing is needed, for merging the communities in C. Coscia et al.
[5] proposed a merging function, namely FlatOverlap, whose pseudo-code is



reported in Algorithm 2. In FlatOverlap, two communities are merged if and
only if the smaller one is partially overlapping the largest one for a fraction at
least equal to ε.

Algorithm 2 Pseudo-code of DEMON ’s FlatOverlap function [5].

1: for all C ∈ C do
2: for all I ∈ C do
3: if C ⊆ε I then
4: C ← C − {C}; C ← C − {I}
5: U ← C ∪ I; C ← C ∪ {U}
6: end if
7: end for
8: end for
9: return C

Evaluating the time complexity of DEMON ’s FlatOverlap is a challenging
problem, as |C| changes over time. In particular, |C| reduces by 1 iff there is a
pair (C, I), with C, I ∈ C, such that C ⊆ε I. The probability of such an event
decreases over time, until |C| converges. How this happens, it does depend on
network topology. We consider the worst case, in which the algorithm converges
after n steps, each one being characterized by only 1 merge operation:

# operations =

n∑
i=1

1

2
(|C| − i+ 1) (|C| − i)

=
1

2

[
n3

3
− |C|n2 +

(
|C|2 − 1

3

)
n

]
As n depends on the network topology, it is impossible to find a general rule for
the upper bound of the time complexity. If we assume that n ∼ |C|1/2, then time
complexity is O(|C|5/2).

To parallelize DEMON ’s FlatOverlap is almost impossible, because of its
incremental nature and the two nested for all loops for the comparison of every
community pairs in C. Thus, in PaNDEMON we designed and implemented
an alternative function, denoted as ParallelOverlap, whose pseudo-code is il-
lustrated in Algorithm 3. In ParallelOverlap, C is split into p subsets, where p
is the number of available processing units. For each subset Ci (i ∈ {1, .., p}), its
communities are picked one by one and placed into another set Li (which is ini-
tially empty), either alone or merged with the “oldest” community I ∈ Li such
that C ⊆ε I, where ε is the same parameter that characterizes FlatOverlap.
Then, Li becomes the new Ci, for all i ∈ {1, .., p}. The union of all Ci results in
a set R. If the cardinalities of R and C are equal, then C is shuffled, split into p
subset, etc. After kmax attempts, if the cardinalities of R and C are still equal,
the algorithm stops and C is returned. Otherwise, when the cardinality of R is
different (i.e., lower) than C’s one,R becomes the new C, then C gets shuffled and



the process continues. Thus, in PaNDEMON , repeated randomized shuffling
introduces a level of non-determinism over the original DEMON algorithm.

Algorithm 3 Pseudo-code of PaNDEMON ’s ParallelOverlap function.

1: R← ∅
2: l← |C|; kmax ← log l; k ← 0
3: while l 6= |R| or k < kmax do
4: C → {C1, .., Cp} s.t.

⋃
i Ci = C and

⋂
i Ci = ∅

5: l← |C|
6: for all Ci ∈ {C1, .., Cp} do
7: Li ← ∅
8: for all C ∈ Ci do
9: merged← FALSE

10: for all I ∈ Li do
11: if C ⊆ε I then
12: U ← C ∪ I;Li ← Li − {I};Li ← Li ∪ {U}
13: merged← TRUE
14: break
15: end if
16: end for
17: if merged = FALSE then
18: Li ← Li ∪ {C}
19: end if
20: end for
21: Ci ← Li
22: end for
23: R←

⋃
i Ci

24: if |R| = l then
25: shuffle(C); k ← k + 1
26: continue
27: else
28: k ← 0; C ← R; shuffle(C)
29: end if
30: end while
31: return C

To estimate the time complexity of PaNDEMON ’s ParallelOverlap, we
consider the worst case of convergence that is reached after n cycles, each cycle
lasting kmax− 1 attempts to merge the |C|− (i− 1) clusters, where i ∈ {1, .., n},
split over p processing units:

# operations = kmax

n∑
i=1

1

2

(
|C| − i+ 1

p

)(
|C| − i+ 1

p
− 1

)
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kmax
2p2

[
n3

3
+ (p− 1− 2|C|) n

2

2
+

(
1
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2
+ (1− p)|C|+ |C|2

)
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As n depends on the network topology, it is impossible to find a general rule
for the upper bound of the time complexity. If we assume that n ∼ |C|1/2 and
kmax = log |C|, then time complexity is O(log |C|p−2|C|5/2), which is better than
FlatOverlap’s when p >

√
log |C|.

4 Performance Evaluation

For evaluating the performance of the algorithms, we have adopted a test case
derived from the IMDb online movie database. In particular, we have inferred a
social network of actors, following the methodology described in [1], but using
updated data as in [5]. The nodes of the graph are actors who starred in at least
two movies, in the period 2001-2010. Other kinds of shows are not considered.

Fig. 1. IMDb social graph, with colors associated with the main communities found
by our PaNDEMON algorithm.

Consistently with [1], we have used an old definition of IMDb which considers
the first 15 cast members of a movie as its stars; this distinction is not apperent
anymore, neither in the IMDb website, nor in the available raw data. Actors are
connected in the social graph if they starred together in at least two movies, in
the reference period. Consequently, edges are undirected. As a result, we have
obtained a social graph with N = 58984 nodes and 295099 edges, illustrated in
Figure 1. The social graph is represented according to the ForceAtlas2 layout al-
gorithm, and from a qualitative analysis it is apparent that many visible regions
regroup actors with the same nationality. Colors are attributed to nodes accord-
ing to the largest community they belong to, as detected by our PaNDEMON
algorithm.

Then, we have compared DEMON and PaNDEMON , against the afore-
mentioned IMDb social graph. All algorithms have been implemented in Python



(DEMON code is the original one [5], kindly provided by Coscia et al.) and
executed on a Linux server equipped with Python 2.7, four Intel Xeon dual-core,
16 GB of RAM.

PaNDEMON has been executed using p ∈ {1, 2, 4, 8} cores. Firstly, we
have set ε = 0.75 and tested different values of kmax. Then, we have chosen
kmax = logN and tested different values of ε. Some results of the two test sets
are reported in Figure 2, showing the number of detected communities, and
Figure 3, showing the running time.
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Fig. 2. Number of communities versus p, for increasing kmax (left) and ε (right). In
the first plot, ε = 0.75. In the second plot, kmax = logN is assumed.

 0

 10000

 20000

 30000

 40000

 50000

 0  1  2  3  4  5  6  7  8  9  10

t

p

PaNDEMON (kmax=1)
PaNDEMON (kmax=log N)

PaNDEMON (kmax=√N)

DEMON

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1  2  3  4  5  6  7  8  9  10

t

p

PaNDEMON (ε=0.25)
PaNDEMON (ε=0.5)

PaNDEMON (ε=0.75)
DEMON (ε=0.25)
DEMON (ε=0.5)

DEMON (ε=0.75)

Fig. 3. Running time versus p, for increasing kmax (left) and ε (right). In the first plot,
ε = 0.75. In the second plot, kmax = logN is assumed.

It is evident that PaNDEMON ’s ParallelOverlap merges communities
much more than the originalDEMON ’s FlatOverlap, resulting in |C|FlatOverlap '
2|C|ParallelOverlap, when kmax > 1. This result is due to the higher amount
of merging attempts performed by ParallelOverlap. A less surprising result is
that the higher kmax, the smaller the number of resulting communities, with



ParallelOverlap. Finally, the expected and most desired result is the one re-
lated to running time. Clearly, PaNDEMON outperforms DEMON , when
p > 1 and kmax is reasonably small (kmax = logN is a suitable choice).

Which clustering is the most realistic is a matter of further investigation, we
will present in a future work. However, we can already state that PaNDEMON ’s
scalability does not affect the quality of the produced communities, with respect
to DEMON and to HLC (Hierarchical Link Clustering), this latter algorithm
being the one that provides the highest quality results, in the context of over-
lapping community detection [1]. A first result has been obtained by training
the Orange BRL multilabel classifier,1 which we have chosen as a reference,
on the different sets of communitites produced by the three algorithms under
analysis. As its output, the classifier (which essentially is a set of binary Naive
Bayes classifiers) has to predict the film genres and nationality of an actor, given
his membership status in each community. The comparison shows no significant
advantage of any one of the algorithms. However, this does not mean that de-
tected communities are similar. On the contrary, also the cardinality of the set
of detected communities is very different, as shown in table 1 (communities with
fewer than 15 nodes are filtered out, in this kind of analysis). In our future in-
vestigation, we are going to compare the three sets of communities, e.g., to see
if they respect some sort of hierarchical containment. Moreover, we are going
to experiment with additional social graphs of different nature, to have a more
varies set of case studies.

Table 1. Quality of communities detected by different algorithms.

Algorithm |C15| Accuracy Precision Recall F-Measure

HLC 793 0.298 0.549 0.362 0.436

DEMON 3820 0.275 0.440 0.410 0.424

PaNDEMON 1368 0.284 0.509 0.347 0.413

5 Conclusion

In this paper, we have introduced PaNDEMON , a parallel randomized algo-
rithm for community detection in social graphs. Community detection is im-
portant for sybil detection, recommendation systems, link prediction and sug-
gestion, epidemic spreading and information diffusion. PaNDEMON was in-
spired by DEMON , a sequential randomized algorithm with highly appealing
properties. Both DEMON and PaNDEMON are local-first algorithms, which
originate at the local node, thus mimicking the flow of trust in a peer-to-peer

1 http://orange.biolab.si/



network. Comparing the performance of the two algorithms, we have found that
PaNDEMON shows good scalability, without degrading the quality of results.

Future work will focus on further comparing sequential and parallel algo-
rithms in terms of computational complexity and precision. Furthermore, we
plan to study fully decentralized algorithms, where nodes collaborate to detect
communities, using that knowledge to improve system resilience and user expe-
rience.
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