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Abstract. Artificial neural networks (ANNs) have been developed to predict 

the clinical significance of drug-drug interactions (DDIs) for a set of 35 phar-

maceutical drugs using data compiled from the Web-based resources, Lexi-

comp® and Vidal®, with inputs furnished by various drug pharmacokinetic 

(PK) and/or pharmacodynamic (PD) properties, and/or drug-enzyme interaction 

data. Success in prediction of DDI significance was found to vary according to 

the drug properties used as ANN input, and also varied with the DDI dataset 

used in training. The Lexicomp® dataset is found to give predictions marginal-

ly better than those obtained using the Vidal® dataset, with the best prediction 

of minor DDIs achieved using a multi-layer perceptron (MLP) model trained 

using enzyme variables alone (F1 82%) and the best prediction of major DDIs 

achieved using a MLP model trained on PK/PD properties alone (F1 54%). 

Given a more comprehensive and more consistent dataset of DDI data, we con-

clude that machine learning tools could be used to acquire new knowledge on 

DDIs, and could thus facilitate the regulatory agencies’ pharmocovigilance of 

newly licensed drugs. 

Keywords: drug-drug interactions, pharmacovigilance, machine learning, arti-
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1 INTRODUCTION 

Recent years have witnessed an increasing number of publically availa-

ble databases for drug knowledge including chemical and pharmacolog-

ical information [1], drug-protein relationships and drug mechanisms of 

action [2,3] and adverse effects [4,5]. 

The creation of these various resources has afforded new opportunities 

in drug discovery and development, wherein data mining techniques are 

employed, for example, to deduce combinations of chemical and bio-

logical characteristics of use in drug repurposing [6,7] – that is, the 



identification of new therapeutic indications for approved drugs – and 

also to allow the prediction of drug-protein relationships [8], and likely 

drug side effects [9]. Such predictions as these are of great relevance in 

pharmacovigilance, providing for the detection, assessment, under-

standing, and prevention of the adverse effects of drugs (and any other 

drug-related problems) [10]. Licensed drugs are frequently seen to 

cause adverse effects that are not observed in the clinical trials con-

ducted prior to approval when used in large populations comprising 

individuals with very different physiological and pathological charac-

teristics. The early detection of these adverse effects is crucial to ensure 

patient safety and is the primary purpose of pharmacovigilance. 

Among the various adverse effects of interest, those that arise as a con-

sequence of drug-drug interactions (DDIs) are arguably the most com-

mon. These adverse effects are seen in patients that are prescribed two 

or more drugs that interact in some way. In these cases, one of the 

drugs taken affects the blood levels and/or efficacy of a co-

administered drug, thereby giving rise to unexpected toxicological 

problems or therapeutic failure [11]. Problems of this nature have seen 

increased frequency of late, partly because of the increased numbers of 

elderly patients that suffer multiple co-morbidities [12] or the common 

use of cocktails of drugs to treat complex pathologies [13]. 

Historically, information on DDIs was collated in manually curated 

compendia [11], [14], and many of these resources are nowadays acces-

sible online. There are many such pharmacological databases and semi-

structured resources that are available to assist healthcare professionals 

in the prevention of DDIs (e.g., Vidal® and Lexicomp®) but their qual-

ity is variable and the consistency of their contents rather limited. 

One of the most relevant discrepancies among the different DDI infor-

mation sources is their assessment of the significance of the recorded 

interactions. Here, significance refers to the clinical relevance of the 

DDI, and describes the risk that the DDI might pose for a patient’s 

health [14]. For any given DDI, the clinical significance will vary ac-

cording to the nature of the patient – their age, ethnicity, and genetic 

profile – and also on the drugs’ pharmacological characteristics – in-

cluding their target(s), metabolism, and side effects. The grading of 

DDI significance is generally assessed subjectively, through a pre-

established set of evaluation criteria, and thus discrepancies among dif-

ferent DDI compendia and information sources are very common. In-

deed, different researchers have identified important discrepancies be-



tween different information compendia [15] and between these and cri-

teria laid down by clinicians [16]. These studies highlight the extreme 

difficulty of assessing the severity of DDIs. One might expect, howev-

er, that most of the information sources would show a high degree of 

overlap, at least for those DDIs that would have severe health conse-

quences (interactions that we may thus consider as major DDIs), and a 

similar degree of overlap for those DDIs that would not be expected to 

do so (interactions which we might thus call minor DDIs). The devel-

opment of an in-silico system that could automatically identify DDIs 

and provide an initial assessment of their likely clinical significance 

(classifying each as major or minor) would likely be of great benefit, 

therefore, in the field of signal detection in pharmacovigilance. 

The prediction of DDIs through the application of machine learning 

methods is an active research field. Cheng et al. [17] used phenotypic, 

therapeutic, chemical structure and genomic similarity between drugs 

as input properties to train and evaluate different machine learning 

methods: naive Bayes (NB), decision tree (DT), k-nearest neighbors (k-

NN), logistic regression (LR), and support vector machines (SVM). 

The last of these proved to lead to the highest performance for the pre-

diction of DDIs between 721 drugs. Recently, Sridhar et al. [18] de-

scribed a probabilistic approach using Probabilistic Soft Logic (PSL) 

and different drug-drug and protein-protein similarity measures as input 

variables. Focusing on enzyme-related DDIs only, Hunta et al. [19] 

evaluated the performance of ANN, SVM and k-NN for the prediction 

of DDIs, while Polak et al. [20] constructed several ANN models using 

drug physicochemical and metabolic properties of drugs as input data. 

One of the challenges in all these projects is the identification of relia-

ble negative examples of non-interacting drug pairs. So far, these ap-

proaches have used pairs of drugs not included in the selected infor-

mation source as examples of non-DDIs. Because of the aforemen-

tioned limitations of manually created DDI compendia and databases 

[15,16], it is impossible to know if one pair of drugs is not described in 

the selected source because it is not known yet or because there is no 

DDI between the drugs [21]. In contrast, prediction of significance of 

DDIs based on examples of graded DDIs could overcome this issue, 

enabling the distinction between minor (or potentially non-harmful) 

and major (or potentially serious) DDIs. However, to the best of our 

knowledge there has been no attempt made to date to develop a more 



sophisticated reasoning engine to furnish systematic predictions of DDI 

severity. 

In the work reported here, we describe a novel approach for the identi-

fication of clinically relevant DDIs using machine learning techniques; 

we use input provided by relevant chemical and pharmacological drug 

characteristics extracted from online information sources, together with 

a bespoke DDI dataset containing information extracted from known 

DDI compendia. 

2 MATERIALS AND METHODS 

2.1 Drug data  

A total of 35 drugs were selected for study, according to the criteria that 

each of those selected exhibit a high potential for interaction with other 

drugs and/or are representative of a major therapeutic class and had no 

missing data for any of the input variables. Many of the selected drugs 

were previously used in related work by Vitry et al. [15]. 

Through a review of the general literature on DDIs [11], [14], those 

drug characteristics considered relevant to their interaction profiles 

were identified. The 20 drug characteristics selected included both 

pharmacokinetic (PK) properties − those descriptive of drug disposition 

in the body − and pharmacodynamic (PD) properties − those descrip-

tive of the drugs’ effects in patients. The drug properties data were tak-

en from the manually-curated database DrugBank [1], the online ver-

sions of Martindale [22] and Clarke's Analysis of Drugs and Poisons 

[23] and the Database of Intravenous Pharmacokinetic Parameters in 

Humans [24]. 

Given the frequency with which DDIs result as a consequence of drug-

induced changes in the activity of metabolic enzymes [25], data were 

also collected on drug-enzyme relationships, using information extract-

ed from the SuperCyp database [26]. We collected drug relationships 

with different isoenzymes and – for each drug in a DDI drug pair – we 

represented these as a set of 26 binary variables (with 1 signifying an 

effect of a given drug on a given enzyme, and 0 signifying no such rela-

tionship). 



2.2 DDI data  

Information on DDIs was collated from the Lexicomp
®

 and Vidal
®

 

compendia. In the former case, the online Lexi-Interact™ Online Inter-

action Service, was used to acquire the DDI information [27]. DDI in-

formation from both compendia were graded according to their respec-

tive five and four point scales. In the case of Lexicomp
®, the DDIs 

were graded from ‘no known interaction’ through to ‘avoid combina-

tion’. In the case of Vidal
®, the DDIs were graded from ‘none’ to ‘con-

traindication’ [28] (Table 1). The two sets of DDI data were compiled 

separately, and are referred to below as the DDI-L and DDI-V datasets. 

2.3 Construction of in-silico models for DDI prediction 

Artificial neural network (ANN) models to predict DDIs were devel-

oped using the data mining tools provided in Statistica
®

. This applica-

tion provides a wide selection of network types and the training algo-

rithms BFGS (Broyden-Fletcher-Goldfarb-Shanno) and Scaled Conju-

gate Gradient algorithms [29]. 
Separate models were trained and tested using the datasets described 

above, which included a total of 142 variables, and using different 

combinations of drug properties. Experiments were initially performed 

to predict interacting vs. non-interacting drug pairs and these then re-

peated to predict the significance/grade of the DDIs. 

In an initial analysis, we explored two types of ANN architecture: Mul-

tilayer Perceptron Neural Networks (MLP) and Radial Basis Function 

Neural Networks (RBF). Only MLP networks with a number of hidden 

units in the range of 8-20 were retrieved as the best ones. 

For the construction of the final models, therefore, the methodology 

adopted was as follows: 200 MLP networks were trained with a range 

of 8-20 hidden units retrieving the best five networks. Activation func-

tions were not restricted, so we explored the set of neuron activation 

functions for the hidden and output neurons available in Statistica: 

identity, logistic sigmoid, tanh and exponential. The error function used 

was either sum of squares (SOS) or cross entropy. Overfitting was pre-

vented by manually dividing the input data into training (70% of the 

dataset), test (10%) and validation (20%) datasets, ensuring a balanced 

representation in each of these for all classes. 



From the five best networks per analysis, we selected the one with best 

performance for training, test and validation sets. The generalization 

ability of the models was quantified by means of precision (P), recall 

(R) and F1 in the validation dataset. 

3 Results 

The two DDI datasets differ considerably in terms of both their cover-

age and their significance gradings. The total number of drug pairs is 

561, of which 210 (37%) are labelled as interacting in Lexicomp
®

, 

while in Vidal
®

 they are only 124 (22%). The overlap between them is 

small (421 coincidences), with only 97 DDIs and 324 non-DDIs in 

common. Regarding significance grading, the number of coincidences 

is also limited (Table 1). Because of the different scales used in the two 

DDI datasets and the small number of examples for some types (such 

as contraindication/avoid combination), we combined the examples 

into two gradings: minor and major DDIs. 

 

Table 1. Occurrences of DDIs (n) by significance grade in Vidal® and Lexicomp® datasets 

and common occurrences. 

 Significance grade 

Vidal/Lexicomp 
n Lexicomp n Vidal Matches 

 none/not known 351 437 324 

Minor 
to take into account 10 - - 

precaution for use/monitor therapy 139 42 30 

Major 
avoid/consider therapy modification 52 56 14 

contraindication/avoid combination 9 26 3 

 

As shown in Table 2, results vary for the different datasets and the dif-

ferent input variables. In the case of the DDI-L dataset, the best results 

are achieved using enzyme properties alone with a MLP network with 

204-10-2 input, hidden and output neurons, respectively. The hidden 

activation function is exponential and the output activation function is 

logistic. The training algorithm is BFGS and the error function SOS. 

Although the results show higher relevance of enzyme properties alone 

compared to a combination of all variables, this difference is very small 

(F1 64% vs 60%). In contrast, the use of PK/PD variables alone outper-

formed the other models in the DDI-V dataset, mainly because of a de-

crease in recall. As with the previous dataset, the performance of the 



best model does not differ greatly from that achieved through use of all 

combined properties (F1 58% vs 50%). This model is a MLP with 101-

14-2 input, hidden and output units trained using a BFGS algorithm. 

The hidden and output activation functions are exponential and logistic 

respectively, while the error function is SOS. 

Table 2. Evaluation metrics for DDI prediction models in the DDI-L and DDI-V datasets for 

validation instances. 

 DDI-Lexicomp dataset DDI-Vidal dataset 

Variables Precision Recall F1 Precision Recall F1 

PK/PD 0.75 0.429 0.545 0.577 0.60 0.588 

Enzyme 0.649 0.632 0.64 0.571 0.32 0.41 

PK/PD + enzyme 0.71 0.524 0.603 0.521 0.48 0.5 

Regarding the prediction of the significance of DDIs, we created anoth-

er six different models using the same datasets DDI-L and DDI-V but 

excluding the non-interacting pairs. As with the results presented 

above, it is not possible to establish a relationship between a set of var-

iables and better models’ performance (Table 3). The two datasets are 

unbalanced and both showed better performance for the majoritarian 

class (minor in DDI-L dataset and major in DDI-V dataset). A larger 

DDI dataset would solve this issue and would allow us to establish 

more significance classes.  

Table 3. Evaluation metrics for significance prediction models in the DDI-L and DDI-V 

datasets for validation instances classified as minor and major DDIs. 

DDI-Lexicomp dataset 

Variables P minor P major R minor R major F1 minor F1 major 

PK/PD 0.821 0.5 0.767 0.583 0.793 0.538 

Enzyme 0.806 0.545 0. 833 0.5 0.82 0.522 

PK/PD + enzyme 0.722 0. 333 0. 867 0.167 0.789 0.222 

 

DDI-Vidal dataset 

Variables P minor P major R minor R major F1 minor F1 major 

PK/PD 0.857 0.882 0.75 0.938 0.8 0.909 

Enzyme 0.25 0.833 0.625 0.938 0.357 0.882 

PK/PD + enzyme 0. 667 0.867 0.75 0.813 0.71 0.839 

Although the best results correspond to the model based on PK/PD var-

iables in the DDI-V dataset, the small number of instances (194 DDIs) 

and the high results suggest that the model might be over-fitted. There-

fore, we believe that the most reliable results correspond to the model 



trained using enzyme variables alone for minor DDIs (F1 82%) and the 

model based on PK/PD properties alone for major DDIs (F1 54%) in 

the DDI-L dataset. The first model is a MLP with 204-16-2 input, hid-

den and output units and hidden and output activation function than. 

The second one is a MLP with 100-13-2 input, hidden and output neu-

rons with exponential and identity hidden and output activation func-

tions. Both models are trained with a BFGS algorithm and use SOS as 

error function. 

4 DISCUSSION AND CONCLUSIONS 

Here, we have described a preliminary analysis for the prediction of 

DDIs and their clinical significance through the creation of machine 

learning models that exploit drug information collected from different 

information sources available on the web. 

Different research groups have applied machine learning for the predic-

tion of DDIs. These projects differ considerably in the original datasets, 

the properties used as input variables, the machine learning methods 

studied and the evaluation of their performance. Thus, a straight com-

parison with our results is difficult and beyond the scope of this project. 

The closest work in terms of evaluation metrics is the prediction of 

DDIs based on a probabilistic approach using PSL, which reported an 

F1 of 67% on a dataset of 4,293 known interactions between 315 drugs. 

This approach outperformed state-of-the-art works for DDI prediction 

that obtained F1 values of 51% and 60% [18]. 

In our case, the ANN models led to F1 of 64% and 59% for the valida-

tion instances in the DDI-L and DDI-V datasets, respectively. We be-

lieve that there is still room for improvement, in part because the en-

zyme properties included in our approach represent only a relatively 

small selection of those likely to lead to DDIs. However, there are 

many different DDI mechanisms not related to metabolic processes 

[11]. Therefore, in our future work we plan to include other drug-

protein relationships – including targets, transporters and carriers – that 

will enable the identification of DDIs occurring by other mechanisms. 

Also, we believe that representation of adverse effects profiles will be 

very useful to identify DDIs due to the addition of side effects [30]. 

The previous approaches rely on unknown DDIs as examples of non-

interacting pairs, which may lead to incorrect predictions and hinder the 

identification of new DDIs. In contrast, we have proposed a new strate-



gy based on the prediction of the significance of known DDIs. Our 

model yielded interesting results, with an F1 of 82% for the best model. 

To the best of our knowledge, this is the first work attempting the pre-

diction of DDI significance. The main limitations are, however, the size 

of the current dataset, the inconsistent information between different 

DDI sources and the frequent missing data for some input variables.  

Automatic methods for knowledge extraction from the web is crucial 

for the creation of a larger dataset of graded DDIs combining consistent 

information from different sources, which will lead to more sophisti-

cated prediction models. 

We believe that further improvements in this area could represent an 

important tool in pharmacovigilance, for example as an initial signal 

detection tool for the editorial boards maintaining and updating current 

DDI compendia.  
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