
Sunday, 6 November 2005

W2: The Semantic Desktop—
Next Generation Information
Management & Collaboration
Infrastructure

Organisers: Stefan
Decker, Jack Park, Dennis
Quan, and Leo Sauermann

ISWC 2005 could not take place without the generous support of the following sponsors

Super Emerald Sponsors

Gold Sponsors

Silver Sponsors

ISWC 2005 Organising Committee

General Chair Mark Musen, Stanford University

Research Track Co-Chair Yolanda Gil, Information Sciences Institute

Research Track Co-Chair Enrico Motta, The Open University

Industrial Track Chair V Richard Benjamins, iSOCO, S.A.

Workshop Chair Natasha F Noy, Stanford University

Tutorial Chair R.V. Guha, Google

Poster & Demo Chair Riichiro Mizoguchi, Osaka University

Semantic Web Challenge Michel Klein, Vrjie Universiteit Amerdam

Semantic Web Challenge Ubbo Visser, Universitat Bremen

Doctoral Symposium Co-Chair Edward Curry, National University of Ireland, Galway

Doctoral Symposium Co-Chair Enda Ridge, University of York

Meta-Data Chair Eric Miller, W3C

Sponsorship Chair Liam O’Móráin, DERI Galway

Local Organising Co-Chair Christoph Bussler, DERI Galway

Local Organising Co-Chair Stefan Decker, DERI Galway

Local Organiser Brian Cummins, DERI Galway

Webmaster Seaghan Moriarty, DERI Galway

Web Design Johannes Breitfuss, DERI Innsbruck

Preface

The Internet, electronic mail, and the Web have revolutionized the way we com-
municate and collaborate - their mass adoption is one of the major technological
success stories of the 20th century. We all are now much more connected, and
in turn face new resulting problems: information overload caused by insufficient
support for information organization and collaboration. For example, sending a
single file to a mailing list multiplies the cognitive processing effort of filtering and
organizing this file times the number of recipients—leading to more and more
of peoples’ time going into information filtering and information management
activities. There is a need for smarter and more fine-grained computer support
for personal and networked information that has to blend the boundaries be-
tween personal and group data, while simultaneously safeguarding privacy and
establishing and deploying trust among collaborators.

The Semantic Web holds promises for information organization and selective
access, providing standard means for formulating and distributing metadata and
Ontologies.

Still, we miss a wide use of Semantic Web technologies on personal computers.
The use of ontologies, metadata annotations, and semantic web protocols on
desktop computers will allow the integration of desktop applications and the web,
enabling a much more focused and integrated personal information management
as well as focused information distribution and collaboration on the Web beyond
sending emails. The vision of the Semantic Desktop for personal information
management and collaboration has been around for a long time: visionaries like
Vanevar Bush and Doug Engelbart have formulated and partially realized these
ideas. However, for the largest part their ideas remained a vision for far too long
since the foundational technologies necessary to render their ideas into reality
were not yet invented—these ideas were proposing jet planes, where the rest
of the world had just invented the parts to build a bicycle. However, recently
the computer science community has developed the means to make this vision a
reality:

– The Semantic Web effort1 provides standards and technologies for the defi-
nition and exchange of metadata and ontologies.

– Open-source software (such as OpenOffice) make it possible to reuse and
build on top of existing sophisticated systems.

– Collaboration, acquisition and dissemination infrastructures such as Wikis
and Blogs are providing the foundation for joint collaborative knowledge
creation

– Social Software maps the social connections between different people into
the technical infrastructure.

1 http://www.w3.org/sw

– P2P and Grid computing, especially in combination with the Semantic Web
field, develops technology to interconnect large communities.

The application of the mentioned technologies, especially in combination with
the Semantic Web, to the desktop computer in order to improve personal in-
formation management and collaboration was the main topic of this workshop.
Several systems have been created already to explore this field, e.g., the Haystack
system at MIT, the Gnowsis system at DFKI, or the Chandler system by the
OSA foundation. The main focus of this workshop was on providing an overview
of existing approaches and elaborating the next steps necessary in order to bring
the Semantic Web to the desktop computer.

These workshop proceedings contain the papers submitted to and presented
at the workshop. The high number of submissions reflected substantial inter-
est and activity in this area. Special thanks go to the program committee and
reviewers, for their efforts and hard work in the reviewing and selection process.

Kaiserslautern, October 2005 Stefan Decker
Jack Park

Dennis Quan
Leo Sauermann

Workshop Chairs

Stefan Decker (DERI, National University of Ireland, Galway)
Jack Park (SRI International, Menlo Park, USA)
Dennis Quan (IBM, T.J. Watson Research Center, USA)
Leo Sauermann (DFKI, Kaiserslautern, Germany)

Program Comittee

Andreas Abecker (FZI, Karlsruhe, Germany)
Dan Brickley (W3C, Sophia Antipolis, France)
Jeen Broekstra (Aduna BV, Netherlands)
Pat Croke (Hewlett Packard, Galway, Ireland)
Isabel Cruz (University of Illinois at Chicago, USA)
Hamish Cunningham (University of Sheffield, UK)
Doug Engelbart (Bootstrap Institute, USA)
Dirk-Willem van Gulik (Apache Foundation, Netherlands)
Manfred Hauswirth (EPFL, Switzerland)
Malte Kiesel (DFKI, Germany)
Stéphane Laurière (Mandriva, France)
Gregoris Mentzas (National Technical University of Athens, Greece)
Peter Mika (Vrije Universiteit Amsterdam)
Wolfgang Nejdl (L3S, Hannover)
David O’Sullivan (DERI, NUIG, Ireland)
Simon Phipps (Sun, UK, USA)
Wolfgang Prinz (Fraunhofer and RWTH Aachen, Germany)
Gerald Reif (TU Vienna, Austria)
Thomas R. Roth-Berghofer (TU Kaiserslautern/DFKI, Germany)
Daniel Schwabe (PUC Rio, Brasil)
David Schwartz (Bar Ilan University, Israel)
Michael Sintek (DFKI, Germany)
Heiner Stuckenschmidt (Free University of Amsterdam, The Netherlands)
Giovanni Tummarello (Universita’ Politecnica delle Marche, Italy)

Table of Contents

Introduction
Overview and Outlook on the Semantic Desktop page 1
Leo Sauermann, Ansgar Bernardi, Andreas Dengel
(18 pages)

Papers
A Multi-Ontology Approach for Personal Information Management page 19
Huiyong Xiao and Isabel F. Cruz
(15 pages)

DocuWorld — A 3D User Interface to the Semantic Desktop page 34
Katja Einsfeld, Achim Ebert, Stefan Agne, and Bertin Klein
(15 pages)

Human and Social Aspects of Decentralized Knowledge Communities page 49
Indratmo and Julita Vassileva
(15 pages)

IRIS: Integrate. Relate. Infer. Share. page 64
Adam Cheyer, Jack Park, Richard Giuli
(15 pages)

Harvesting Desktop Data for Semantic Blogging page 79
Knud Möller and Stefan Decker
(13 pages)

Semantically Enhanced Searching and Ranking on the Desktop page 92
Paul - Alexandru Chirita, Stefania Ghita, Wolfgang Nejdl,
and Raluca Paiu
(15 pages)

SemperWiki: a semantic personal Wiki page 107
Eyal Oren
(16 pages)

Short Talks
End-User Application Development for the Semantic Web page 123
Karun Bakshi and David R. Karger
(5 pages)

Engineering a Semantic Desktop for Building Historians and Architects page 138
Rene Witte, Petra Gerlach, Markus Joachim, Thomas Kappler, Ralf
Krestel, and Praharshana Perera
(15 pages)

Lessons for the future of Semantic Desktops learnt from 10 years
of experience with the IDELIANCE Semantic Networks Manager page 153
Jean Rohmer
(6 pages)

Nabu – A Semantic Archive for XMPP Instant Messaging page 159
Frank Osterfeld, Malte Kiesel, Sven Schwarz
(8 pages)

SAM: Semantics Aware Instant Messaging for the Networked Semantic Desktop page 167
Thomas Franz and Steffen Staab
(15 pages)

Semantic Social Collaborative Filtering with FOAFRealm page 182
Sebastian Ryszard Kruk, Stefan Decker
(15 pages)

Task Specific Semantic Views: Extracting and Integrating
Contextual Metadata from the Web page 197
Stefania Ghita, Nicola Henze, Wolfgang Nejdl
(15 pages)

Towards a Semantic Wiki Experience – Desktop Integration
and Interactivity in WikSAR page 212
David Aumueller
(6 pages)

Posters
An activity based data model for desktop querying page 218
Sibel Adalı and Maria Luisa Sapino
(5 pages)

OntoPIM: how to rely on a personal ontology for
Personal Information Management page 223
Vivi Katifori, Antonella Poggi, Monica Scannapieco, Tiziana Catarci,
and Yannis Ioannidis
(5 pages)

A Web Information Retrieval System Architecture Based on Semantic MyPortal page 228
Haibo Yu, Tsunenori Mine, and Makoto Amamiya
(5 pages)

Authoring and annotation of desktop files in seMouse page 233
Oscar Díaz, Jon Iturrioz, Sergio F. Anzuola
(5 pages)

Context as a Foundation for a Semantic Desktop page 238
Tom Heath, Enrico Motta, Martin Dzbor
(5 pages)

DeepaMehta – A Semantic Desktop page 243
Jörg Richter, Max Völkel, Heiko Haller
(5 pages)

How to build a Snippet Manager page 248
Steve Cayzer, Paolo Castagna
(5 pages)

HyperSD: a Semantic Desktop as a Semantic Web Application page 253
Daniel Schwabe, Daniela Brauner, Demetrius A. Nunes, Guilherme
Mamede
(5 pages)

Keywords and RDF Fragments: Integrating Metadata and Full-Text Search
in Beagle++ page 258
Tereza Iofciu, Christian Kohlschütter, Wolfgang Nejdl, Raluca Paiu
(5 pages)

Pen-based Acquisition of Real World Annotations for
Document Information Spaces page 263
Markus Stäudel, Bertin Klein, and Stefan Agne
(5 pages)

Semantic Pen - A Personal Information Management System for
Pen Based Devices page 268
Nilesh Patel and Akila Varadarajan
(6 pages)

Semantics-based Publication Management using RSS and FOAF page 274
Peter Mika, Michel Klein, and Radu Serban
(2 pages)

Smarter Groups – Reasoning on Qualitative Information from Your Desktop page 276
Sebastian Böhm, Marko Luther, and Matthias Wagner
(5 pages)

WonderDesk – A Semantic Desktop for Resource Sharing and Management page 281
Xiang Zhang, Wennan Shen, Yuzhong Qu
(5 pages)

Overview and Outlook on the Semantic Desktop

Leo Sauermann, Ansgar Bernardi, Andreas Dengel

Knowledge Management Department
German Research Center for Artificial Intelligence DFKI GmbH,
Erwin-Schr̈odinger-Straße 57, 67663 Kaiserslautern, Germany

{leo.sauermann|ansgar.bernardi|andreas.dengel }@dfki.de

Abstract. In this paper we will give an overview of the Semantic Desktop par-
adigm, beginning with the history of the term, a definition, current work and its
relevance to knowledge management of the future. Existing applications and re-
search results are listed and their role as building blocks of the future Semantic
Desktop described. Based on the analysis of existing systems we propose two
software architecture paradigms, one for the Semantic Desktop at large and an-
other for applications running on a Semantic Desktop. A view on the context
aspect of the Semantic Desktop and the Knowledge Management aspect is given.
Based on the current events and projects, we give an outlook on the next steps.

1 Introduction

The Semantic Desktop will be the driving paradigm for desktop computing in the area
of the Semantic Web. Based on the needs and expectations of users today the software
industry will evolve to a future way of computing, semantic desktop computing.

The main task at hand is totransfer the Semantic Web to desktop computers,
and this transfer will not only consist of the technology, but also of the philosophy and
the people involved. Developers that today concentrate on services for the Semantic
Web (and find tools and examples) will need a complete RDF and ontology based envi-
ronment to create applications on desktop computers. End users will benefit from these
applications, as they integrate and also communicate better—based on ontologies and
Semantic Web standards—than today’s desktop applications.

1.1 The background and goals of the Semantic Desktop community

In 1945, Vannevar Bush wrote the now famous article “As we may think” [1], where
he described the visionary system called “Memex”. The definition that he gave was
important for many systems to follow:

Consider a future device for individual use, which is a sort of mechanized pri-
vate file and library. It needs a name, and, to coin one at random, “memex” will
do. A memex is a device in which an individual stores all his books, records,
and communications, and which is mechanized so that it may be consulted
with exceeding speed and flexibility. It is an enlarged intimate supplement to
his memory.

1

Bush based his ideas solely on analog devices, running on punch cards and using
microfilm as storage. Today we notice how his vision becomes reality, the personal
computer is very close to what Bush had in mind. Not all books and records are stored
in a PC, but we are close to it. The idea oftrails—paths of resources that build a per-
sonal look on a topic—were taken up by system like lifestreams [2]. Still, there is work
left to create theintimate supplement to memory- in 1960, Ted Nelson described a sys-
tem calledXanaduin his article “As We Will Think” [3]. Xanadu is a predecessor of
hyperlink systems, the core idea was to link information items and, in a second phase,
make them tradeable as a basis of information society. Nelson also coined the term
“Hypertext”. Although different implementations and prototypes of the Memex were
built, it never ignited the revolution that was intended by Nelson. In 1992 the World
Wide Web launched, created by Tim Berners-Lee. The Web grew at a very fast rate and
changed society; information is used in a different way than in the pre-web era. Before
the web lifted off, Berners-Lee programmed theEnquire-Within-Upon-Everythingsys-
tem.Enquirewas a personal information management tool to store information about
people, projects, hardware resources and how they relate to each other. It was created
out of a certain need:

What I was looking for fell under the general category of documentation sys-
tems – software that allows documents to be stored and later retrieved. This
was a dubious arena, however. I had seen numerous developers arrive at CERN
to tout systems that “helped” people organize information. They’d say, “To use
this system all you have to do is divide all your documents into four categories”
or “You just have to save your data as a Word Wonderful document” or what-
ever. I saw one protagonist after the next shot down in flames by indignant
researchers because the developers were forcing them to reorganize their work
to fit the system.[4, p. 17]

These were the requirements that led to a distributed version of Enquire that we
know today as the World Wide Web [5]. The interesting fact is, that the Web had its
revolution in the distributed world but the topic of personal information management
remained the same. The field of “documentation systems” is still a vivid arena with
many competing companies. The problem of metadata and labeled links was identified
and is now tackled by the Semantic Web Initiative [6].

1.2 Today’s state of the Semantic Desktop idea

In 2003, facing the fact that the Semantic Web was not universally used, we analyzed the
field and found that the major projects aimed at large and distributed organizations, but
the end user was only supported by Haystack or Protege, which both were complicated.
Nearly all information we saw on web pages and in electronic documents had been
created by people using personal computers. The PC was the place where most personal
data is stored and the major interface to the web. Information stored on a server was
usually manipulated through interfaces that are executed on a PC, be it a web browser
or web authoring tool. The use of ontologies, classifications and global identifiers in
normal desktop applications did not happen. Tim Berners-Lee also realized that the

2

end user applications were missing and requested in several talks that we start building
useful applications. From this perspective we stated [7]:If the goal is to have a global
Semantic Web, one building block is a Semantic Desktop, a Web for a single user.

The term “Semantic Desktop” itself was coined by Stefan Decker and picked up
by Leo Sauermann in 2003, to create a term that creates a mutual understanding for
the similar ideas. Stefan Decker and Martin Frank stated the need for a “Networked
Semantic Desktop” [8] in 2004 and sketched the way to the events today. Decker recog-
nized that several new technologies had emerged which could dramatically impact how
people interact and collaborate: The Semantic Web, P2P computing, and online social
networking. He presented a vision of how these different thrusts will evolve and produce
the Networked Semantic Desktop, which“enables people and communities to directly
collaborate with their peers while dramatically reducing the amount of time they spend
filtering and filing information”. His roadmap to theNetworked Semantic Desktopis
laid out as follows: [8]

– In a first phase, Semantic Web, P2P, and social networking technologies are devel-
oped and deployed widely.

– In the second phase, a convergence between the existing technologies brings Se-
mantic Web technology on the desktop leading to the Semantic Desktop. In par-
allel, Semantic Web and P2P are incorporated and lead to Semantic P2P. Social
networking and Semantic Web lead to ontology driven social networking.

– In a third phase, the social, desktop and P2P technology fully merge to aSocial
Semantic Desktop.

Based on the previous publications [8, 7, 9] we could define a Semantic Desktop in the
following way:

Definition 1. A Semantic Desktop is a device in which an individual stores all her dig-
ital information like documents, multimedia and messages. These are interpreted as
Semantic Web resources, each is identified by a Uniform Resource Identifier (URI) and
all data is accessible and queryable as RDF graph. Resources from the web can be
stored and authored content can be shared with others. Ontologies allow the user to ex-
press personal mental models and form the semantic glue interconnecting information
and systems. Applications respect this and store, read and communicate via ontologies
and Semantic Web protocols. The Semantic Desktop is an enlarged supplement to the
user’s memory.

1.3 The near future

From our point of view, we have achieved most of the goals of the first phase and are
currently in the second phase. Our task is now to weave the existing and stable parts of
the Semantic Web into desktop computing, P2P, and Social Networking. In this paper
we will address the aspects of a single Semantic Desktop system, the role of a Semantic
Desktop in a networked environment was already addressed by Decker et al. [8]. The
Semantic Desktop is a global project involving researchers and industry from different
technical fields.

3

To create a focal point for the Semantic Desktop, the European IST Project NEPO-
MUK was initiated by a consortium lead by the DFKI. Bringing together researcher
partners from NUI Galway, EPFL Lausanne, DFKI Kaiserslautern, FZI Karlsruhe, L3S
Hannover and ICCS-NTUA Athens with practitioners from companies like HP, IBM,
SAP, Mandriva, Thales, PRC Group and others, this project will build a community of
experts. NEPOMUK bundles academic, industrial and open source community efforts
to create a new technical and methodological platform: theSocial Semantic Desktop.
It enables users to build, maintain, and employ inter-workspace relations in large scale
distributed scenarios. New knowledge can be articulated in semantic structures and be
connected with existing information items on the local and remote desktops. Knowl-
edge, information items, and their metadata can be shared spontaneously without a cen-
tral infrastructure. NEPOMUK will realize a freely available open-source integration
framework with a set of standardized interfaces, ontologies and applications. Collabo-
ration with the open source community and integration with major open source products
is intended and will ensure the broad acceptance of NEPOMUK technology—thereby
activating a sustainable open source movement with viral spread-out. A number of case
studies apply, adapt, and test NEPOMUK’s solutions in various knowledge-work sce-
narios. NEPOMUK’s standardized plug-in architecture combined with usage experi-
ences opens up manifold business opportunities for new generic or domain-specific
products and services. Using the methodology that spread the World Wide Web –open
standards, open source reference implementations and continuing communication with
the global developer community(as described in [4]) – the Semantic Desktop commu-
nity at large will gain momentum through this project.

2 Semantic Desktop building blocks

To provide such a system to end users, a few prerequisites are required. In this section
we start describing research projects that address the topic of an integrated Semantic
Desktop and then we give examples of tools that are available today as building blocks
for the future Semantic Desktop. An outlook will be given on the features users can
expect and the relevance to personal knowledge management.

2.1 Integrated projects

The first research project using the term was theGnowsis Semantic Desktop[7] by Leo
Sauermann, co-author of this paper. The work was a diploma thesis and deals with the
details of integrating desktop data sources into a unified RDF graph, also addressing
the problem of how to identify resources with URIs. You will find an introduction to
the field in this work and a prototypical user interface, introducing the terms “link and
browse” as a desktop metaphor. The project is now continued both as an open-source
project and is reused framework for other research projects, namelyEPOS[10] and
@Visor.

Similar to the gnowsis work, but on the web-services world is theSECO: media-
tion services for semantic Web dataproject aiming at integrating web sources [11]. It

4

describes an infrastructure that lets agents uniformly access data that is potentially scat-
tered across the Web. The results can be transformed to the desktop, as we have done in
another paper submitted to ISWC [12]. In the field of data integration, also the architec-
ture by Bizer and Seaborne [13] about adapting SQL sources should be mentioned. A
product by the Microsoft corporation calledInformation Bridge Framework[14] aims
in the same direction for conventional data sources: they can be included into office
documents via so calledSmartTags. The framework implements a client–server based
approach, the server provides a metadata service that integrated several enterprise web
services and other data sources (like CRM systems). The client can be normal office ap-
plications, that are extended by plugins: a client gathers current context and keywords
from open documents and loads related information from the server.

A view on the Semantic Desktop was given by Stefan Decker and Martin Frank in
2004, their paper called “The social semantic desktop” [8]. It focuses on the technology
threads that are available and have to be combined to create the Semantic Desktop. The
need for the system and the solutions it will provide are outlined. A possible roadmap
is drawn, as mentioned above.

A major research project concerning an integrated approach in our field is the
Haystacksystem by Quan et al. [15] from the MIT Computer Science and Artificial
Intelligence Laboratory. It is an integrated approach to let an individual manage her
information in a way that makes the most sense to her. It is a replacement for many ap-
plications including word-processors, email clients, image manipulation, instant mes-
saging and other functionality. They provide a complete semantic programming en-
vironment, from user interface to database. One disadvantage was that the prototype
system had performance problems in 2003. These have been identified and addressed
in the upcomingHayloft project.

MyLifeBitsby Microsoft Research is a lifetime store of multimedia data, based on
the assumption that all information a single person reads and hears can soon be stored
on a portable device. Every day a person consumes audio, video, text and other media.
If a hypothetical disk of one terabyte per year is available, it would be possible to store
all this multimedia on it. The MyLifeBits paper describes a concept how to manage this
huge amount of media, how to classify and retrieve the data [16].

Ontoofficeby ontoprise—a corporation close to semantic web research—is a desk-
top product that brings together the contents of a semantic web server and Microsoft
Office applications. The scenarios are similar to those of SmartTags and the Informa-
tion Bridge Framework.

From theopen source scene, several projects are aiming at a semantic desktop
environment, one such a project isChandlermanaged by the osa-foundation and lead
by Mitch Kapor (who designed Lotus Agenda). It is a Personal Information Manager
(PIM) intended for tasks like composing and reading email, managing an appointment
calendar and keeping a contact list. It simplifies information sharing with others, and
calls itself anInterpersonal Information Manager.

The Fenfire [17] project is at an earlier stage, dealing with the problem of visual-
ising and editing RDF graphs in a uniform way. It is a completely based on RDF and
implements various user interface metaphors. Parts of the system are published, others
are kept closed because of patent issues.

5

Another approach was taken by Joe Geldart in his bachelor thesis about thefrege
system [18]. He describes a minimal implementation of an RDF desktop communi-
cation framework on which a few example applications are implemented. The thesis
tackles the core ideas and finds a minimal and efficient solution.

From these numerous examples, which only give starting points for the interested
reader, we see that the field of the Semantic Desktop is already advanced and that dif-
ferent – sometimes competitive, other times complementary – approaches exist.

2.2 Tools

The active community produced a variety of tools that are used in the projects or that
are end user applications. We will now categorize these tools based on a scheme similar
to one developed for [19] and build a table that gives and overview, see table 1. Two
main categories are assumed—first are thegrounding technologies, the basic building
blocks of system technologies and Semantic Web technologies. Second areinformation
interaction tools providing users with interfaces to author and browse information. A
third category areontologiesand ontology related tools.

The grounding technologies consist of storage, search and communication facilities.
Storage and search are repositories that hold RDF and ontology data in a persistent way
and to allow semantic search or fulltext search on the data. Known projects here are
Jena[20], Kowari [21], RDF Gateway[22], or Sesame[23]. The support for full-text
search is sometimes a feature of the repositories, if not it can be implemented through
projects likeApache Lucene. For the Semantic Desktop we face several problems with
repositories. First, multiple incompatible interfaces are implemented by the systems;
therefore state that we need standardized interfaces for storage servers. The upcom-
ing SPARQL standard [24, 25] will provide us with these. Although these repositories
are in common use, they are far away from perfection. A description of problems with
performance and ease of use can be found in the YARS project description by Harth
et al. [26]; they tested the read and write performance of common open source RDF
repositories and found major deficiencies. One store was not installable at all.Commu-
nication technologyneeded to receive and send messages is today provided by e-mail,
instant messaging and peer-to-peer systems. It is possible to use these technologies to
send semantic messages, as shown in [27] for semantic email or for the Jabber protocol
(a standard for instant messaging) in theNabuproject [28], a semantically enhanced
Jabber server. On the Semantic Desktop, these existing communication ways will be
used to send semantic messages.

The shown storage, search and communication technologies will be used to store
and communicate data that is expressed usingontologies. Users will work with several
ontologies and the information expressed in these ontologies will come from heteroge-
nous sources. A crucial factor will be the integration of ontologies by ontology map-
ping. Common ontologies we find on desktop computers today are Dublin Core, FOAF,
iCalendar and more. We expect that through diversification and selection (an evolution-
ary, community process) a combination of many popular ontologies will be used on the
future Semantic Desktop.

The user experience will be determined byinformation interactionsoftware. Com-
mon applications here are ontology editors, domain specific applications, browsers and

6

personal knowledge management tools.Protéǵe by Stanford Medical Informatics is a
popular ontology editor,PhotoStuffby the Mindswap group is a photo annotation tool.
Tidepoolis another photo editing tool, with a commercial background; together with
the websiteStorymill.comusers can annotate and publish photos. The many RSS read-
ers that are available today can be seen as domain specific applications—they focus
on news and information syndication. On the personal information management side,
we findMicrosoft Outlookor Lotus Notesin many companies. Another good example is
FRODO Taskman [29] which realizes a fully RDF based semantic workflow engine. We
expect semantic personal knowledge management tools in the future, that can integrate
heterogenous sources taken from the Semantic Desktop.

3 How to build a Semantic Desktop

In this section we will describe how the parts for a Semantic Desktop can be assem-
bled together and what new features have to be implemented. Starting with the new
requirements that come with the Semantic Desktop and how these requirements can be
fulfilled, we then move on to well known features that are already implemented. But
before we go into details, we have to step back and take a look at the way people think
and express their mental models, so that we understand how the Semantic Desktop can
support this.

3.1 Respect personal mental models

Because we do not perceive our environment as a continuum without any intrinsic
boundaries, we categorize documents as belonging to named classes with certain in-
herent properties. We can verify this by an experiment where a number of persons
should categorize a new computer science book or journal article into, e.g., the ACM
Computing Classification System (CCS) [30].

Now, let us transfer this idea to the Semantic Desktop where we generate, receive
and organize documents. Because of the nature of our brain to classify and store (and
perhaps ahunter-gatherermentality), we populate our workspace (and websites, cor-
porate fileshares, etc.) with documents needed to satisfy the daily requirements of our
work. This leads to the thesis that all documents which are available on our individ-
ual workstation are somehow related to ourindividual background , to the ongoing
tasks and running processes we are involved, or to our personal interests. Further, the
documents capture information about concepts we make of the world: persons, places,
projects, topics, etc. These concepts are highly subjective but can be expressed using
basic application features like the filesystem’s folder structure or enhanced formaliza-
tions like OWL ontologies or taxonomies. Documents can be classified using these
structures, manually by the user who decides how to classify a document at hand by
reading it, understanding it and correlating it to a mental model or automated by us-
ing text classifying engines like “brainfiler” [31, 32] or GATE [33]. Hence there exists
an interaction between mental models and formal ontologies, mental models find their
match in the formal, symbolic representation of ontologies.

7

Although the directories at individual workspaces are highly subjective, we take
into consideration that collaborators usually have acommon background. In [34] it is
shown how a shared background and an awareness of a coworker’s activities and mental
states contribute to establishing and maintaining communication. This common back-
ground has to be expressed using a formalization that addresses the similarities among
participating collaborators. If the participants work in a similar topic, then the common
background of ie “biology” may be available in a public ontology, expressed by domain
experts, preferably formalized in OWL. Using them allows a sender to describe a mes-
sage in a category that the receiver will understand, because the same category exists
on both computers.

Hence the individual background is expressed using personal mental models, ex-
pressed aspersonal concepts; and the common background is represented bycommon
ontologies. Both are formalized in RDF and preferably OWL and are used by the desk-
top application.

When people use computers to write down information, this information is never
new. It is always created in a certain context, the individual and common background.
As it is a mixture of existing information and a few new ideas, the Semantic Desktop
should provide an environment where users can express new ideas and easily (prefer-
ably automatically) connect it to both personal concepts and common ontologies. We
can call the background information that lead to the creation of the information resource
X thecontext of the resourceX. Respecting thecontext of a resourceis a key feature
of the Semantic Desktop. What is the user doing, what was the user doing in the last
hour, day, year; what are topics relevant to the peers and the company of the user; and
much more can be used to capture this context.

We also see that thecontext may switch: while most of the work of a user is around
topicX (for example a project) there may be a certain time during the day (for example
around noon) when the user switches to another contextY (that may be: what am I
going to eat?). These context switches have to be detected and can be used. The goal
of this proactive, context-sensitive assistance is that the user can keep on working as
usual and the machine observes the actions of the user, automatically clustering and
structuring the information at hand. Then, the system becomes a supplement to the
memory of the user by doing some of the knowledge management work. Another aspect
is, that the context capturing and context use is application independent. The problem
Tim Berners-Lee describes should now be solved: “I saw one protagonist after the next
shot down in flames by indignant researchers because the developers were forcing them
to reorganize their work to fit the system” [4]. The Semantic Desktop is application-
independent. The software doesn’t force the user to adapt and instead adapts to the user
and not only that—it also adapts to other software employed by the user.

Respecting the personal mental models can be summarized as:do not assume one
application alone representing the ideas of the user, but manage the personal con-
cepts of the user in cooperation with other applications.

3.2 Context and user observation solutions

The main challenge for context representation and reuse of context is the definition
of a context model ontology for the personal knowledge management domain. In [35]

8

Schwarz explains a pro-active, context-sensitive assistance system to aid the user during
her knowledge work, which is mostly about searching, reading, creating, and archiving
of documents. This system was built as a research prototype in the EPOS project. Focus
was to avoid distracting the user, therefore context gathering is realized by installable
user observation plugins for standard applications such as Mozilla Firefox and Thun-
derbird.

The group around Wolfgang Nejdl published a paper on “Activity Based Metadata
for Semantic Desktop Search” by Chirita et al. [36] describing a detailed ontology to
represent the contextual information about several user activities, tested in a prototyp-
ical implementation. Relevant to context are e-mails and the way attachments are han-
dled, the file hierarchy and how it resembles the users view of the world and the web
browsing behavior of users. They propose an architecture to capture these contextual
elements by metadata generators. The benefit for the user is that the context is used to
enrich search results in desktop search. A practical implementation of this and other
ideas is shown in theBeagle++prototype.

Another approach currently under evaluation at the DFKI in the eFisk project [37],[38]
is to capture the reading behavior of the user with an eye-tracker. Using this technol-
ogy, it is possible to capture on which parts of the screen the user is looking for how
long. Combined with the currently displayed text, the system can recognize that the
user looked a certain amount of time at a certain text. So we can assume that the text
has been read and set metadata to value this text higher – during searching, we can rank
read passages higher. This adds more information to the personal mental model of the
user.

There are more projects aiming at capturing context information and representing
it. We expect to see a common ontology for context information in the next years, that
could connect these different approaches.

3.3 Searching the Semantic Desktop

Barreau and Nardi [39] analyzed the searching behavior on desktop computers in 1995
and identified two different search strategies when users are looking for information that
is stored on their desktop computers: first, a path search is done, looking into folders
and directories that could contain the document. If the path search does not succeed,
fulltext search strategies are used. Today, desktop search engines are a major market
and tools likeGoogle Desktop, Apple Spotlight, Yahoo! Desktop Searchor Microsoft
Windows Desktop Searchare products in a competitive market. The features provided
in these free tools are satisfying to most users but far behind what is state of the art
in commercial tools likeAutonomyor Converado on a company level and what is
proposed in current research papers.

We expect that sophisticated information retrieval techniques will find their way to
the Semantic Desktop. In fig. 1 we show a few technologies that are expected to be
available. Starting from today’s fulltext search on the top-left we identify three direc-
tions towards Semantic Desktop search. In dark grey, to the top-right, text based tech-
nologies are listed. In light grey, to the lower-left, we see semantic technologies that
benefit from metadata and explicit links between information items. These approaches
are developed by Nejdl et al. [36, 40] and other researchers. Central are ontologies and

9

Fig. 1.Toward Semantic Desktop Search

context based approaches. In the figure we list some examples how to improve desktop
search, but there are surely more ideas that contribute to the field. We intentionally left
one field blank to represent the missing ideas. At the end, the combination of the listed
technologies will improve the way users search, find, and experience information.

3.4 User interface

Looking at the building blocks mentioned above, we find similarities in the users inter-
faces and in the architecture that the software is build upon. We abstract now from the
concrete examples and describe patterns we found in the user interfaces and architec-
tures that are used today.

A typical interaction sequence in such an application is as follows:

– User searches and finds the information of interest using search services or by open-
ing known resources via a path and confirms to edit/view it.

– Remote or local repository is contacted for the data. It usually drills down to one
RDF graph and one current resource to view and edit.

– Additional data from ontologies is loaded to understand the data. Inference engines
are used to augment the loaded information.

– Related information is gathered, using the loaded graph and the current resource as
a starting point. Related information comes from remote and local repositories. On-
tologies, thesauri, text similarity, and context are used to find related information.

– User browses information and makes decisions. New facts are entered and the per-
sonal mental model changes.

– User stores changed information to a local or remote repository

This program workflow itself is simple, and simplicity is a key feature of useful soft-
ware. Systems that went beyond the simple workflow faced problems of complexity. For
example, thegnowsissystem started as a mixture of database, inference engine, user in-
terface, and data integration architecture. The high goals of gnowsis lead to a complex
architecture and performance problems which again forced us to refactor the project and
split it into reusable components (a process that is not finished yet).Haystackalso con-
sists of database, user interface and domain specific (email, instant messaging, picture
editing) functions.Haystackoffers useful features and is a well administered project,

10

but the demands on computing power, memory and disk storage are high. Also, users
faced with such complex systems need a long training time to understand the system
and benefit from them.

Protéǵe gives an example of a clean architecture: provide a fast, extensible user
interface for ontology editing and leave storage and inference to plugins and external
services.

The following description gives a rough image what a typical Semantic Desktop
application of today looks like. We expect totally new interaction models for the future
that extend this model, as already the example applications extend the model in different
ways. Visual examples are given in fig. 3. As a reference we took these applications:
Mindraider, Gnowsis, Aduna Autofocus, Haystack, PhotoStuff, Protéǵe, Personal Brain
(thebrain.com), Windows Vista.

Fig. 2.a typical Semantic Desktop application user interface

We propose that the core parts of a user interface and application for information
interaction are (see figure 2):

– An adress bar comparable to that of a web browser, where the user can easily
enter the URI of the resource she wants to edit. Optionally, the address bar may
also contain the address of a model/RDF graph that is currently edited.

– A single fulltext search field allowing searching for a resource like it is provided
in Aduna Autofocus. Users expect that a plain text search field allow then to search
on all possible resources and will, according to Nielsen [41], also demand such a
search field.

– An visual area representing thecurrently selected resource. This is usually the
center component and receives the focus of the user during editing. Visual feedback
(color, font, etc.) about the currently selected resource is needed here.

– An area to add and changeannotationsof the currently selected resource. It may be
part of the last point or a separate editor window. Such a component can be found,

11

e.g., in gnowsis or mindraider and will be provided in windows vista. Possible
metaphors for it are wiki-like editors or forms.

– Additionalrelationsof the current resource are also part of the user interface. These
relations are often inferred based on factors like text similarity, related time or ex-
plicit links. Examples are given in mindraider, gnowsis, haystack or personal brain.
They can help to ensure that all kind of information about a single resource can be
presented to the user within a single window.

– An embeddedontology browser is also required. Respect that the ontologies are
shared between applications and show the both thepersonal conceptsand thecom-
mon ontologies(as mentioned above). Users need the ability to relate the currently
selected resource to the ontologies.

Because this kind of application would be monopolizing the user’s attention, e.g.
like an email programm, it would be best used in full screen mode. That leads to the
conclusion that it has to be a sovereign posture program [42]. This is also enforced by
the fact that such an application would be used very often and therefore dominates the
users attention as a primary tool. The fact of having an sovereign posture points out
that a semantic desktop application has to be designed for optimal use by perpetual
intermediates (see axiom in [42, chapter 8]).

For future Semantic Applications, users will expect that the experience is similar to
existing applications. An overview of existing applications is given in Figure 3. Based
on the expectations of users we recommend:when building Semantic Desktop applica-
tions, design the user experience in a way that can be recognized and understood by the
users of today.

3.5 Architecture of a Semantic Desktop application

Under the hood, we also find similarities in existing applications and generalize now to
give the reader an insight to how today’s applications are built. Separating user interface
from database is a rule of thumb that can always help, the model–view–controller design
pattern is also common. For Semantic Desktop applications, we find that a common
pattern is to focus on the editing of a single resource, one after another, and support
the usual actions of loading a file, editing it and storing it. In the semantic web, where
the notion of files slowly shifts to the notion of RDF graphs, we propose an architecture
that focuses on the editing of these graphs and resources inside graphs. The architecture,
illustrated in 4, is aligned at the model-view-controller pattern:

– The model to show and manipulate is one RDF graph. It can be loaded from a
local or remote repository and can also be stored remote or locally. Ontologies and
related information are also models, but they are usually secondary data and seldom
changed.

– Thecontroller is application logic that is described using inference rules or program
code. It is highly domain specific.

– The view (user interface) is already described above Fig. 2. It is also domain spe-
cific but conforms to common patterns.

12

Fig. 3.Examples of existing user interfaces

3.6 Semantic Desktop enabling framework

To build information interaction applications which support above features, a basis ar-
chitecture should be put in place. The diverse applications will need centralized ser-
vices, so that not every application has to re-implement the wheel. These services will
be part of aframework that runs as an invisible background server on a Semantic
Desktop. Because they allow us to build user interfaces faster, we call themenabling.

Hence what services are elemental to a Semantic Desktop? This question is our
concern in thegnowsis.orgproject, which serves as a prototype and test-bed for fu-
ture applications. A few services are common technology today, the more complicated
services are described below.

central RDF repository Even if the architectures differ – a central RDF repository is
always there.

central search on the repository and documents a fulltext search and semantic (ontol-
ogy aware) search service is needed

adapters It is agreed that existing data sources and applications have to be integrated.
A detailed discussion on adapters can be found in [12].

ontologies The basis for information articulation and communication are common on-
tologies, their formal representation needs to be accessible to run inference and
adapt user interfaces. We recommend to separate ontologies and make them avail-
able through dedicated services, so that developers clearly know what RDF graphs
to use when the question comes to ontologies.

13

Fig. 4.A typical Semantic Desktop application architecture

context capture The quoted research projects suggest to observe the user behavior and
user background via plugins to applications and the operating system. The plugins
then report the actions relevant for the context to a service that stores the context
and makes it available for other applications [35, 36].

pluggable architecture Service discovery and communication in the large are tasks
tackled in the SWWS project1. Simpler structures can be used on the desktop sug-
gested in [18].

These core capabilities are more or less available today. The next step will be to
standardize their interfaces and provide stable implementations. The more difficult fea-
tures (context and workflow) are still open but we expect to define the needed interfaces
in the upcoming NEPOMUK project.

3.7 Merging the blocks—a Semantic Desktop

Above listing of existing and future developments leads to a description of an integrated
system—the Semantic Desktop.

In Figure 5 an overview is given on how the building blocks of a Semantic Desktop
work together. It is an evolution of the gnowsis architecture as described in [7]. The
Semantic Desktop grows on a ground of data and information, the information is stored
invisible to the user, in a database system or a RDF repository. The Semantic Desktop
itself can now be seen as a tree – the roots of this tree are the stored information items
and ontologies, invisible, under the surface, stored in semantic storage systems. Here
we also find “grounding technology”. Above the soil are the applications visible to the
user. They are independent from the tree but can use the tree to access the information in

1 http://swws.semanticweb.org/

14

Fig. 5.Parts of a Semantic Desktop

the soil. The trunk of the tree, where it surfaces, consist of semantic web protocols and a
server that gives access to the semantic services underneath. On this trunk, the branches
and leaves grow,information articulation and browsingsoftware. Applications can also
connect to the tree and pick its fruits – use the information existing in the ground.

4 Summary and Outlook

The field we call today “Semantic Desktop” is both old (memex, hypertext systems and
the web) and new (first publication with the term - 2003). A brief historical abstract
was given, listing the projects and publications that form this field. The core idea is
to bring Semantic Web technologies to the desktop, enabling people to use their desk-
top computers like a personal semantic web, where applications integrate and ideas
are connected through ontologies. This idea was already addressed in several research
projects and software products which are listed. We distinguished grounding technolo-
gies, ontologies and information interaction applications. These are the building blocks
available today to build the Semantic Desktop of the future. We should now align our
different ideas of the Semantic Desktop, for this we provided a definition of the term.
We do not claim this definition to be final, but to be a starting point.

Also, we identified the need to standardize application programming interfaces and
provide a background framework, that supplies enabling services. The user interface
and the architecture of existing applications was presented and a view design patterns
extracted, to provide developers with more indications where to start. The upcoming
NEPOMUK project, proposed by a consortium of experts and lead by the DFKI, will

15

help building a community of experts that develop and use the Semantic Desktop. Part
of the project are free open source implementations to standardize the interfaces, pro-
vide developers with example applications and end users with useful Semantic Desktop
applications.

The Semantic Desktop will connect the semantic web to individual people, working
on their desktop computers. It will allow them to write down ideas and knowledge and
to share these ideas with others.

Acknowledgement We want to thank Dominik Heim from the FH Kaiserslautern for
the graphic design of the included illustrations and for the comments on user interaction
and visual metaphors.

References

1. Bush, V.: As we may think. The Atlantic Monthly176(1)(1945) p101–108
2. Freeman, E., Gelernter, D.: Lifestreams: A storage model for personal data. SIGMOD

Record (ACM Special Interest Group on Management of Data)25 (1996) pp80
3. Nelson, T.: As we will think. On-line 72 Conference Proceedingsvol. 1 (1972) pp. 439–454
4. Lee, T.B.: Weaving the Web, The Past, Present and Future of the World Wide Web by its

Inventor. Texere, London (2000)
5. Berners-Lee, T.: Frequently asked questions by the press.

(http://www.w3.org/People/Berners-Lee/FAQ.html)
6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American89 (2001)
7. Sauermann, L.: The gnowsis-using semantic web technologies to build a semantic desktop.

Diploma thesis, Technical University of Vienna (2003)
8. Decker, S., Frank, M.: The social semantic desktop. WWW2004 Workshop Application

Design, Development and Implementation Issues in the Semantic Web (2004)
9. Sauermann, L.: The semantic desktop - a basis for personal knowledge management. In

Maurer, H., Calude, C., Salomaa, A., Tochtermann, K., eds.: Proceedings of the I-KNOW
05. 5th International Conference on Knowledge Management. (2005) 294 – 301

10. Dengel, A., Abecker, A., B̈ahr, J.T., Bernardi, A., Dannenmann, P., van Elst, L., Klink, S.,
Maus, H., Schwarz, S., Sintek, M.: Epos - evolving personal to organizational knowledge
spaces (2002) Project Proposal, DFKI GmbH.

11. Harth, A.: Seco: mediation services for semantic web data. Intelligent Systems, IEEEVol-
ume 19(2004) 66 – 71

12. Leo Sauermann, S.S.: Gnowsis adapter framework: Treating structured data sources as vir-
tual rdf graphs. In: Proceedings of the ISWC2005. (2005)

13. C. Bizer, A.S.: D2rq-treating non-rdf databases as virtual rdf graphs. In: Proceedings of the
3rd International Semantic Web Conference (ISWC2004). (2004)

14. Corp., M.: Information bridge framework. (http://msdn.microsoft.com/office/understanding/
 ibframework/default.aspx)
15. Quan, D., Huynh, D., Karger, D.R.: Haystack: A platform for authoring end user semantic

web applications. In: International Semantic Web Conference. (2003) 738–753
16. Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: Fulfilling the memex

vision. In: ACM Multimedia December 1-6, Juan-les-Pins, France. (2002) pp. 235–238
17. et al., B.F.: the fenfire project. (http://fenfire.org/)
18. Geldart, J.: Rdf without revolution an analysis and test of rdf and ontology. Bachelor thesis,

Department of Computer Science, University of Durham (2005)

16

19. Lausen, H., Stollberg, M., Hernández, R.L., Ding, Y., Han, S.K., Fensel, D.: Semantic web
portals - state of the art survey. Technical Report 2004-04-03, DERI (2004)

20. McBride, B.: Jena: Implementing the rdf model and syntax specification. In: Proc. of the
Semantic Web Workshop WWW2001. (2001)

21. the kowari project. (http://kowari.sourceforge.net/)
22. Corp., I.: Rdf gateway semantic web server. (http://www.intellidimension.com/)
23. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing

and querying rdf and rdf schema. In: Proc. of the International Semantic Web Conference
2002. (2002)

24. (edt), K.G.C.: Sparql protocol for rdf. Working draft, W3C (2005)
http://www.w3.org/TR/rdf-sparql-protocol/.

25. Prud’hommeaux, E., (edts), A.S.: Sparql query language for rdf. W3c working draft, W3C
(2005) http://www.w3.org/TR/rdf-sparql-query/.

26. Harth, A., Decker, S.: Yet another rdf store: Perfect index structures for storing semantic
web data with contexts. http://sw.deri.org/2004/06/yars/doc/summary last change Jan 2005,
visit Aug 2005 (2005)

27. McDowell, L., Etzioni, O., Halevey, A., Levy, H.: Semantic email (2004)
28. Osterfeld, F., Kiesel, M.: nabu semantic jabber server. (http://nabu.opendfki.de)
29. Elst, L.v., Abecker, A., Bernardi, A., Lauer, A., Maus, H., Schwarz, S.: An agent-based

framework for distributed organizational memories. In Bichler, M., Holtmann, C., Kirn, S.,
Müller, J.P., Weinhardt, C., eds.: Coordination and Agent Technology in Value Networks,
Multikonferenz Wirtschaftsinformatik (MKWI-2004), 9.-11.3.2004, Essen, GITO-Verlag,
Berlin (2004) 181–196

30. ACM: Acm classes 1998. (http://www.acm.org/class/)
31. AG, B.: the brainfiler text classification system. (http://www.brainbot.de)
32. Maus, H., Holz, H., Bernardi, A., Rostanin, O.: Leveraging passive paper piles to active ob-

jects in personal knowledge spaces. In: Proceedings of 3rd Conference Professional Knowl-
edge Management: Experiences and Visions. (2005) 43–46

33. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Gate: A framework and graphical
development environment for robust nlp tools and applications. In: Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics. (2002)

34. Clark, H.H.: Using language. Cambridge University Press (1996)
35. Schwarz, S.: A context model for personal knowledge management. In: Proceedings of the

IJCAII’05 Workshop on Modeling and Retrieval of Context, Edinburgh (2005)
36. Chirita, P.A., Gavriloaie, R., Ghita, S., Nejdl, W., , Paiu, R.: Activity based metadata for

semantic desktop search. (2004)
37. Miller, T., Agne, S., Dengel, A.: eFISK – eine aufmerksamkeitsbasierte Schlüsselwort-Extr

aktions- und Information Retrieval-Maschine. Abschlussbericht 15202-386261/659, Stiftung
Rheinland-Pfalz f̈ur Innovation (2005)

38. Miller, T., Agne, S.: Attention-based information retrieval using eye tracker data. In: Pro-
ceedings of the Third International Conference on Knowledge Capture (K-CAP05). (2005)
To appear.

39. Barreau, D., Nardi, B.A.: Finding and reminding: File organization from the desktop. (1995)
40. Nejdl, W., Paiu, R.: I know i stored it somewhere - contextual information and ranking on our

desktop. 8th International Workshop of the EU DELOS Network of Excellence on Future
Digital Library Management Systems (2005)

41. Nielsen, J.: Mental models for search are getting firmer.
http://www.useit.com/alertbox/20050509.html see also the tutorial on Fundamental
Guidelines for Web Usability at the User Experience 2005 conference (2005)

42. Cooper, A., Reimann, R.: About Face 2.0 - The Essentials of Interaction Design. Whiley
publishing inc (2003)

17

Type Today Semantic Desktop

Storage
* Jena
* Sesame
* RDF Gateway

storage supports SPARQL and
semantic protocols

Grounding
Technology

Search
* Lucene
* Desktop Search Tools semantic search services

Communication
* Jabber, IM
* email
* P2P networks

semantic messaging and P2P

Ontologies
* DC
* FOAF
* iCalendar

* SKOS
* Thesauri
* PIM

* popular ontologies
* ontology mapping tools
* desktop ontologies

Ontology Editing
* Protege
* IsaViz
* KAON

ontology editors present in all
applications

Information
Interaction

Domain Specific
* Tidepool/Storymill
* PhotoStuff
* RSS Readers

Semantic Desktop Applications

PIM and Workflow
* Microsoft Outlook
* Lotus Notes
* Frodo Taskman

Semantic PIM, Semantic Work-
flow

Table 1.Building Blocks

18

A Multi-Ontology Approach for Personal
Information Management ?

Huiyong Xiao Isabel F. Cruz

Department of Computer Science
University of Illinois at Chicago
{hxiao | ifc}@cs.uic.edu

Abstract. The increasingly huge volume of personal information stored in a
desktop computer is characterized by disparate models, unstructured contents,
and implicit knowledge. Aiming at a semantic rich environment, a number of Se-
mantic Desktop frameworks have been proposed, concentrating on different as-
pects, including organization, manipulation, and visualization of the data. In this
paper, we propose a layered and semantic ontology-based framework for personal
information management, and we discuss its annotations, associations, and navi-
gation. We also discuss query processing in two cases: query rewriting in a single
personal information application, PIA, and that between two PIAs.

1 Introduction

In 1945, Vannevar Bush put forward the first vision of personal information manage-
ment (PIM) system, Memex, by pointing out that the human mind “operates by associ-
ations”, and we should “learn from it” in building Memex [4]. The Hypertext systems
(see the survey of Conklin [6]), which flourished in the 80’s, reinforced this vision and
yielded the current World Wide Web, in a broader scope. Recently, with the Seman-
tic Web vision [2], a number of PIM systems associated with that vision, hence called
Semantic Desktop, have been proposed. By summarizing these proposals and taking
into account the characteristics of personal information (PI), we propose the following
principles that a PIM system should follow:
Semantic data organization. Almost all existing approaches are trying to go beyond
the hierarchical directory model. The critical factors of semantic data organization in-
clude adequate annotations, explicit semantics, meaningful associations, and a uniform
representation. A semantic-rich data organization has several advantages. First, the an-
notations and associations (as the superimposed information over the coarse data [19])
form the context of the PI, thus making the data more easily understandable. Second,
the superimposed information also allows for finer and more flexible manipulation (e.g.,
browsing and querying) on the data. Third, an explicit formal semantics for the data can
facilitate reasoning on the data and deriving new knowledge. Finally, the uniform rep-
resentation can support the integration of data that may be heterogeneous.
Flexible data manipulation. A PIM system can provide integration, exchange, naviga-
tion, and query processing of the stored personal information. The framework of PIM,
? This work was partially supported by NSF Awards ITR IIS-0326284 and IIS-0513553.

19

PI Space (C:\)

papers

WISE03-1.pdf

WISE03-submission.pdf

WISE03-camera.pdf

JoDS05.pdf

WISE

myself.jpeg

talks

WISE03.ppt

IDEAS04.ppt

AP2PC04.ppt

Super-invited.ppt

photos

talk.jpeg

with sam.jpeg

emails

Final submission of WISE.eml

Meeting on Monday.eml

WISE photos.eml

Register for WISE.eml

Fig. 1. An example of files in a PI space.

including the data model, query language, and user interface, should provide multiple
ways to manipulate data in a powerful and flexible manner. Furthermore, a PIM system
should possess the capability for seamless communication (or interoperability) with ex-
ternal sources (possibly in another PIM system), e.g., in a peer-to-peer (P2P) way [26].
Rich visualization. Multiple visualizations can help the user in understanding data.
Instead of providing separate views of the data as most traditional applications do, a
PIM system should support data visualization from different perspectives, to offer a
comprehensive view. Examples include association-centric visualization [24] and time-
centric visualization [13, 12].

Example 1. Figure 1 presents a fragment of PI space, which consists of four directories
of files in the hard drive C:\. The papers directory contains four papers of the format
pdf, photos\WISE contains three pictures taken at the WISE ’03 conference, talks
contains four Powerpoint files that respectively are slides of four talks, and emails
contains four saved email messages. Even if the concrete contents of all these files
are unknown, we can tell from their filenames that they are somehow related to each
other. Unfortunately, their storage in different and possibly unrelated directories does
not show their inter-relationships, thus resulting in possible difficulties in locating the
wanted information. Some keyword-based searching techniques, e.g., offered by the
Google Desktop Search,1 can retrieve all files that are relevant to WISE. However, with-
out further inspection of the content of each file, the user would not be able to discover
certain associations between them, e.g., that file JoDS05.pdf is an extended journal
paper of WISE03-camera.pdf.

From this example, we can see that the lack of semantic associations among the
stored data could be a handicap for data and knowledge discovery. In this paper, we
focus on issues of semantic data organization and management in PIM, by taking the
following approach:

1) We propose a layered framework for PIM, in which multiple ontologies play-
ing a variety of roles are employed. Specifically, the resource layer stores all the PI
resources (using URIs), metadata of the PI, and all kinds of associations using RDF.
The domain layer contains the ontologies specific to various domains that are used to
structure the data and categorize the resources. The application layer, built on top of the
domain layer, is where the user constructs different application ontologies for different
purposes of data usage. The benefits of this layered architecture include: i) It provides a

1 http://desktop.google.com

2

20

semantics-rich environment for personal information management; ii) The system pro-
vides flexibility and reusability, by decoupling the domain and application ontologies,
so that the construction of application ontologies for different applications can reuse the
underlying domain ontologies. We argue that this provides certain advantages over the
use of a single domain model for all the PI (e.g., [9]).

2) We discuss in detail how to utilize superimposed information for semantic orga-
nization, focusing on the construction of resource-file and resource-resource associa-
tions. We also present the idea of 3D navigation, which is a combination of the vertical,
horizontal and temporal navigation in the PI space. The idea is inspired by some ex-
isting PIM systems including MyLifeBits [13] and Placeless Documents [10], and is
demonstrated in a browser.

3) In our framework, the basic unit for the user to manage the Semantic Desktop
is the personal information application (PIA). Each PIA aims to accomplish or assist
a specific task (e.g., bibliography management, paper composition, and trip planning).
The PIAs can be standalone, with their own application ontology, user interface, and
workflows. Meanwhile, they can communicate with each other as if in a P2P network,
by means of the connections (mappings) established between their application ontolo-
gies. In this sense, different PIAs interoperate at a semantic level. We describe query
processing in our framework in two cases: within a single PIA or between two PIAs, in
a P2P query processing mode.

Among the existing approaches to PIM, the Gnowsis project from DFKI2 aims at
a Semantic Desktop environment, which supports P2P (or distributed) data manage-
ment based on Desktop services [26]. Like in our framework, Gnowsis uses ontologies
for expressing semantic associations and RDF for data modeling. However, the empha-
sis of Gnowsis is more on the flexible integration of a large number of applications
than on semantic data organization and manipulation. SEMEX [9] is another personal
data integration framework that uses data annotation (i.e., schemas), similarly to our
ontology-based framework. A single domain model is provided as the unified interface
for data access.

MyLifeBits [13], Haystack [24], and Placeless Documents [10] are three PIM sys-
tems that support annotations and collections. Here, the concept of collection is essen-
tially the same as the conceptualization (using ontologies) of resources in our frame-
work. MyLifeBits supports easy annotation and multiple visualizations (e.g., detail,
thumbnail, timeline, and cluster-time views on the data). For this purpose, the resources
are enriched by a number of properties, including the standard ones (e.g., size and cre-
ation date) and more specific ones (e.g., time interval) [13]. Haystack aims to create,
manipulate, and visualize arbitrary RDF data, in a comprehensive platform. For visu-
alization, it uses an ontological/agent approach, where user interfaces and views are
constructed by agents using predefined ontologies [24]. Placeless Documents intro-
duces “active properties”, where documents can have executable codes that provide
document-based services [10].

Other approaches to PIM include Chandler,3 Lifestreams [12], Stuff I’ve Seen (SIS)
[11], and Xanadu [22], which focus on different aspects.

2 http://www.dfki.de/web/
3 http://www.osafoundation.org/

3

21

Resource
-file index

PI Space

Textual

Nontextual:

Simple-content

Complex-content

Contacts
Bibtex
...

Papers
Reports
Emails
Slides
...

(Video, Audio, Pictures, ...)

Domain
Ontology 1

Domain
Ontology 2

Domain
Ontology m

Domain Layer

Application
Ontology 1

Application
Ontology 2

Application
Ontology n

Application Layer

Resource
repository

(RDF)

File Metadata

Resource Layer

Relational database, XML

PIM 1

PIM 2

Application Layer

Application
Ontology i

. . . PIM 3

Application Layer

Application
Ontology j . . .

Association

Fig. 2. An ontology-based framework of a PIM system.

The rest of the paper is structured as follows. In Section 2, we describe the layered
framework and its main components. The semantic organization of the PI, including
its approaches to annotation, association, and representation, is discussed in Section 3.
Section 4 and Section 5 focus on two main ways of data manipulation, namely, naviga-
tion and query processing. Finally, we conclude in Section 6.

2 Framework

Our framework follows the principle of superimposed information, i.e., data or metadata
“placed over” existing information sources [19]. This concept seems particularly useful
for the organization, access, interconnection, and reuse of the information elements. We
propose for PIM a layered ontology-based framework, as shown in Figure 2, with the
following data components:
Personal information space. The personal information space may contain structured
data (e.g., relational), semi-structured data (e.g., XML), or unstructured data. Unstruc-
tured data can be textual or non-textual (e.g., video, audio, or pictorial). Furthermore,
textual files can be classified as simple-content or complex-content. More specifically,
simple-content files have no references to other files. Typical examples include people
contacts and Bibtex entries. In contrast, complex-content files have a flexible scheme of
presentation, and may contain references to other files, e.g., by means of citations or hy-
pertext links [6]. For example, a paper in the PI space may cite another paper (existing
in the PI space or an external space), which, in turn, could cite other papers.
File description. We annotate each file using a file description (or metadata) consisting
of a set of properties of the file. Each item in the file description is a property-value

4

22

pair. The file description is the first-level (direct) annotation for the individual files, and
has the same scheme (structure) for the same type of files. For example, the following
fragment contains a typical description of a JPEG file.

Dimensions: 3072 × 2048 pixels

Device make: Canon

Color space: RGB

Focal Length: 75

......

Domain ontologies. A number of ontologies are published on the Web. Examples of
such ontology libraries include DAML Ontology Library,4 the Semantic Web Ontolo-
gies,5 and the Protégé OWL ontologies.6 The ontologies in these libraries are typically
designed and organized for different domains such as Conference, Person, Photo, and
Email. In our framework, the domain ontology layer is designed to be loosely-coupled
with the other layers, to enable the insertion and removal of ontologies as “plug-ins”.
Resource-file index and RDF repository. One of the roles of domain ontologies is to
provide the basis for data classification. In order to establish the connections between
the files and the concepts in the domain ontologies, we treat each file as a resource,
which is then classified as an instance of one or more concepts. The resource-file index
is a local database storing these connections between resources and files. Furthermore,
the various types of associations among resources (as instances of association of con-
cepts in the domain ontologies) are stored in an RDF repository. The resource-file index
and the RDF repository are both in the resource layer, providing resource instances for
the domain ontologies in the domain layer above.
Application ontology. Above the domain layer is the application layer, which contains
the ontologies for different applications. The domain ontologies, as an intermediate
layer between the applications and the data, are meant to enhance the reusability and
flexibility of the framework. More specifically, the application ontologies are defined
as views of the domain ontologies, which can be reused for the construction of differ-
ent application ontologies. In our framework, each personal information application
(PIA), is associated with an application ontology, has access to relevant data, and is
functionally independent of other applications. It may be infeasible to have a single on-
tology to cover various applications, e.g., for trip planning and paper writing. Instead, as
many PIAs as needed can be designed in one or more PIM systems, where the PIAs can
interoperate (e.g., through P2P query processing) for the purpose of integrating relevant
information. This issue is elaborated on in Section 5.

Besides the data components described above, a PIM system also needs some func-
tional components to perform all kinds of data and metadata processing, to make the
framework work as a whole. Such components include an indexer (for establishing and
managing the indexes of the files), a wrapper (for identifying and extracting resources
from the files), and an ontology designer (for importing and editing an ontology). Be-
cause of space limitations, we do not elaborate further on these components.

4 http://www.daml.org/ontologies/
5 http://www.schemaweb.info
6 http://protege.stanford.edu/plugins/owl/owl-library/

5

23

3 Semantic Data Organization

The layered architecture of our PIM framework described previously enables the reusabil-
ity and the organization of semantically rich data for PIM. In this section, we discuss in
detail the mechanisms that our framework uses to support the semantic organization of
the PI space, including those for semantic annotation, association, and representation.

3.1 Annotation

Given that the data in the PI space is the base information, all the other data components
in our framework are actually superimposed information over this base. The most fun-
damental function of the superimposed information is to provide semantic annotations
of the base information to enable powerful and accurate data access. We discuss the
following two aspects:
File description. It is especially important to provide the searcher with a detailed
description of the nontextual files. When performing a keyword-based searching, the
searcher matches the submitted keywords (e.g., “Canon”) or key-value pairs (e.g.,
“Maker:Canon”) with the property-value pairs of the file description, to find the right
files requested by the user. Even for textual files, taking into account such metadata will
improve the effects of full-text searching.
Domain ontologies. Given that a file is identified as a resource, we are able to annotate
the file using a domain ontology, by associating the resource with a concept of an ontol-
ogy. The domain ontology provides not only a context for understanding the data, but
also semantic clues for the precise data retrieval. For example, the user can query the PI
using a query language for RDF instead of using keywords. We note that a file can be
an instance of more than one concept, according to different classification criteria.

3.2 Association

In our framework, semantic associations are used to relate all the data (base infor-
mation) and metadata (superimposed information). There are two classes of associ-
ations: the resource-file associations that are actually the resource-file indexes and
the resource-resource associations that are instances of the domain ontologies and are
stored in the RDF repository.
Resource-file associations. In addition to the ontological resources that are used to
identify (through data classification) the files, a (textual) file may contain and refer to
a number of resources. Therefore, the resource-file associations can be classified into
three kinds, such as identification, containment, and reference.

Example 2. Suppose that the user has saved an email message, which is an announce-
ment of a seminar, as shown in Figure 3. First, the email can be classified as an instance
of the concept Email, provided that the concept exists in some domain ontology. Then,
the system can generate for the concept SeminarAnnouncement and its properties
a new instance (i.e., resource), which is associated with the saved email by the rela-
tionship containment. Finally, a reference association can be established between the
resource http://www.tliap.nus.edu.sg/ (e.g., of the concept WebsiteAddress) and the
email message.

6

24

Fig. 3. An example of an email message.

The process of setting up the resource-file associations is the one of recognizing
resources from the file description and/or the file content and then mapping them to
the ontological concepts. The user may be concerned with the degree to which the re-
sources should be extracted from a file and its description. For instance, in the previous
example, the user can further create resources for the title and abstract of the sem-
inar, and for the biography of the presenter. It is expected that this process (as well
as the process of discovering resource-resource associations, as discussed later) can be
maximally automated, to reduce the user’s burden. For this purpose, we may utilize the
following methods:

– Keyword extraction. From the text of a file, keywords can be extracted based on a
thesaurus or be highlighted manually by the user. Each keyword can be taken as a
resource contained by the file. The matching of the resources with the concepts in
the domain ontologies can be guided by a thesaurus such as WordNet.7

– Hyperlink analysis. For the textual files that include hyperlinks to classified re-
sources (e.g., a citation of a paper or a link to a webpage), we create for each
hyperlink a reference-type resource-file association, as well as a resource-resource
association between the referring resource and the referred one.

– Natural language processing. We can utilize the techniques (e.g., [1]) to parse
each sentence of a text or its summary obtained by means of text summarization
[20]. For each resulting triple 〈subject, predicate, object〉, we try to match it with
the patterns 〈s, p, o〉 in the domain ontologies, where p is a property of the concept
s and has a value typed of o. If such pattern exists, a resource-resource association
of the form 〈subject, predicate, object〉 is then generated.

– History. As the framework proceeds with such classification and cognition, more
and more knowledge about this process can be accumulated and reused by a new
process.

Resource-resource associations. We borrow from the Object Oriented Design (OOD)
techniques the following four types of relationships between objects: instantiation (i.e.,
membership), association, aggregation (i.e., whole/part), and generalization (i.e., in-
heritance). These four relationships, which are used in object models, are adopted to

7 http://wordnet.princeton.edu

7

25

Table 1. Resource-resource associations.

Resource-resource Intra- Inter- Intra- Inter- Domain-
associations domain domain application application application
aggregation

√ √ √
association

√ √ √
instantiation

√ √ √
generalization

√ √ √
ontology mapping

√ √ √

describe the associations among concepts as well as resources in our framework. Note
that the “association” in the above four types of OO relationships is distinct from the
“association” in what we call resource-resource associations. In ontology terms, the for-
mer is actually projected to be the user-defined properties, e.g., writes can be a prop-
erty of the concept Author, connecting to the concept Book. Table 1 summarizes the
resource-resource associations in our framework.

By using the previously described techniques, we can discover the resources and
their associations implied in the PI, and classify them into the domain ontologies, thus
populating the ontologies. In the example of Figure 3, it is possible to extract a pattern
〈Singapore, implements, ITS〉, which could then be classifier as an instance of an on-
tological pattern such as 〈Organization, implements, System〉, where Organization
and System are two concepts, and implements is a property. Note that the user is al-
lowed to choose the granularity of this knowledge (resource and associations) discovery
process, ranging from only taking the whole file as a single resource to analyzing the
detailed contents of the file.

In addition, ontology mappings may be established between correspondences that
connect concepts in different domain and application ontologies. Currently, we consider
equivalence as the only semantics for the mapping between two concepts, although
richer semantics of the mappings could be considered [17].

3.3 Representation

In our framework, all information, including file descriptions, the resources in the repos-
itory, and the resource-file indexes, are represented in the Resource Description Frame-
work (RDF),8 a W3C proposed standard. For the schema of these data (i.e., the appli-
cation and domain ontologies), we use the vocabulary language for RDF, RDF Schema
(RDFS).9 The RDF model is a semantic network, where the nodes denote the resources
and the edge are properties that represent the relations between resources. The network
can also be seen as a set of statements (triples) in the form of (subject, predicate, object).
RDFS is used to define the vocabulary (in terms of classes and properties) of the RDF
data, such as rdfs:Class, rdf:Property, and rdf:type. Table 2 summarizes the RDFS
vocabularies that are used to represent different types of associations.

8 http://www.w3.org/RDF/
9 http://www.w3.org/TR/rdf-schema

8

26

Table 2. RDF properties for the associations.

Relationship RDF property Comments
aggregation rdfx:contains rdfx is the abbreviation of the namespace, where the prop-

erty contains is defined. For example, <#a, rdfx:contains,
#b> means that a contains b.

association User-defined prop-
erties

For example, <#wise03talk, presentedBy, #xiao>
means that wise03talk is connected to xiao by the associa-
tion presentedBy.

instantiation rdf:type For example, <#xiao, rdf:type, #Person> means that the
resource xiao is an instance of the concept Person.

generalization rdfs:subClassOf rdfs:subPropertyOf is used for property generalization.

The use of RDF as the data model and RDFS as the ontology language in our
framework is motivated by the nature of the RDF/S as a Web resources description
mechanism and the fact that the PI is represented as a set of interrelated resources. In
contrast, XML is not chosen because it cannot represent semantic associations [8]. Cer-
tainly, OWL (Web Ontology Language), as built on top of RDFS, is more expressive
for ontology representation. However, the use of a slightly extended version of RDFS
is adequate for our case of the resource-file and resource-resource associations.

The extension to RDFS is the following: we define in a namespace (abbreviated
using the prefix rdfx) a new RDF property, contains, which is used to represent the
aggregation relationship. For the representation of the instantiation and generalization
relationships, we use rdf:type and rdfs:subClassOf, respectively. The association re-
lationship is represented naturally by the RDF properties defined in the user-defined
namespace. Figure 4 gives a concrete example of an RDF/S representation.

4 Semantic Navigation

It is critical for a Semantic Desktop to provide the user with the capability to access the
stored data in a variety of ways. The user may want to browse the information by means
of the flexible and intelligent navigation in the information space, including the base and
superimposed information. The user may also desire that certain query facilities (e.g.,
keyword-based searching or certain query languages) be provided by the framework. In
this section, we discuss the navigation in the data space of a Semantic Desktop. Query
processing is discussed in the next section.

The semantic data organization in our framework enables the navigation in the PI
space, making use of useful hints (e.g., the context of a concept being browsed) so as
to facilitate the user’s understanding of data. More specifically, by taking into account
the layered architecture, the semantic navigation in our framework can be performed in
three directions: (1) In vertical navigation, the user follows a path across layers. Two
cases are possible for this way of navigation: top-down from the application ontologies
to the stored files and bottom-up from the stored files to the application ontologies. (2)
In horizontal navigation, the user follows links of concepts (or resources) within one
layer. Typically, there are three cases of horizontal navigation, corresponding to each

9

27

<#wisephotomsg, rdf:type, #Email>
<#wise03photomyself, rdf:type, #Photo>
<#wise03conf, rdf:type, #Conference>
<#wise03talk, rdf:type, #ConferenceTalk>
<#wise03papercamera, rdf:type, #InProceedings>
<#jods05, rdf:type, #Article>
<#cruz, rdf:type, #Person>
<#xiao, rdf:type, #Person>

Photo

Publication
Book

Person
editor

booktitle

Article

InProceedings

Misc

Literal

Literal

Literal

volume

pages

Publication Ontology

takeOn

Literal

Literal

Literal

width

height

title

Date

Photo Ontology

Email

Receiver

attends

Sender

sentBy

title sentOn

attached

Email Ontology

Person

DateLiteral

Attachment

Application Document

Talk

Picture

<"c:\emails\WISE photos.eml", rdfx:identification, #wisephotomsg>
<"c:\emails\WISE photos.eml", rdfx:contains, #wise03photomyself>
<"c:\emails\WISE photos.eml", rdfx:reference, #wise03conf>
<"c:\photos\myself.jpeg", rdfx:identification, #wise03photomyself>
<"c:\talks\WISE03.ppt", rdfx:identification, #wise03talk>
<"c:\talks\WISE03.ppt", rdfx:reference, #wise03talk>
<"c:\papers\WISE03-camera.pdf", rdfx:identification, #wise03papercamera>
<"c:\papers\JoDS05.pdf", rdfx:identification, #jods05>

Resource-file index RDF repository

Email

Conference

PaperPerson

ConferenceTalk

Talk

InvitedTalk

Place

Talk Ontology

Conference

Date

PictureOfPerson

PictureOfScene

Person

Date Place

Person

Talk

takenBy

Ontology for publication management Ontology for picture management

PictureOfEvent

event

subject

takenOn

takenAt

presentedAt

writtenBy

publishedAt

receivedBy

sentBy

receivedBy

wisephotomsg

wise03photomyself

wise03papercamera

wise03conf

wise03talkcruz xiao

Literal
title

programOf

presentedBy

presentedAt

presentedOn

sentBy receivedBy

presentedBy

editor editor

programOf

attached

presentedBy

mapping

rdfs:subClassOf

User-defined property

jods05

extends

Journal
extendedVersion

extends

Fig. 4. Representation of the application, domain, and resource layers. All ontologies are repre-
sented in RDF/S. Two application ontologies for PIAs, i.e., picture management and publication
management, are constructed. Below them are four ontologies for the domains of Email, Talk,
Publication, and Photo, respectively. At the bottom, the resource-file and resource-resource as-
sociations are represented as triples or in a graph.

layer: application-to-application navigation, domain-to-domain navigation, and file-to-
file navigation. (3) In temporal navigation, the user can navigate by following refer-
ences in chronological order, each being a resource for the same real world object with
a time stamp associated with it. For example, the user may want to look at different
versions of a research paper.

All the base and superimposed information in the framework forms a directed graph,
where the vertices are the resources in the ontologies and the files stored in the PI space,
and the edges are the associations between the resources and files. We say that the three
directions of navigation together provide the capacity of a 3-dimension (3D) navigation
mechanism, which can facilitate the construction of a browser. For instance, suppose
the user is browsing a specific application ontology in a visualized browser. When the
user clicks on the node of a concept in the ontology, the browser can then choose to

10

28

Email

ReceiverSender

sentBy

title sentOn

attached

Person

DateLiteral

Attachment

Application Document

receivedBy

attends

Email

Conference

Person
writtenBy

receivedBy

sentBy

Application Ontology

Domain Ontology

1. title
 WISE photos

2. attached
 wise03photomyself

3. sentOn
 12/30/2003

4. sentBy
 cruz

5. receivedBy
 xiao

Fig. 5. The browser for PIM.

display the instances of the concept thus selected (by vertical navigation), the context
of the concept in the domain (also by vertical navigation), and the associated concepts
in other application ontologies (by horizontal navigation). Compared to the traditional
navigation approach that is based on hierarchical directories, 3D navigation is based on
semantic associations, similarly to those that humans establish between concepts.

Example 3. Consider the scenario shown in Figure 4. The spirit of 3D navigation is
demonstrated in the browser of Figure 5. Suppose the current resource (file) that the
user is browsing is an email message (i.e., wisephotomsg), which has some photos
attached, which were taken at WISE ’03. The concepts that this resource belong to are
highlighted (in white) so as to show the contexts to which they belong. All associated
resources are categorized and shown on the right tabbed pane, which provides a guid-
ance for the user in navigating the PI space. The bottom-right pane shows the timeline
of different versions of the current resource (if they exist) or all the resources belonging
to the same concept as the current resource.

5 Semantic Query Processing

Unlike navigation, which is an interactive process, query processing is performed with-
out further intervention from the user. To retrieve relevant data from the PI space, the
user’s request may be posed as a sequence of keywords or as a query formulated in a
certain query language.

The keyword-based search matches the input keywords and the vector of words in
the candidate documents, calculates the similarity for each of the matches, and returns

11

29

to the user the results after ranking them [25]. The results of a search are usually eval-
uated using the statistical criteria such as precision, recall, or a combination of them.
The shortcoming of keyword-based search is that the semantic associations between rel-
evant data are not considered. In contrast, query languages can provide a semantically
richer access interface, thus facilitating the data retrieval and improving the accuracy of
the answers. However, a query is usually performed based on an exact match between
the query and the data, so that the recall of the answers is influenced, in the sense that
some relevant but not matched data is not retrieved.

Since the two approaches complement each other, it is desirable to provide both of
them. In this section, however, we mainly focus on query processing in our framework.
We choose to express the queries in RDQL [16]; they can query both the resources
and their associations. We discuss how to process a query submitted by the user in two
cases: within a PIA and across different PIAs.

5.1 Query processing in a PIA

In our framework, the user query is formulated in RDQL (RDF Data Query Language),
which uses an SQL-like syntax [16]. To reduce the user’s burden, a graphic means can
be used to facilitate the user’s query formulation. For simplicity, we use a subset of
RDQL, called conjunctive RDQL (c-RDQL), which can be expressed as a conjunctive
formula: ans(X) :- p1(X1), ..., pn(Xn), where Xi = (xi, x

′
i) and pi is an RDF prop-

erty of xi having the value x′i.
In our framework, an application ontology is constructed over one or more domain

ontologies, and the files in the PI space are formalized as instances of the concepts in
the domain ontologies. If we consider the application ontology as the global ontology
(since the user query is posed on it), the whole system can be seen as a GaV data
integration system [18]. Therefore query processing in a single PIA is performed as in a
GaV system. In particular, when the user poses a query (in RDQL) over the application
ontology, the RDQL query is then rewritten into a new RDQL query in terms of the
domain ontologies, based on the mappings between the global ontology and domain
ontologies. By executing the rewritten query on the corresponding domain ontologies,
resources (files) that match the query are then returned as answers to the query.

There are a number of algorithms for query rewriting in relational or XML data
integration systems [14]. In a GaV based integration system, query processing is per-
formed using a “unfolding” strategy [18]. More specifically, for rewriting a query (e.g.,
a conjunctive query) that is posed on the global schema or ontology, we simply substi-
tute the predicates in the body of the query with the corresponding view definitions. In
our framework, where the mappings between the application ontology and the domain
ontologies are expressed as RDF class or property correspondences, the algorithm for
query rewriting is similar to this strategy.

By assuming that there are no integrity constraints over the application ontologies
and the user queries are formulated in c-RDQL, we give the formal description of our
query rewriting algorithm in a single PIA, which we call ADREWRITING (for rewrit-
ing from Application ontologies to Domain ontologies), as follows. We note that we do
not consider the namespaces of ontologies for simplicity of the description.

12

30

Algorithm ADREWRITING
Input:1. q1 over the application ontology G: ans(X) :- p1(X1), ..., pm(Xm);

2. M: the mapping table between G and domain ontologies S1, ...,Sn.
Output: q2: A c-RDQL query over S1, ...,Sn.
1. headq2 = ans(X); bodyq2 = null;
2. For i = 1 to m do
3. (c1, c2) = name of the classes referred to by (x1, x2), for Xj = (x1, x2);
4. Search M to find (d1, d2) such that {(c1, d1), (c2, d2)} are two class correspon-

dences in M;
5. Traverse S1, ..., and Sn by following all kinds of associations, to find the vertices,

v1, ..., vk, connecting from d1 to d2;
6. If k = 0 then add p(x1, x2) (or p(x2, x1)) to bodyq2 , if there exists p connec-

ting d1 to d2 (or d2 to d1);
7. Else for j = 1 to k − 1 do
8. Add p(x̂j , x̂j+1) (or p(x̂j + 1, x̂j)) to bodyq2 , if p is not a mapping and

connects vj to vj+1 (or vj+1 to vj);
9. Add p(x1, x̂1) (or p(x̂1, x1)) to bodyq2 , if p is not a mapping and connects d1

to v1 (or v1 to d1);
10. Add p(x̂k, x2) (or p(x2, x̂k)) to bodyq2 , if p is not a mapping and connects vk

to d2 (or d2 to vk);
11. q2 = headq2 :- bodyq2 ;

Example 4. Suppose the user wants to list all conference papers with their authors and
journal version, using the query q1 : ans(x, y, z) :- writtenBy(x, y), extendedV ersion(x, z),
which is posed on the application ontology of publication management. For the vari-
ables (x, y, z), we get the classes that they refer to as (Paper, Person, Journal), as
indicated by Line 3. By looking into M, we find the corresponding class sequence
as (Publication:InProceedings, Publication:Person, Publication:Article), where the
names before the colons are domain ontology names. From Lines 5 to 10, we compute
the predicates in the body of q2 as follows.

q2: ans(x, y, z) :- editor(x, y), extends(z, x)

By executing q2 over the RDF repository as shown in Figure 4, we get the answer
{(#wise03papercamera, #xiao, #jods05), (#wise03papercamera, #cruz, #jods05)}.

5.2 A2A query processing

Application to application (A2A) query processing occurs when an application is at-
tempting to retrieve relevant data from another semantically related application, to an-
swer a query. If the PIAs are considered as connected peers (i.e., service providers for
certain data access), the A2A query processing is similar to that in peer-to-peer (P2P)
systems [7, 15]. Whether the PIAs exist in a single desktop or are physically distributed
makes no differences to the A2A query processing.

13

31

A2A query processing consists of two steps of query rewriting. First, we rewrite the
original query q, which is posed on the application ontology G1, to a query q′ on the
other application ontology G2, according to the mappings between G1 and G2. Then, q′

is rewritten to a query q′′ on the domain ontologies, to which G2 is mapped. Answers
are obtained by executing q′′ on the RDF repository. The second query rewriting is
exactly the one described by the algorithm ADREWRITING, whereas the first rewriting
is slightly different from ADREWRITING. In particular, unlike the total mapping from
an application ontology to the domain ontologies, some of the concepts in G1 may not
be mapped to those in G2. Therefore, the answers returned by q′′ may contain null values
or Skolem functions for the unmapped concepts or properties.

The A2A mappings can be derived by composing the mappings between G1 and the
domain ontologies, inter-domain mappings, and those between G2 and the domain on-
tologies. To evaluate both query rewriting processes, we need to check the equivalence
(or containment) between a query and its rewriting. A correct query rewriting is the one
that is equivalent to (or maximally contained in) the query. These two issues (reasoning
on mappings [3, 23] and reasoning on queries [5, 21]) have been extensively studied
and are beyond the scope of this paper.

6 Conclusions and Future Work

In this paper, we present our design of a PIM system. We propose a layered ontology-
based framework, which aims to provide a semantics-rich environment for personal
information organization and manipulation. The multiple ontologies existing in differ-
ent layers of the architecture explicitly support the data semantics. Furthermore, the
decoupling of the domain layer and the application layer enhances the flexibility and
reusability of the framework. Specifically, we discuss in detail the semantic-enriched
data organization, including the use of file descriptions and domain ontologies as an-
notations, and the construction of resource-file and resource-resource associations. We
also introduce the idea of 3D navigation, which is used in a desktop browser. We discuss
query processing in our framework in two cases: within a single personal information
application, PIA, and between two PIAs, using application to application (A2A) com-
munication. A formal query rewriting algorithm is presented for the single PIA case.

In the future, we will continue the study and implementation of our framework. It
is clear that a lot of the success of PIM systems lies on the successful automation of
the different mechanisms that are needed. In particular, we will look further into the
automation of the conceptualization of full-text files and that of matching resources
to ontological concepts. Also, we will elaborate on the idea of 3D navigation both by
studying a model for temporal navigation and by carrying out user studies. The study
of A2A communication, including data exchange, collaboration, and query processing
will also be continued. While RDQL queries are expressive, they may not be suitable
for most users. We are therefore exploring visual queries that can express a class of
RDQL queries “appropriate” for the semantic desktop.

References
1. M. Berland and E. Charniak. Finding Parts in Very Large Corpora. In ACL, 1999.

14

32

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May
2001.

3. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. In CIDR,
2003.

4. V. Bush. As We May Think. The Atlantic Monthly, 176(1):101–108, 1945.
5. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based Query Contain-

ment. In PODS, pages 56–67, 2003.
6. J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer, 20(9):17–41, 1987.
7. I. F. Cruz, H. Xiao, and F. Hsu. Peer-to-Peer Semantic Integration of XML and RDF Data

Sources. In AP2PC, July 2004.
8. S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein, J. Broekstra, M. Erdmann,

and I. Horrocks. The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing,
4(5):63–74, 2000.

9. X. Dong and A. Y. Halevy. A Platform for Personal Information Management and Integra-
tion. In CIDR, pages 119–130, 2005.

10. P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen, M. Salisbury, D. B. Terry,
and J. Thornton. Extending Document Management Systems with User-specific Active Prop-
erties. ACM Transaction of Information System, 18(2):140–170, 2000.

11. S. T. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff I’ve Seen:
A System for Personal Information Retrieval and Re-use. In SIGIR, pages 72–79, 2003.

12. E. Freeman and D. Gelernter. Lifestreams: A Storage Model for Personal Data. SIGMOD
Record, 25(1):80–86, 1996.

13. J. Gemmell, G. Bell, R. Lueder, S. M. Drucker, and C. Wong. MyLifeBits: Fulfilling the
Memex Vision. In ACM Multimedia, pages 235–238, 2002.

14. A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB J., 10(4):270–294, 2001.
15. A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management Infrastructure

for Semantic Web Applications. In WWW, pages 556–567, 2003.
16. HP Labs. RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/rdql.htm,

2005.
17. Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: the State of the Art. The Knowledge

Engineering Review, 18(1):1–31, 2003.
18. M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS, pages 233–246, Madi-

son, Wisconsin, June 2002. ACM.
19. D. Maier and L. M. L. Delcambre. Superimposed Information for the Internet. In WebDB,

pages 1–9, 1999.
20. I. Mani. Recent Developments in Text Summarization. In CIKM, pages 529–531, 2001.
21. T. D. Millstein, A. Y. Halevy, and M. Friedman. Query Containment for Data Integration

Systems. Journal of Computer and System Sciences, 66(1):20–39, 2003.
22. T. H. Nelson. Xanalogical Structure, Needed Now More than Ever: Parallel Documents,

Deep Links to Content, Deep Versioning, and Deep Re-use. ACM Computer Surveys,
31(4es):33, 1999.

23. N. F. Noy. Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record, 33(4):65–70, 2004.

24. D. Quan, D. Huynh, and D. R. Karger. Haystack: A Platform for Authoring End User Se-
mantic Web Applications. In ISWC, pages 738–753, 2003.

25. G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Infor-
mation by Computer. Addison-Wesley, 1989.

26. L. Sauermann. The Gnowsis Semantic Desktop for Information Integration. In The 3rd
Conference on Professional Knowledge Management, pages 39–42, 2005.

15

33

��������� �
	����� � ����� ������	���� �!��	#"%$&�'�(���)�#*+�
, ��-.$/� �#01�(������23��� 4

5&687:9;6=<?>A@�BDCFEHGJI�K%LNM�OQPR>AST<�UVE�WX7YKZLV[\7XE�C]6%@^M�_`@NEHabLR6%@RI�cdE�WX7X>J@�5eGJE�>J@Ra
f3gihkjml\nHophpqYn�rDhpsHt�uVnHvRwyx�zQ{X|`t\hp{Yn�o�}it\hp~Zz��Djmh�r��
��n�hkjmzX�DjmoAn�l`rDz��Dt

��� ���y� s1� �������bw����H���H�&��nHhpjmz��DjmoknHlbrDz��Dt�w��dz��D�/nHt8�
�Q� �%�1�b���8��� ��¡%��¢Z£b¤1¥%�1�8�8¦H¢1§y¨H£%�Y�ª©]«8�`�H¬1�`�©:®8�

¯°�dz��D�/nHt=±izQjmzQn��D{;|�²�zQt8rDz��#³´s��¶µ��mrDh�·y{QhknHoR¸�t8rDzQopophp¹�zQt`{Qz&º¼»'½��'¸!�d�¾v\¿¶À
��� ���y� s1�3ÁH��ÂH�bw����H�H��Â&��nHhpjmz��DjmoknHlbrDz��Dt�w��dz��D�/nHt8�
�H��£8���8¨��Ã© ¨HÄH�%���:¡%�H¢Z£b�1�Ã©¼�`��%�1�b¤�¥�®8�H�`�V©�®8�

Å/Æ�ÇQÈQÉ1ÊyËHÈ�Ì¾Í h�rD|�rD|\z#n�hk�Îs�³y�DzQÏ\okn�{Qhpt\¹¶rD|\z#ÁH��ÐF�8zQn��mÐ]s�okÑ&ÁYÐ:»ÒÑ`zQjmÓ8rDs�Ï¾�&z�r;n�Ð
Ï`|\sH��Ô�hprD| n��&s��Dzdtyn1rDl`�;n�oFwbhpt8rDl\h�rDhp~ZzirDs�l\jmz�w`n�tyÑ/hk�&�&zX�Djmhk~�zd�1Ð:»Õhpt%rDzX�m³¼nH{�z�w
Ô�z�Ñ`zQ~Zz�oksHÏ�zYÑÖn°Ï`�DsHrDs�r��bÏ�z×n�Ï\Ï\ophp{Yn1rDhksHtÖrD|yn1r=nHopops1Ô�j/rD|\z3Ñb�btyn��&hk{=z��bÏ\opsHÐ
�;n1rDhksHtÖs�³�Ñ`s8{Ql`�&zQt8re{QsHopokz�{�rDhps�t\j � »¶s8{Ql`�&zQt8re�&z�r;nHÑ\n�r;nØnHt\ÑÙ�Dz�oAn1rDhps�t\j/v�z�Ð
r:Ô!zQzQt�Ñbs8{Ql\�&zQt8rDj�n��DzÃ~%hkjml\nHophpqQzYÑ¶Ô�h�rD|'rD|\zÃ|\zQopÏ'sH³`hpt`³JsH�D�/n�rDhpsHt�~%hpjmlyn�ophkqQn�rDhps�t
rDzQ{;|\t`hkÚ%l`zQj � x!|`z�¹�zQt`z��;nHo'~%hpjmlyn�okhpqYn1rDhps�tÕnHtyÑÛtynY~%hk¹�n�rDhps�tÜ�&z�r;n�Ï\|`sH�={YnHopopzYÑ
Ý�Þ`ß�àZá1Þ8âØã
äkåYæHç è×é�êXâ]æXëbÞ`ßHç n�okopsYÔ�j&l\jmzX�mÐ'nHt\Ñ+{Qs�t8rDz��%rmÐ]jmzQt`jmhprDhp~Zz
nHÑ\nHÏbrDhps�t
s�³¶~%hpjmlynHophpqYn1rDhksHtÖ�&s%ÑbzQjen�tyÑ^~%hkjml\nHophpqYn�rDhpsHtÖzQt%~%h��Ds�t\�&z�t%rDj � x!|\z nHl`rDsH�/n�rDhp{
Ñbs8{Ql\�&zQt8r�sH�D¹Zn�t\hpqYn1rDhksHt3�&s%Ñ`z�j!Ï`�Ds1~%hkÑ`ziÑ`h�ìNz��DzQt8r#hpt\jmhp¹H|%rDj#hpt=Ñ`s8{Ql`�&zQt8r!jmz�Ð
�/n�t%rDhp{QjinHt\Ñ3jmzYn��D{;|×�DzQjml\o�rDj � x!|`zQjmz�Ï�s�jmjmhpv\hpoph�rDhkz�j�n��Dz�jml\Ï\Ï`opzQ�&zQt8rDzYÑ v8�
rD|\z
Ï�sHjmjmhkv`hpokh�r:�+rDs3j rDsH�Dz
Ñbs8{Ql\�&zQt8rDj�n�r�l`jmz��mÐ:Ñ`z�·\t\zYÑNwV|`hkzX�;n��D{;|\hp{YnHopo��^s��D¹ZnHt`hpqQzYÑ
ops8{Yn1rDhksHt\jQwyÔ�|`hp{X|×n�opoksYÔ�jdÚ%l`hp{XÓe�DzQops8{Yn1rDhps�t�l\jmhpt\¹¾jmÏynH{�hAn�oV�&zQ�&s��m� �

í î\ï?ð�ñNò'ó�ô�õVðNöDò?ï

÷iø @yùbEH@`7�> ø @R6%G�I ø O1úNS3E�@\7 ø W°ûRGAEÖB;ü�B;7XEHSýùy>JE�þdE�WQB×GJ>Aÿ`EÙ7XPRE�� >J@RI ø þ�B�<����NG ø W�E�W ø W
5���<	� B�5 ø @�
\úNE�W ø W!6%W�E�
\úN>A7XE'úN@N>J@\7XúN>A7X>JùbE�7 ø O ø S�Nú�7XEHW#@NE�þ¶O ø S3E�WQB!þ'P ø ÿy@ ø þ @ ø 7XP��
>A@N_¾6%U ø ú�7ªûRGJEiBXüyB;7XEHS 6%WQOQPN>k7�EHO17XúNW�E����¶PNE�ü&B ø S3E17�>AS3EHBªPR6Zù`E��NW ø UNGJE�S×BªúN@RI�EHW�B;7�6b@RI�>J@N_
þ'PNE�W�E'7XPRE�ü��X6%W�E��¾>J@×7XPRE'ûRGJE�BXüyB;7XEHS 6b@RI3W�E�S3E�S=U�EHWX>J@N_&þ'PNEHWXE'7�PNE�>JWiI ø O�úNS3E�@\7�Bi6%W�E
BD7 ø W�EHI��Rcdú�7e6bI�ù86b@RO1E�I�O ø S�Nú�7�E�W�úRB;EHW�B�þ'>k7�P^PyúN_bE
I ø O�úNS3E�@\7�O ø GJGAE�OY7X> ø @�B�BD7 ø W�EHI+>J@
I�>���E�W�E�@\7&PN>JE�WQ6%WQOQPN>´O�6%GªC ø G´I�EHW�Be6%G´B ø BXú���E�WeCFW ø S 7�PNE×I�>JB�6bINùZ6b@\7�6%_`EHB ø C¶O ø @yù`E�@\7X> ø @R6bG
ûRGAE&BXü�BD7�E�S ùy>JE�þdE�WQB��\7XPRE�üØP�6ZùbE�7 ø úRBXE�7�PNE�>JW�O ø _b@N>A7X>JùbE¾E�@RE�W�_bü×W�E�S3E�S=U�EHWX>J@N_ @R6%S3EHB
6%@RI
G ø O�6%7X> ø @RB ø C�I ø O1úNS3EH@`7QB�LZ@R6Zùy>J_`6%7X>J@N_�7�P ø úN_`P/7�PNE?û�GAE'BXüyB;7XEHS PN>JE�WQ6%WQOQP\ü`L ø ��EH@N>A@R_
6%@RI+O1G ø BX>J@N_3C ø G´I�E�WQBHLR6%@RI�G øyø ÿy>A@R_=7�PNW ø úN_`P+6bG��RPR6%UVE17�>JOH6%GJGAü ø WQI�E�W�EHI�I ø O1úNS3EH@`7�GA>´BD7QB��
�¶PNE�W�Ee>JB'@ ø � ø B�BX>AUN>JGJ>k7Dü×7 ø úRBXEeBXE�S×6b@`7�>JO¾S3E17Q6bIN6%7�6 >J@+6b@�6`I�E�
\úR6%7XEeþ¶6Zü��
M�I�ù86%@�O1EHB�>A@ØO ø S�Nú�7�E�W�_`W�6��NPN>´O�B#P�6%WQI�þd6bWXE'6b@RI3B ø C¼7Dþd6bWXE ø �VEHW�@NE�þ�� ø B�B;>JUN>JGA>A7X>JEHB

@ ø 7 ø @RGAü C ø W�O ø S��Rú�7XEHW×_`6%S3E�B3UNú�7Ø6%G´B ø C ø W�IN6%>JGAü � úRBXE�6��!�NGJ>JOH687X> ø @�B���"m@�C ø WXS×6%7X> ø @
ù\>´BXúR6%GJ>�#�687�> ø @
7�EHOQPN@N>$
\úNEHBHL%7 ø _`E17XPRE�W#þ'>A7XP37XPRE�6%UN>JGJ>k7Dü
7 ø _bEH@NE�WQ687�E¶WXE�6%GJ>JB;7X>´O¶WXE�6%G��:7�>AS3E`L
>A@\7XEHW�6`OY7�>Aù`E�6��!�NGJ>JOH687X> ø @�B OH6%@ U�E+GJE�ù`E�WQ6%_bE�I >J@ ø W�I�EHW 7 ø O1W�EH6%7XE+6 @NEHþ _`E�@NEHW�6%7X> ø @
ø C&I ø O1úNS3E�@\7ØE����NG ø WXEHW�B��#M�@Î6��!�NGJ>JOH687X> ø @ E�@yùy>JW ø @NS3E�@\7×7XPR6%7�WXE�B;EHS
UNGJEHB3W�EH6bG�E�@yùy>��
W ø @NS3E�@\7�B¾O�6b@ÙU�E3úRBXEHIÙS ø WXE=>A@\7�úN>k7�>Aù`E�GJü^Uyü%��EHW�B ø @RB�þ'>A7XP ø ú�7e6b@yü&�RWX> ø W¾O ø S�NúN7XE�W
ÿ\@ ø þ'GAE�I�_bE'���¶PNE
ú�B;EHW�B(�VE�WQO1EH>Aù`E/S ø W�E/>J@�C ø W�S×687X> ø @Ù6bU ø ú�7�7�PNE=I ø O�úNS3E�@\7�BHLVBXúROQPÙ6`B

34

7XPNEH>AWdB;>)#�E`L%G ø OH687X> ø @ÃLb6%@RI3W�E�G´687�> ø @
7 ø/ø 7�PNE�WiI ø O1úNS3E�@\7QB�L`ù\>´BXúR6%GJGAü=úRBX>A@N_e7�PNE�>JW?@�687XúRW�6bG
O�6*��6%UN>JGA>A7X>JEHB
7 ø W�E�S3E�S=U�EHW B+�R687�>J6bGiG´6Zü ø ú�7=6b@RI 7 ø @R6Zùy>J_`6%7XE�>J@-,*�.� E�@yùy>AW ø @RS EH@\7�BHL
þ'PN>JOQPÕS ø W�E ø ùbEHW&CFW�E�EHB3O ø _b@R>k7�>Aù`E°O�6��R6bO�>k7�>AE�B
UyüÜBXPN>AC¼7X>J@N_/��6%WX7 ø C�7XPNE�>J@�C ø W�S×687X> ø @!�
ûR@RI�>J@N_�G ø 6`IØ7 ø 7XPRE/ùy>JBXúR6%GªB;ü�B;7XE�S0�!" 7�>JB�P ø �VEHI�7�PR687�7�PN>´B�GJEH6bIRB¶7 ø 63S ø WXE&E�1×O�>AEH@\7
O ø S=UN>J@R687�> ø @ ø C#PyúNS×6%@Ù6%@�IÙO ø S��Rú�7XEHW�O�6��R6%UR>AGJ>k7�>AE�B��R7XPNE=O ø S�NúN7XE�W¾PR6`B¶7XPNE 6%UN>JGJ>k7Dü
7 ø
\úN>´OQÿyGAüÒB;E�6%WQOQP 7�PNW ø úN_`PÒI ø O�úNS3E�@\7�BHL!O ø S�NúN7XEØBX>AS3>JGJ6bWX>A7X>JEHBHLÃOH6%G´O1úNG´687�EØ6%@RIÒW�E�@!�
I�E�W�I ø O�úNS3E�@\7�GJ6Zü ø ú�7QB�L�6b@RI&�NW ø ùy>´I�E ø 7XPRE�W¶7 øyø GJB¶@ ø 7�6Zù86%>JGJ6bUNGAE¾>J@&��6*�VE�W�I ø O1úRS EH@\7
6%WQOQPN>Aù`EHBHLyþ'PN>AGJE&PyúNS×6%@RB'OH6%@�ùy>JBXúR6%GJGJü2��EHW�O�E�>JùbEe>JWXW�E�_`úNGJ6bWX>A7X>JEHBd6%@�I°>J@\7XúN>A7X>JùbEHGAü°>A@\7�E�W+�
6bOY7�þ'>k7�P3,*�.� E�@yùy>JW ø @NS3E�@\7�B���4ª6bB;7ªUNú�7!@ ø 7�GJEH6`BD7�L�6�þiEHGAG�� INEHBX>A_`@NEHI&ùy>JW;7�úR6%G�� WXE�6%GJ>k7Dü � GA>JÿbE
_bWQ6*�NPN>´O�6bGNI ø O1úNS3EH@`7�E����NG ø WXEHW#>JB�S ø WXE¶CFúR@37 ø 7XPRE�6ZùbEHW�6b_bE?ú�B;EHW#7XPR6b@×6&O ø @yù`E�@\7X> ø @R6bG
ø @NE&6%@�IØ7�PyúRB¶S ø W�E¾S ø 7X>JùZ6%7X>J@N_��

�¶PN>JBdþ ø W�ÿ�B;EHE�ÿ�Bi7 ø E�ù86bGAúR6%7XE¾E5��>´BD7�>A@N_6,'� ûRGAE&BXü�BD7�E�S 6b@RIØI ø O�úNS3E�@\7�O ø GAGJEHO17X> ø @
6*�!�NW ø 6`OQPNEHB�6%@�I�LZúRB;>J@N_¾7XPREHBXEdE�����EHWX>JE�@RO�EHBª7 ø _bE�7XPNEHW�þ'>A7XP @NEHþ >´I�EH6`B�6b@RI
7XEHOQPR@N>)
\úNE�B�L
7 ø I�E�ù`E�G ø � 6b@RI >JS��RGAEHS EH@\7×6ÛBD7�E�W�E ø BXO ø �N>´O�6%@�I >AS3S3E�WQBX>Aù`E°BXüyB;7XEHS C ø W E51�O1>JE�@\7�GAü
ø W�_`6%@R>�#H>A@N_ÒI ø O1úRS EH@\7�B��i[7�VEHO1>´6%G'EHS�NPR6bBX>´B×þ'>AGJG�UVE ø @ @R6Zùy>J_`687�> ø @ >J@ >A@�C ø WXS×6%7X> ø @
B8�R6`O1E�B�LNþ'PR>JOQPÙ>J@RO�GAúRINEHBHLNC ø W�E5�N6%S�NGJEbLR7XPNE=ùy>JBXúR6%GJ>)#H687�> ø @ ø C#WXEHGJ6%7X> ø @RB�U�E�7DþiEHE�@ÙI ø O9�
úNS3E�@\7�B+6%@�I 7XPRE�� ø B�BX>AUNGJEÖþd6Zü�B ø C=B ø S3E�P ø þ:�XS ø ù\>J@N_ �ÒCFW ø S ø @NEÒI ø O1úRS EH@\7°7 ø
6%@ ø 7XPNEHW<; >=� E��JLª7XPNE°WXE�6%GJ>�#�687X> ø @ ø C�6 BXEH6bS GJEHB�B>,*�.� úRBXE�W >A@\7�E�WXC]6bO1EØ7 ø 7XPNE+B;EHS×6%@\7X>´O
I�EHBXÿ\7 ø �?�

@ Adð7B�ð�C ò�D×ð!E�CGF ñ�ð

H�I=J KMLONQP&N ROSOTVU�TXWYS-WYZ�[5SOZ.W�\^]`_�U�TXWYSbacTXd�eO_!fXT=g�_�U�TXWYS

h?i$j9k�l^mni�o�l*p=iXq*rÛ>´B'7�PNE/S×6*�!�R>A@N_ ø C�6%URB;7XWQ6bO17�IN687Q6 7 ø ùy>JBXúR6bGAGJüs�VE�WQO1E���7X>JUNGJE
687X7XW�>AUNúN7XEHB
GA>JÿbE¾O ø G ø W�L`BXPR6���E`LyBX>)#�EbL\G ø OH687�> ø @�Lb7�E5�y7XúRWXE`L`E�7�O*�yþ'>A7XPØ7XPNE¾>A@\7�E�@\7X> ø @ ø C�GAEHùbEHW�6b_b>J@N_&7XPRE
ù\>´BXúR6%G#BXüyB;7XEHS 7 ø W�EHO ø _b@R>�#HE ø Weùy>JE�þt��687;7�E�W�@RBHL�7�WXEH@RINBHL�>AW�W�E�_búRGJ6bWX>A7X>JEHBHLV6b@RIÖO ø @R@NEHO5�
7X> ø @RBe7�PR687
6bWXE @ ø 7/EH6bBX>JGAüQ�VE�WQO1EH>Aù86bUNGAE3>J@Ö7XE5�y7+� ø @NGAüÛIN687Q6^O ø GJGJEHOY7�> ø @RB��u�¶PN>JB&OH6%@ÒUVE
I ø @NE�U�E�O�6búRB;E�E�ù ø GJú�7X> ø @�E�
\úN>�����E�I�PyúNS×6%@RBiþ'>A7XP�7�PNEe6%UN>JGA>A7Dü 7 ø 7XPN>J@Nÿ�L�6%URB;7XWQ6bO17HL\WXE��
S EHS
UVE�W�LbúN@�I�E�WQBD7Q6%@RI�Lb6%@RI ø WX_\6%@N>)#�E¶ùy>´B;úR6bGAGJü��'�¶P\ú�B�L%ú�B;>J@N_&7�PNEHBXE'ùy>JBXúR6%GVO�6��R6%UN>JGJ>k7�>AE�B
>JB�O ø S�NGJE17�E�GJü�@R687�úNWQ6%G�L�E�W�_ ø @ ø S3>JObL�6%@RI°E51�O1>JE�@\7'C ø W'P\úRS36b@°UVE�>J@N_\B��

vxw iXy5rzp=i { w�| i$j9k�l^mni�o�l^p}iXq^r�C ø O1ú�B;E�B ø @ 7XPRE�ùy>JBXúR6%GJ>)#H687�> ø @ ø C�IN687Q6 ø U�7�6b>A@REHI CFW ø S E��7�
��EHWX>JS3E�@\7�B ø W'BX>AS=úNG´687X> ø @ ø CÃ@�687XúRW�6bG ø W?7�EHOQPN@R>JOH6%Gx�NPNEH@ ø S3E�@�6!�!�¶PN>´B¶IN687Q6
>´BdS36b>A@RGAü
ø C!7XPNE=@yúNS3E�W�>JOH6%G�7Dü7�VE=6%@�I�7XPNE/ù86bGAúNE�B ø C¼7XE�@ PR6ZùbE/6b@^>A@\7XW�>J@RB;>´O&B+�R687�>J6bGÃW�E��NW�EHBXE�@\7�6*�
7X> ø @u�z~5r��5q*�9�l*p=iXq*r | i$j9k�l^mni�o�l*p=iXq*rRLVU\ü�O ø @`7�W�6`BD7�L�>JB�O ø @�O1E�W�@NE�I°þ'>A7XP�7�PNE/ùy>JBXúR6bGA>)#H6%7X> ø @
ø C�l^r��°ÿy>A@RI ø C#IR687�6RL�CFW ø S _`W�6��NPRBd7 ø ûRGAS 7 ø 7Q6%UNGJEHB�7 ø þdE�U0�R6b_bEHB��R[y>J@RO1E
>A@�C ø WXS×6*�
7X> ø @^ùy>JBXúR6bGA>)#H6%7X> ø @&�NGJ6Zü�B�6×O�E�@\7XWQ6%G�W ø GJE&>J@+7XPN>´B'þ ø W�ÿVL�6%@ ø ùbEHWXùy>JE�þÎþ'>JGAGªU�E
_b>JùbE�@+>J@
7XPNEeC ø GAG ø þ'>A@R_3BXúNURBXEHO17X> ø @RB��
M�B��ÃúNC¼7XE��Nú�7#>A7HLZ7XPREi_ ø 6%G ø C�>A@�C ø WXS×6%7X> ø @
ùy>´B;ú�6%GJ>�#�687X> ø @
>JBª7XPRE¶IN>JB+�NG´6Zü ø CV6`BÃS=úROQP

IN687Q6&6bB�� ø B�B;>JUNGJE'>A@×6%@×6bWXE�6�6`B�B;S×6bGAGR6`B�� ø BXBX>JUNGAE'>J@×6eþd6Zü=B;úROQP=7XP�687�7�PNE(��EHW�O�E���7�> ø @
ø Cª>J@�C ø WXS×687�> ø @s�VE�Wd7X>JS3Ee>JB¶S×6^��>JS3>�#HEHI����¶PNEe>J@`7�E�@\7X> ø @ ø C�6=ùy>´B;ú�6%GJ>�#�687X> ø @ØS >J_bP\7'UVE
7XPNE0�NW�EHBXE�@\7�6%7X> ø @ ø C�>J@�C ø WXS×687�> ø @�L�7XPNE��XE5�N6%S3>J@N>A@�687X> ø @z� 6%@�6%GJüyBX>´B ø C�Pyü7� ø 7XPNE�7X>´O�6%G
6bB�B;úNS��7�> ø @RBHL ø W¾7XPNE��XE5���NG ø WQ687�> ø @��Ø6b@R6%GJü�B;>´B ø C¶übE17+��úR@Nÿy@ ø þ'@ÛIN6%7�6`B;E�7�B��u�¶PNE×IN687Q6
7 ø U�E^ùy>´B;ú�6%GJ>�#HEHI O�6%@ PR6Zù`E°7�PNE+C ø W�S ø C�7�6bUNGJEHBHL�_bWQ6*�NP�B�L!PN>JE�WQ6%WQOQPN>JEHBHL�S=úNGA7X>JS E�I�>´6
IN687Q6NL*�NW ø O1E�BXBXEHBHL8Pyü\URWX>´I3IN687Q6NL ø W?6%@yü ø 7XPNEHW#C ø W�S0�*"m@ ø WQI�E�W�7 ø 6bOHO ø S��RGA>´B;P3þ'>A7XP37�PN>JB

35

ùZ6bWX>JE17Dü ø C?IN6%7�6RL�6×PyúN_`E
I�>JùbE�WQBX>k7Dü ø C#>A@NC ø W�S36%7X> ø @^ùy>´B;úR6bGA>)#H6%7X> ø @+S3E17�P ø INB�P�6bB�UVE�EH@
I�E�ù`E�G ø �VEHI��

H�I�H a&TXd�e�_!f=TXg'_�U�T=WzSOd0_!S��t�%_��uT=�z_�U�TXWYS�_�f>�>WYSO��N ��U�dQZ.W�\�PcW?��eO]`N7SxU
[5SOZ.W�\^]`_!U�TXWYS�����_!��N7d

�¶PNE�W�E?6%W�E�S×6%@yüeE5�N6bS��RGAE�B ø CNùy>´B;ú�6%GJ>�#�687X> ø @�B ø CRI ø O�úNS3E�@\7ª>J@�C ø W�S×687�> ø @
B8��6bO1E�B�>J@/7XPRE
GA>A7XEHW�6%7XúNW�EbL�6%@RI S×6%@yüÙO ø @RO1W�E17�E=6*���NGA>´O�6%7X> ø @RB��NW�EHBXE�@\7�EHI ø @Ù7XPRE��ÖE�U?�x�¶PR>JBeBXEHOY7�> ø @
6%>JS3Bd7 ø _b>JùbEe6×B;P ø WX7 ø ù`E�W�ù\>JE�þ ø Cªù86bWX> ø úRB'6��!�NW ø 6`OQPNEHB��

� T=�?I'JzI�� EHÿ\>JS ø 7 ø E�7�6%G}��� B�"m@�C ø�÷ úNU�E

�¶PNE-i�r��5q^�9�6l^p}iXq^r w k���yÒ>J@\7XW ø INúRO1E�IÎUyü
� E�ÿy>JS ø 7 ø E�7¾6bG=�O������O�6b@^U�E
úRB;E�IÙ6bB�B;P ø þ'@
>A@Q��>J_��?�e7 ø ùy>JBXúR6bGA>)#�E/6 ûRGJE
BXü�BD7�E�S PR>AEHW�6bW8�
OQP\ü'���¶PNE3@NEHB;7XE�I7��U ø �ÙS3E17Q6*�NP ø We>JB&6°@R687�ú��
W�6bG\þ¶6Zü ø CVWXE��NW�EHBXE�@\7X>J@N_eO ø @\7Q6%>J@NS3E�@\7�� � EH@��
I�E�W�>A@R_�7�PNE'U ø �yE�B!B;EHS >A7XWQ6%@�B8�R6bWXEH@\7XGJü/6%GJG ø þ�B
7XPNE&úRBXE�Wd7 ø _\6%>J@�6b@ ø ù`E�W�ùy>AEHþ ø CÃ7�PNE&BD7�WXú�O9�
7XúNW�E�����@NE2�NW ø UNGJE�S�þ'>k7�P 7XPR>JB=6*�!�NW ø 6`OQPÛ>´B
7XPNE&I�>�1�O1úNGA7DüØ>J@°_\6%>J@N>J@N_ 6=_bG ø U�6%G ø ùbEHWXùy>JE�þ
ø C!7XPNE/B;7XW�úRO17XúNW�EbLVB;>J@RO1E&U ø ��EHB�O ø @\7�6b>A@REHI�>A@
S ø WXE�7�PR6%@ 7�PNWXEHE%�R6%W�E�@\7×U ø �yE�B ø W6�RGJ6`O1EHI
U�EHPN>A@�IÎU ø �yE�B ø C&7�PNEÛB�6%S3E^7�WXEHE GJE�ù`E�G�6bWXE
PR6%WQI 7 ø=ø URBXE�W�ùbE'���¶PNE�6bú�7XP ø WQB?6%G´B ø B;úR_b_bE�BD7
úRB;>J@N_'7�W�6b@RB+�R6%W�E�@RO�ü'7 ø ùy>´B;ú�6%GJ>�#HE�_bW ø ú!��B�GA>JÿbE
6%_b_`WXEH_`6%7XEHI+@ ø INEHB¾>A@Ö6c,*�.� _`W�6��NPÙUyü^WXEH@��
I�E�W�>A@R_ BXE�S3>k7�W�6b@RB+�R6%W�E�@\7 B+�NPNE�W�EHBÖO ø @\7�6%>J@��
>A@N_ 7�PNE/6%_`_bW�E�_`6%7XE�I×@ ø I�EHB��

�(�X��� �u��¡�¢!£�¤/£�¥%¦!§�¨�©*ª'£�¨

« ©*¨�¬�£5�©*®}¯!° ± ²�³!¨´£�µ+£�¶ �µ+§�·£¸·£5´©�³!¢!§'¨´µ
¹ §�¨º+¢!£3» ¼$µ+½�©*®)¼�¾�©^´¼�§'¶%§ ¹À¿ §�®)®�£ ¿ +¼)§�¶zµ�§ ¹�Á £�¥
³�©*ª'£�µ�¯x¡�¢�£ Á £�¥�³�©*ª'£�µº¨+£�µ8½�®�´¼�¶!ª ¹ ¨´§�·0Â ¹ §�¨
£5Ã!©*·³!®)£�Â�©`µ+£�©*¨ ¿ ¢ÅÄ ½!£�¨´Æb§�¨ ¹ ¨´§�·:©�³Y£�¨+Ç
µ8§'¶uÈ µ�¢!§'·£&³z©*ª�£'Â�©*¨´£c»7¼$µ8½�©�®�¼)¾�£�¬É©'µ�©Êµ+§*Ç
¿ ©*®)®)£�¬ÌË%Í�Î�ÏºÐ�Ð�Ñ^Â Á ¢!¼ ¿ ¢Ò¼$µÓ®)©�¥z£�®�£�¬Ò©*¶�¬
©*®)®�§ Á µÊ³�©�ª�£�Ç=´½!¨+¶�¼�¶!ªÔ©�¶�¬Õ+¢!£Ö¨+½�×6¼)¶!ªÔ§ ¹
³�©*ª'£�µ0ØV¥Y§*´¢b©�¶!¼�·6©*+£�¬zÙ3©'µ�¼�¶b¨+£�©*®¸¥z§7§'Ú7µ�¯
¡�¢!£M©*½�´¢!§�¨�µ ¿ ®$©*¼)·Û+¢z©^(+¢�£ ¹ ©*·¼�®)¼$©*¨(¥Y§ §'Ú
·�£�´©�³!¢!§�¨ Á ¼�´¢%¼��µ�»^©*¨´¼�§'½�µ ¹ £�©*+½!¨´£�µ	©*®)®�§ Á µ
¼�¶ +½�¼�´¼�»'£º½�µ+£�¯7¤�£�¥�Ü¸§7§�Ú ¿ ©*¶s¥Y£�¾�§7§�·£�¬s¼�¶
©*¶�¬Ý§'½�Q+§Þ¬�¼�ßx£�¨´£�¶ /¬!£�ª�¨´£�£�µ�Â�©'µ Á ¼�+¢Ô©
·©�ª�¶!¼ ¹ Æ7¼�¶�ª&ª'®)©'µ+µ�¯�¤�£�¥�Ü¸§7§�ÚQ¼$µ�¼)¶ +£�ª'¨´©*+£�¬
¼�¶�©�¶Qà^ÇâáÔ£�¶ »7¼)¨+§'¶!·£�¶ ¿ ©�®�®)£�¬ÝË%Í�ÎMã?Ð*ä+å�æ Í5ä%Ø=µ8£�£>¦O¼�ªz¯Y±�Ù5¯�çâ¶%´¢!¼$µºà*Ç.áÕµ8³�© ¿ £'Â Á £�¥
³�©*ª'£�µ�©�¶�¬&¤/£�¥�Ü¸§ §'Ú�µ ¿ ©�¶&¥Y£M³!®$© ¿ £�¬0¼)¶Q¬�¼�ßY£�¨+£�¶'	¬!¼)µ8+¼)¶ ¿ �®�§ ¿ ©^+¼)§�¶zµ�®�¼)Ú�£>©6¬!£�µ+ÚYÂz©
¹ § ¿ ½�µ(³!®$©*¶�£�Â7+¢�£M©*¼)¨�Â�§'¨�©3¥Y§7§�Ú ¿ ©�µ+£�¯

¡�©�Ú ¼)¶!ª/¼�¶ +§�© ¿�¿ §�½�¶'�+¢�£ ¿ §'µ8µ8+¨´½ ¿ ´½!¨´£s§ ¹ ¼�¶ ¹ §'¨+·6©*+¼)§�¶ Á §�¨´Ú�µ8³�© ¿ £�µ>©*¶z¬�+¢�£
®�§ ¿ ©�®�¼�<Æ�§ ¹ ¨+£ ¹ £�¨´£�¶ ¿ £À³!¨´¼)¶ ¿ ¼)³!®)£èØ Á ¢!¼ ¿ ¢3µ8´©^´£�µO´¢�©^�½�µ+£�¨�µ?´£�¶�¬>+§è¼)¶ +£�¨�© ¿ �¨´£�³Y£�©*+£�¬!®�Æ
Á ¼�´¢&©µ+·©�®�®x¶7½!·3¥z£�¨(§ ¹ ¬!§ ¿ ½!·£�¶ ´µ�Ù9Â « ©�¨´¬s£5�©*®}¯�¬�£ ¿ ¼)¬!£�¬s+§ ¿ ¨´£�©*+£è©é�êXÍ5ä+å*ä+ë�é7êXë�å^ì
í Ð^ä+Ñ^î=ï�å�ë�Í Á ¼�´¢&+¢!¨´£�£è·6©*¼)¶0®�£�»�£�®$µÀ+¢�©* ¿ ©�¶c¥Y£�½�µ+£�¬ Á ¼�´¢&¼)¶ ¿ ¨+£�©�µ+¼�¶!ª ¿ § µ<(§ ¹ +¼)·£�¯

36

�¶PNE&ûRWQBD7�GAEHùbE�GÃ>JB�7XPNE&C ø O�úRB��NG´6%@REbLRþ'PRE�W�E ø @NE���6%_bE ø W�63U øyø ÿ+O�6%@+UVE=BXP ø þ'@u���¶PRE
B;E�O ø @�IÛGJE�ù`E�G�>´B
OH6%GJGAE�IÓ�;>JS S3E�I�>J6%7XE×S3E�S ø WXüÖB8�R6`O1E��!��"m@Ò7XPR>JB
GAEHùbE�G�7XPNEØI ø O�úNS3E�@\7�B
O�6%@ÖUVE6�NGJ6`O1E�I ø @Û7�PNE�I�E�B;ÿ ø W&687
BXE�ùbEHW�6bG#I�>JB;7X>J@RO17>ð*�.�NG´6%@NE�B�>J@Ö7XPNE×6b>AW��u�¶PNE37XPR>AWQI
GAEHùbE�Gy>´B#6�U øyø ÿ\O�6bBXEbL��NG´6bO�EHIM��6%WQ6%GJGAEHG`7 ø 7�PNE(ð*�m6^��>´BÃ>J@,^�â� B8�R6`O1E`LH7 ø B;7 ø WXE¸�ÖE�URc øyø ÿ�B��
�¶PNEHBXE'U øyø ÿyB?O�6%@×UVE�S ø ùbE�I/7 ø/ø 7�PNE�Wñ�NGJ6`O1E�B#>A@�B+�R6`O1E�6%@�I ø ��EH@NEHI�LbUNú�7?7XPNEHWXE�>´B�6bGJB ø
7XPNE�� ø B�B;>JUN>JGA>A7Dü×C ø W¶7XPNE&úRBXE�W¶7 ø S ø ùbE¾>A@^6%@+6%@R>AS×687�EHI�þ¶6Zü37 ø C]6bO�E¾7XPNE&U øyø ÿ`OH6bBXE��

�ÛEHU�� ø W�6b_bE�W�� B'PN>JE�WQ6%WQOQPN>JOH6%G�þ ø W�ÿ�B8��6bO1E&>´BeO1EHW;7Q6%>J@NGAü+6�ú�B;E�CFúNG!þd6Zü ø C ø WX_\6%@N>)#�>J@N_
6%@RIØ@R6Zùy>A_\687X>J@N_
I ø O�úNS3E�@\7�Bd>J@c,*�.� B+�R6bO�E��!��@NE�I�WQ6Zþ'UR6`OQÿ ø C�7XPN>´B¶B;ü�B;7XEHS�LyP ø þdE�ù`E�W�L
>JB�7�PR687!7XPRE'úRB;EHW!_bE17QB�ò]6*��6%WX7�CFW ø S 7�PNE(� ø B�B;>JUN>JGA>A7Dü ø C ø @NE'BXEH6%WQOQP>
\úNEHWXü!óª@ ø O ø S�NúN7XE�W
6bB�B;>´BD7Q6%@RO�E�>J@ ø W�_`6b@N>�#H>A@R_
7�PNE&I ø O1úNS3E�@\7QB'>A@^B+�R6bO�E&6bB¶þdE�GJG�6bB¶>J@�S3EH@`7Q6%G�OH687XEH_ ø WX>JEHB��

� TX��I�ôuI �¶PNEM,'�Gõ�" �?ö < BXüyB;7XEHS

,��tõ�" �uö <�L�7�PNEM,^�â� >J@�C ø W�S×687�> ø @�ùy>´B;ú!�
6%GJ>)#H687�> ø @0�NWXE�B;EH@\7XEHI�Uyü�[�E�UNW�EHOQP\7�B�E17�6bG=�?� ,^�
6%@�I°BXP ø þ'@Ø>J@0�ª>J_��!,RLyPNE�G)�RBd7XPRE¾ú�B;EHW¶7 ø ø W+�
_`6b@N>)#�E
I ø O�úNS3E�@\7�B�7XPR6%7�W�EHBXúNGk7�CFW ø ST66�RWXE��
ùy> ø úRBÖB;E�6%WQOQPÝ
\úNEHWXü'� ÷iø @RO1E���7�BÖO ø @RB;>´B;7X>J@N_
ø C ø @NE ø W/S ø WXE×ÿ`E�üyþ ø W�IRB&6%W�E×@R6%S3EHIÒ6b@RI
O ø G ø W8�mO ø I�E�I×>J@�7XPRE�U ø 7X7 ø S ø C�7�PNE�þ'>J@RI ø þ��
� ø O�úNS3E�@\7�B?7XP�687dO ø @\7�6b>A@�6bGAG�ÿbEHü\þ ø WQINB ø C�6
O ø @RO1E���7�6%W�Ee_bW ø ú!�VEHIØ7 ø _bE�7XPNEHW'>A@^63O1GJúRB;7XE�W
6%@�I>�NG´6bO�EHI ø @=7XPNE'BXúNW;C]6`O1E ø C�6eB+�NPNEHWXE'� �¶PRE
S ø W�EØO ø @RO1E���7�B
6%W�E3C ø úN@RIÜ>A@Ü6ÙI ø O�úNS3E�@\7HL
7XPRE O�G ø B;EHW�>A7¾þ'>JGAG!UVE/7 ø 7�PNE
@ ø W;7�PQ� ø GJE��x"m@
_bEH@NE�WQ6%G�L�I ø O1úRS EH@\7�B ø @Û7�PNE�B�6%S3E×GJ6%7X>A7XúRINE
ø C�7�PNE�B+�NPNEHWXE�6%GJGRPR6Zù`E'7XPNE¾BX6bS3E�@yúNS
UVE�W ø C
O ø @RO1E���7�B����¶PNEeS ø B;7d>JS� ø W;7Q6%@\7iCFE�687�úNWXE�B ø C
7XPR>JB3BXüyB;7XEHS+Lªþ'>A7XPÕWXE�B8�VEHO17
7 ø úRBXE�W U�EHPR6Zù �
> ø WQB�L�6%W�E37XPNE°_bW ø ú!�N>J@N_ ø C'I ø O�úNS3E�@\7�B
>A@\7 ø
O1GJúRB;7XEHW�B'6b@RI�7�PNE/O ø G ø W8�mO ø I�>J@N_ ø C�O ø @RO�E���7QB��

� T=�?I�÷?I �¶PNEM4Ã>A_`P\7XP ø úRB;EeBXüyB;7XEHS

�¶PNE`ø�i�ù ú7pVú!q*k7j5yÜB;ü�B;7XE�S.INEHB�O1W�>AUVEHI Uyü
4�EHúRBXÿ\>VE17d6%G}�Y� û*�V>JBiúRBXEHI 7 ø ùy>JBXúR6%GJ>)#�E�BXEH6bW�OQP
W�EHBXúNGk7QB ø C¶þdE�U`
\úNEHWX>JEHB
UyüÛ>J@\7XE�_`W�6%7X>J@N_+7XPRE
7XWQ6bIN>k7�> ø @R6%GeWQ6%@Nÿ`EHI GJ>JB;7+þ'>k7�P 6 O1GJúRB;7XE�W�>J@N_
ùy>JBXúR6bGA>)#H6%7X> ø @uü�7XPNE úRBXE�W¾7XPyúRB¾UVE�@NE�ûN7�B�CFW ø S
7XPRE+6`I�ù86%@\7�6b_bE�B ø C�U ø 7XP 6*�!�RW ø 6bOQPNE�B��O�ª>J_*�
úNW�EÖû BXP ø þ�B P ø þý7XPNE W�6b@NÿbE�Iþý^�.� 7XE��y7
GJ>JB;7�B ø Ce7XPRE W�EHBXúNGk7QBØ6bWXE O ø @N@REHOY7�EHI 7 ø 7XPRE
ùy>JBXúR6bGA>)#H6%7X> ø @ ø C&7�PNE B+�NPNE�W�EHBØWXE��NW�EHBXE�@\7X>J@N_
7XPRE�þdE�Ub�R6b_bEHB����¶PNE^O1GJúRBD7�E�W3ùy>JBXúR6bGA>)#H6%7X> ø @
�NG´6bO�EHB?7XPNE¾I ø O1úNS3E�@\7+� B+�NPNEHWXE�B?6bOHO ø W�I�>J@N_e7 ø
B;7�687�>JB;7X>´O�6bGAGJü I�E�7XEHWXS3>J@NEHIÖB;>JS3>AG´6%W�>A7X>JEHB6ò]BX>JS3�
>JGJ6bWÙI ø O1úNS3E�@\7QB^6%W�EÖI�WQ6Zþ'@ O�G ø B;EÛ7 ø E�6bOQP

ø 7XPRE�W9ó9��[y>J@RO1E×O1G ø BXE�GJüÙ6bB�B ø O�>J6%7XE�I I ø O1úRS EH@\7�B�7XEH@RIÙ7 ø U�E3W�E�GJE�ù86%@\7¾7 ø 7XPNE×B�6%S3E WXE��

`úREHB;7�Bò]O�GAúRB;7XEHWeP\ü7� ø 7�PNEHBX>JB�óYLV7�PNE O�GAú�BD7�E�Weùy>JBXúR6%GJ>)#H687�> ø @Ù_b>JùbE�B�7�PNE úRB;EHWeS ø WXE3� ø BXBX>��
UN>AGJ>A7X>JEHB¶7 ø û�@RI+þ'PR687�BXPNE ø W¶PNE&>´B¶G ø\ø ÿy>A@N_ C ø W¶7XPR6b@+6 WQ6%@Nÿ`EHIØGA>´BD7��

37

�¶PNE�W�EÙ6%W�EÙ6%G´B ø B ø S3EÙE��\7�W�6ÖCFE�687�úNWXE�B37 ø GAE�7�7XPNE úRB;EHW&9DúRI�_`E^7XPREÙWXEHGAEHù86%@RO�E ø C
B ø S E ø Cª7XPNE&I ø O�úNS3E�@\7�B¶6%@�I�7 ø úRBXE¾7XPN>´B¶>J@�C ø W�S×687X> ø @Ø7 ø O�6bGJO�úNGJ6%7XE�7XPNEeW�E�GJE�ù86%@�O1E ø C
úN@89DúRI�_`EHI/I ø O�úNS3E�@\7�B���� PNE�@=>A@
BXúN_`_bEHB;7X> ø @eS ø I�EbLH7XPR>JBªWXEHGAEHù86%@RO�E�ù86%GJúNE?>´BÃùy>´B;ú�6%GJ>�#HEHI
U\üÜBXPR6`I�EHB ø C¾WXE�I 6b@RI _`WXEHE�@�LO�NGJúRB×B;7�6%WQB=7 ø S×6%W�ÿÒ7XPNE0� ø 7XEH@\7X>´6%GJGAü S ø B;7×WXEHGAEHù86%@\7
I ø O1úNS3E�@\7QB��
M IN>JB�6bI�ù86b@`7Q6%_`E ø CR7XPR>JB�BXü�BD7�E�S >´B�7XP�687#7XPRE�I ø úNURGAE¶W�E��NW�EHBXE�@\7�6%7X> ø @ ø CVI ø O�úNS3E�@\7�B

C ø WQO1EHB#7XPNE�EHübE¶7 ø/ø C¼7�E�@×G ø\ø ÿ/7 ø 6%@RI CFW ø Lb6b@RI S×6Zü\UVE�EHùbE�@ 7 ø 6bIN6���7#7XPRE'C ø O1úRBHLbþ'PNEH@
7XPNE/B+�NPNEHWXEe>´B�� ø B;>A7X> ø @NE�I�>A@�7XPRE/I�>JB;7�6b@RO1E'�

� TX��I ÿuI �¶PREM�ª6`B;ÿ��e6bGAGJE�W�ü

� ø UVE�WX7�B ø @ E�7Ü6%G}�� � ��I�EHùbEHG ø ��E�I��zl j��
� l*m�m�y��9�8LN6>,^�â� þ'>A@RI ø þ S36b@R6%_`E�W�L%7�PR687¶O�6%@
U�E&W�E�_\6%WQI�EHI°6bB'63B;>JS�NGJE/O ø @yù`E�WQB;> ø @ ø CÃ7�PNE
O ø @yù`E�@\7X> ø @R6bGsý �â�)þ'>J@RI ø þ�BÜ6b@RI I�EHBXÿ\7 ø �
S E�7�6��NP ø WQB�7 ø ,^�â�>���¶PRE'S E�7�6��NP ø W?úRB;E�I=C ø W
7XPN>´B36*�!�NW ø 6`OQP >JB36b@ 6%WX7 _\6%GJGAEHWXü';Î6^GJ>A@NE�6%W
PR6%GJGAþ¶6Zü^þ'>A7XP 6s�RGJ6%7;C ø W�S 6%7&7XPNE3E�@�I��?�¶PNE
O1úNW�WXEH@\7�7�6bBXÿ�>´B��NG´6bO�EHI ø @e7�PNE��NG´687XC ø W�S+L�6%@RI
6%@ ø W�INE�W�EHI 6%@�I 6%@ÕúN@ ø W�I�EHWXE�IÜB;7�6bOQÿÖPNEHG��
ø W�_`6%@R>�#H>A@N_37�PNE þ'>A@RI ø þ�B��x�¶PNE úRB;EHW¾OH6%W�WX>JEHB
6 B ø �mO�6%GJGJEHIþ�XB;7�6bW;7&�R6%GJE17X7XE��Ü>J@ PN>´B ø W°PRE�W
ù\>JWX7XúR6bGÃPR6b@RI���" 7¾G øyø ÿyB�GA>JÿbE 6%@Ù6%WX7X>´B;7�� B(�R6%G��
GAE�7;7XE�òF>J@ GJ>A@REØþ'>A7XPÜ7�PNEØ_\6%GJGAEHWXüÛS3E17�6��NP ø W�ó
6%@RI^OH6%@+U�E
úRB;E�I+E5�N6bO17XGJüØ>J@+7XPNE=BX6bS E&þ¶6Zü
6bB?7XPNE	� [�.� >A@�I ø þ�Bd[y7�6%WX7
�ÙE�@yú�7 ø B;7�6%WX7d6��!�NGJ>JOH687�> ø @RB ø W?7 ø
ø ��EH@°I ø O1úRS EH@\7�B��'"m@��
6bOY7�>Aù`Ee7�6`B;ÿ�B�6bWXE&W�E��NW�EHBXE�@\7�EHI�Uyü�B�O1W�E�EH@RB;P ø 7�B ø C!7XPNEH>AW�þ'>A@RI ø þ O ø @�ûR_`úNWQ687X> ø @+þ'PNEH@
7XPNEHü�þiEHWXE ø @Ø7XPNE��RGJ6%7;C ø W�S+L7�NGJ6`O1E�IØGJ>Aÿ`E¾6bW;7Dþ ø W�ÿ ø @°7XPNEeþ¶6%GJGJB ø W¶EHùbE�@ ø @°7XPNE�� øyø W
ø W&O1EH>AGJ>A@R_ ø C?7XPRE _\6%GJGAEHWXü'�VcdüÙO�GA>´OQÿy>A@N_ ø @ 7XPNEHS+LÃ6%@Ö6%@N>JS×687X> ø @Û>JB&B;7�6bW;7�EHIÙ7 ø S ø ù`E
7XPNE�O�úNWXW�E�@\7&7Q6bBXÿ^7 ø >A7�B��RGJ6`O1E ø @Û7XPRE�þd6bGAG�6b@RIÛ7 ø S ø ùbE 7�PNE�B;EHGAE�OY7�EHIÛ7�6`B;ÿ 7 ø 7XPRE
�NGJ6%7;C ø WXS+L�S×6%ÿy>J@N_3>k7'7�PNE&@NE�þ 6bO17X>JùbE¾7�6`B;ÿx�

�(�=�?��u��¡O© ¿ +¼)®�£Mà*Ç.á

¦�¼)ª�½�¨+£��Gµ+¢!§ Á µ�©Gµ ¿ ¨+£�£�¶�µ+¢!§�Ê§ ¹ ´¢!£
��å'ë��}ê�ì�Í���� ° �*²ñµ8Æ�µ8+£�·&Â�© ¿ §�··£�¨ ¿ ¼$©*®�à^Çâá
½�µ8£�¨º¼)¶ +£�¨ ¹ © ¿ £ ¹ §'¨	´¢!£�£5Ã�³!®)§�¨�©^+¼)§�¶Q©�¶�¬%§'¨8Ç
ª'©*¶�¼�¾�©^+¼)§�¶�§ ¹ ¬!§ ¿ ½!·£�¶ ´µ���¼�è¼$µ�µ8+¼)®�®�¼)¶�¬!£5Ç
»�£�®)§�³�·�£�¶ �¯�¡�¢!£	�z®�£Mµ+Æ�µ<´£�· ´¨+£�£Mµ<´¨+½ ¿ +½�¨+£
¼)µ�»7¼$µ8½�©�®�¼)¾�£�¬M¼)¶3à*Ç.á�µ+³�© ¿ £À½zµ8¼)¶!ªèµ8£�·�¼�+¨�©*¶zµ<Ç
³�©*¨´£�¶ ºµ+³!¢!£�¨+£�µ�+¢�©*º¨´£�³!¨´£�µ+£�¶ ¹ §'®)¬�£�¨´µº©*¶�¬
+¢�©* ¿ §�¶ ´©�¼�¶�¬�§ ¿ ½!·£�¶'�µ�©*¶�¬3§*´¢!£�¨ ¹ §'®)¬�£�¨´µ�¯
¡�¢!£6©^8´¨+¼)¥!½�´£�µ�§ ¹ ¬�§ ¿ ½!·£�¶ ´µM©�¨+£©^�®)£�©'µ<
³�©*¨++®)Æ2»7¼)µ+½�©�®�¼)¾�£�¬�� +¢!£	��®)£�<Æ7³z£�¬�£���¶!£�µ¸´¢!£
µ8¢�©�³z£&©*¶�¬�+¢!£s+£5Ã7´½!¨+£c§ ¹ ´¢!£cà*Ç.á §�¥��<£ ¿
¨+£�³!¨+£�µ8£�¶ +¼)¶!ª�+¢!£���®�£'¯
 7³Y£ ¿ ¼)©�® ¹ §'®)¬�£�¨´µ2®�¼)Ú�£
¬�¨+¼)»�£�µ�©*®$µ+§�¢�© »�£�µ+³z£ ¿ ¼$©*®Yµ8¢�©�³z£�µ�¯"!�¼$¬!¬�£�¶2§�¨
¨+£�©�¬7Ç.§�¶!®)Æ	µ8´©*+½�µ�¼$µ�¼)¶�¬�¼ ¿ ©*+£�¬è¥7Æ�µ8£�·�¼�+¨�©*¶zµ<Ç
³�©*¨´£�¶ (·6©^+£�¨+¼$©*®�§'¨�¥7Æs©¨´£�¬&¢7½!£�Â!¨´£�µ+³Y£ ¿ ´¼�»'£�®)Æ�¯!¡�¢!£�¨´§*�©^´¼�§'¶&µ+³z£�£�¬&§ ¹ +¢�£�§�¥��<£ ¿ ´µ
¼�¶ ¹ §'¨+·6µ¸´¢!£�½�µ+£�¨�©*¥Y§�½!(+¢!£�®$©�µ8(·�§�¬�¼#� ¿ ©^+¼)§�¶0¬!©*+£�§ ¹ +¢!£�§'¥��<£ ¿ �¯

38

��U�9DEHO17�B�þ'>A7XPR>A@Ø6
O ø @\7Q6%>J@NE�W?OH6%@×UVE	�NG´6bO�EHI3>J@�6/B ø WX7X>J@N_&U ø �×6%@�I37XPyúRB?U�E¾B ø W;7�EHI
U\ü×ù86bWX> ø úRB¶B ø WX7X>J@N_ ÿbE�ü�Bi>A@°7XPRE/O ø @yù`E�@\7X> ø @R6bGRþ¶6ZübL\C ø W�S3>A@R_�,*�.� O ø @�ûR_`úNWQ687X> ø @�B�GJ>Aÿ`E
6/I ø úRUNGAE�PNE�GJ>���L �yüyW�6bS >´I�L ø WiO�üyGA>J@RI�EHW�� �¶PNE ø U�9DEHO17�B#7�PR687¶6%W�E�@ ø 7i>J@×7XPNE¾B ø W;7�>A@R_&U ø �
O�6%@�UVE ø W�_`6%@R>�#HEHI�Uyü×7�PNE&úRBXE�W��

$ % ò'õ�ô'& ò�ñ)(Xó*%ÅC,+yö.-?ï/%�CÃõ�ö�+yöDò?ï0+�B#ï�ó/1�CuB2(;ö43�BªðNö;ò?ï

ôuI=J KMLONQP&_�U�_�a&TXd�e�_!f=TXg'N �bTXS�P&Wu�'e,5tWz\^fX�
�¶PNE^IN687Q6 >A7XEHS3B 7 ø U�E+ùy>JBXúR6bGA>)#�E�IÜ>J@ 7�PNE^O ø @\7�E5�y7 ø C�� ø O1ú!� ø W�GJIÕ6%W�E�I ø O�úNS3E�@\7�B
þ'>k7�PÛB ø S3E/S3E17Q6bIN6%7�6�6b@RIÙB ø S3E
W�E�G´687�> ø @RB'7 ø EH6`OQP ø 7�PNE�W��x��@NE3�NW ø UNGJE�S >J@^7XPNE I�E5�
ùbE�G ø �RS EH@\7 ø Cñ� ø O1ú!� ø W�GJIÙþd6`B'7XP�687�@ ø 7�S×6b@\ü+O ø @RO1W�E17�E
I ø O1úRS EH@\7�S3E17Q6bIN6%7�6�6b@RI
I ø O1úNS3E�@\7 WXEHGJ6%7X> ø @RB ø C�B+��E�O1>´6%G?>JS� ø W;7Q6%@RO�E°O ø úNG´IÒU�E�I�E1û�@NEHIÕ687/7�PNE�B;7�6%7XE ø C�I�E5�
ùbE�G ø �RS EH@\7 ø C26 ö ";[z� � Ly7XPNEè�NW ø 9DE�OY7¶þ'PN>´OQP�BXúNURBXúNS3EHIØ7XPN>´B¶þ ø W�ÿY���¶PNEHWXE�C ø W�EbL�B ø S3E
� ø BXBX>AURGAü�ú�B;E�CFúNGÃI ø O1úRS EH@\7��NW ø ��EHW;7�>AE�B¶PR6bIØ7 ø UVE/I�E�ûR@NEHIu�
[ø S3E	� ø B�BX>AUNGJEe687;7�WX>JUNú�7�EHBdþ'PN>´OQPØS3>J_bP\7dUVEeO ø @�B;>´I�E�W�EHIØ6bBdS3E17�6`IN687Q6 ø C�7XPNEeI ø O9�

úNS3E�@\7�BHLR6%W�Ee6bBdC ø GJG ø þ�B��

7 òF>J@^B ø S EeO�6`B;E�B´ó N"8��Of=TX�'TVU�f:9`�zTX�zN7S���_!U�_ B;ú�OQP°6bBi7�PNEe7X>A7XGJEbL��NPyü�BX>JOH6%Gx�R687�P�LNBX>�#HE
òF@yúNS=U�EHW ø Cx�R6b_bEHB!>´B#úRBXúR6bGAGJü
S ø W�E¶7XP�6%@ ûRGJE�B;>)#�E óYLbIR687XE ø C�O1W�EH687�> ø @�L%IN6%7XE ø C�G´6bB;7
S ø IN>kû�OH687�> ø @�L�IR687XE ø CNG´6bB;7ªúRBXEbLHûRGJE�C ø WXS×687�òFE'� _z�AL�;ñ���dL=<º�>�Q4�L �NG´6%>J@&7XE��y7�óYLZI ø O9�
úNS3E�@\7�7Dü7�VEsòFE'� _z�AL�E�S×6%>JG:Lz�R6*�VE�W�LNW�E�� ø WX7�ó1L�BXE�S×6%@\7X>´O&O�6%7XEH_ ø W�übL�G´6%@R_búR6b_bEbL ø WX>J_b>J@
ò]6bú�7XP ø WHL�>J@RB;7X>A7Xú�7�E�ó1LN7XE��y7�U ø I�ü`LR6%@RI+BXúNS3S×6%W�üYü

7 ��TX\^N ��U�f:9Ê�'Wz]`�Oe�U�_�?�fXNc��_!U�_ BXúROQP�6`Bi6e7�PyúNS
UN@�6%>JG ø C�7XPNE�ûRWQBD7ñ��6%_bE ø Wd6&G ø _ ø ü
7 �!_!fXeON7dM��WY]���e?U�N7�@?�9Ê_!\�U�TVR���T=_!f�TXSxU�N f=fXT=�zN7SO��N BXúROQP�6`B#WXEHGAEHù86%@RO�E>òFE'� _z�AL`@\úRS3�
U�EHW ø C?PR>k7QB´óe6`O�O ø W�IN>A@N_�7 ø B;E�6%WQOQP�
\úNE�W�>JEHB ø W¾WXEHGAEHù86%@RO�E 6`O�O ø W�IN>A@N_Ø7 ø B ø S3E E��7�
6%S�NGJE&úRBXE�W+��WQ687�EHIØI ø O�úNS3E�@\7�BHL�>JS�� ø WX7�6b@\7�ÿbE�üyþ ø WQINBHL\6b@RIØþ ø WQI°>A@RINE5��EHB�üN6%@RI

7 e�d�N \s�ON'R�SON ���O_�U�_ BXúROQP+6bB¶@ ø 7XE�B�LN6b@N@ ø 7Q687�> ø @RB�L�WQ687�>A@R_`BHLy6b@RI+O ø S S3EH@`7QB��
� PNE�@ÖB ø S E ø C�7�PNE3IN687Q6�ò¼C ø We>A@RB;7�6b@RO1E`L�@yúNS=U�EHW ø Cñ�R6b_bE�B´ó�>JB�@ ø 7eE5���NGJ>´O1>A7XGJü^_b>JùbE�@ÃL
>k7×O�6b@ UVE�O ø S�Nú�7�EHIÜ>J@ÕB ø S3E�O�6bBXEHB��O"m@Ü7XPRE�OQP ø B;EH@ I ø O1úRS EH@\7 ùy>´B;úR6bGA>)#H6%7X> ø @�Lª7XPRE
O�687�E�_ ø W�>JOH6%G�IN6%7�6���I ø O1úNS3E�@\7=OH687�E�_ ø WXü���>´B
W�E��NW�EHBXE�@\7�EHIÖUyü 7�PNE°O ø G ø W ø C'7XPNE�U øyø ÿ
O ø ùbEHWHL�7XPRE ø W�I�>J@R6bG!IR687�6É�;@yúNS=U�EHW ø Cñ�R6b_bEHB´��>´B¾ùy>JBXúR6%GJ>)#�EHIÛ6bB�7XPRE
7�PN>JOQÿy@NE�BXB ø C?7XPRE
U øyø ÿ�LV6%@RI+6�I�üy@R6bS3>JO�
\úR6b@`7�>k7Q687�>Aù`E/ù86%GJúNE&>JB�WXE��NW�EHBXE�@\7XE�I°UyüØ7XPNE=übE�GJG ø þ'@NEHB�B ø C!7XPRE
CFW ø @`7(�R6b_bE'�

; ø B�B;>JUNGJE�7Dü7�VEHB ø C!W�E�G´687X> ø @�BdO ø úNG´I°U�E ø WX_\6%@N>)#�E�I�>J@+BX>JS >JG´6%W�O�6%7XEH_ ø W�>JEHB��

7BA 8���fXT=��TXU�fC9b�zTX�zN7S�\^N7fX_�U�TXWYS�d 6bWXE¾7XW�E�E2ò]E�� _��JL�ûRGJE/B;ü�B;7XEHS 7XW�E�E ó ø W'_`W�6��NP�B;7XW�úRO5�
7XúNW�EHB��

7 �3Wz]���e�U�N7�`\^N7fX_�U�TXWYS�d OH6%@�U�E`LyC ø W'E5�N6bS��RGAE`LyBX>JS >JG´6%W�>k7�>AE�BiUVE17DþdE�EH@�I ø O�úNS3E�@\7�B
6bOHO ø WQI�>J@N_=7 ø B;E�6%WQOQP&
\úNEHWX>JEHB ø W ø 7XPRE�W�O1W�>A7XE�W�>´6!�

7BD d�N \=E´�ON'R�SON �Å\ N7f=_�U�T=WzSOd S3>J_bP\7�UVE&7�6`B;ÿ �mB8�VEHO�>kû�O
O ø @R@NEHO17X> ø @RB'UVE17DþdE�EH@ÙI ø O1ú��
S3E�@\7�B6ò]E�� _��JLÃI ø O1úNS3EH@`7GF W�E�S3>J@RINB¾7XPRE ú�B;EHW ø CdI ø O�úNS3E�@\7IH 7XPR6%7/S3>A_`P`7/6bGJB ø
U�E ø C�>J@\7XEHWXE�BD7¶7 ø 7�PNE/O1úNW�W�E�@\7¶7�6bBXÿ!ó9�

7 [5]���fXT=��TVU�fC9s�YTV�YN7S%\^N f=_�U�T=WzSOd UVE17DþdE�EH@
I ø O1úNS3EH@`7QBª6bWXE�7XP ø B;E#7�PR687�U�E�O ø S EdO1GJEH6bW
þ'PNE�@ O ø S���6%W�>A@N_ÕB;EHùbE�WQ6%G¾I ø O1úNS3EH@`7+687X7XW�>AUNúN7XEHB+6b@RI W�EHO ø _b@N>)#�>J@N_ BX>JS >JG´6%W�>k7�>AE�B
6%@RI°I�>��VEHWXEH@RO1E�BiUVE17DþdE�EH@°I ø O�úNS3E�@\7�B ø Wd_bW ø ú��RB ø CªI ø O1úNS3EH@`7QB����¶PNE�B;E¾W�E�G´687X> ø @�B

39

6%W�E3úRB;ú�6%GJGAüÙùy>´B;ú�6%GJ>�#HEHIÖ>AS�NGJ>´O1>A7XGJüÙ7XPRW ø úN_bPÛ7XPNEØù\>´BXúR6%GJ>�#�687�> ø @ ø C'I ø O1úRS EH@\7
6878�
7XW�>AURú�7XE�B��

"m@&7XPNEiO�6bBXE ø C�� ø O1ú!� ø W�G´I�L17�PNE?E���6bS�NGAEiI ø O1úNS3E�@\7QBÃ6%W�E�6%U ø úN7�ýKJLJ>;ñ���°I ø O�úNS3E�@\7�B
>A@ 7XPRE¶7Dþ ø O�6%7XE�_ ø W�>AE�B��;ÿy@ ø þ'GJEHI�_`E?S×6%@R6b_bEHS EH@\7´�¾6%@RI/�;>J@�C ø W�S×687�> ø @=ùy>´B;úR6bGA>)#H6%7X> ø @����
��6%7�6ÖC ø W37�PNEHBXE^I ø O1úNS3EH@`7QB×>J@RO1GJúRI�E�B37XPNE+û�GAE^@R6bS3EbL#@yúNS
UVE�W ø Cº��6%_bE�B�L�OH687�E�_ ø WXü`L
6%@RIÒ7�E5�y7HL!>J@RO1GJúRI�>J@N_Ò6�4ÃúRO1EH@NE��NM��¶þ ø WQIÒ>A@RINE5� 7XP�687×6%GJG ø þ�B>� ø þdE�WXCFúNG¶B;E�6%WQOQP�Lª6b@RI
>JBe_`>Aù`E�@Ù7�P ø úR_bPÖ>A@!�Rú�7/S3E17XP ø IRB��O��7�PNE�W&IN6%7�6RL�GA>JÿbE3W�E�G´687X> ø @�B�7 ø�ø 7XPNEHW/I ø O1úNS3EH@`7QB�L
>JB 6%WX7X>Aû�O1>´6%GJGJüÛ6bIRI�EHIÒ7 ø E�6bOQPÜI ø O1úRS EH@\7=UyüÖINü\@�6%S3>JOØ>A@R>k7�>J6bGA>)#H6%7X> ø @ ø W I�E1û�@NEHI Uyü
7XPNE¾úRBXE�W¶I�úNW�>A@N_=E5��EHO�ú�7X> ø @Ø7X>JS3EbL�6bBi>A@Ø7XPNEeO�6`B;E ø CÃú�B;EHW8� S×6%W�ÿbEHI3I ø O�úNS3E�@\7�B��7"m@�7XPRE
ûR@R6%GdùbEHW�BX> ø @ ø C'7�PNE+6*�!�NGJ>´O�687�> ø @�Lª7XPNE�WXEHGJ6%7X> ø @RB
þ'>AGJGdU�E+6bO�
`úR>AW�EHIÒUyüÜBXüyB;7XEHS×B/GJ>Aÿ`E
�¾@ ø þ�B;>´B�� ONL4P*�}�

ôuI�H Q&f=W)?�_!f¸PcN7d�TX�YS-P&N7��TXd�TXWYSSROKMLONQKMLOWYe��YLxUT5 T=g�_�\^��UÔN U�_��OLOWz\
� PNE�@ O ø @RBX>JI�EHWX>J@N_Ø7XPNE ø WX_\6%@N>)#H6%7X> ø @ ø C¶I ø O1úNS3EH@`7QBe>A@Ê,^�â� B+�R6bO�EbLV7XPNE%m)q w q^�6q^p}iXq^r
�y�p.lWV!ú�q^�Ý�;GJ>AURW�6bWXü��NL!þ'PNEHWXE+7�PNE^úRBXE�W�S ø ù`EHB 7XPRW ø úN_bP W ø þ�B ø C&U øyø ÿ\O�6`B;E�B�L!S3>A_`P\7
B;EHE�S 6°@R687�úNWQ6%G�B ø GJú�7X> ø @Ö687eûRWQBD7��u�¶PNE�W�E 6bWXE`L�P ø þiEHùbEHWHL�B ø S3E ù86bGA>´IÛ6bWX_`úNS3E�@\7�B�C ø W
7XPNE&úRBXE ø C#6&p�ú�y´l*p.y����6y5pâlXV�ú!q^�YL�þ'>k7�P+þ'PN>JOQP+@ ø S ø ùbEHS3E�@\7'>JB¶@NE�O1E�BXB�6%W�üx�

7 �¶PNE?GJ>JUNW�6bWXü¾S3E17Q6*�NP ø WÃþ ø úNG´Ieþ ø W�ÿ ø @RGAüe>ACNEH6bOQP/I ø O�úNS3E�@\7ªP�6bI/6�B;7�6%7X>´O�� ø BX>k7�> ø @
>A@Q,*�.� B8��6bO1Ee7�PR687eO ø úNGJI+UVE/W�E�S3E�S=U�EHWXE�I+6%@RI+W�E�G ø O�687�EHI�UyüØ7�PNE
ú�B;EHW�þ'>k7�P^7XPRE
PNE�G)� ø CRPN>´B ø W�PNE�W!B+�R687�>J6bG\S3EHS ø WXü'�=Y�B;E�CFúNG�>J@�C ø W�S×687X> ø @=B8�R6`O1E�BªBXP ø úRGJI�LZP ø þdE�ù`E�W�L
6%GJG ø þÎ7XPNE&úRBXE�Wd7 ø >J@\7XEHW�6`OY7¶þ'>k7�P°7�PNEe>A@NC ø W�S36%7X> ø @+6%@RIØ7XPRE¾ùy>´B;ú�6%GJ>�#�687X> ø @�B;P ø úNG´I
WXE�6bO17=I�üy@R6%S3>´O�6bGAGJü 7 ø 7�PNEØúRBXE�W�� B/W�E�
\úNEHB;7�B=6%@RIÜ@NE�E�INB�üÃ7XPN>´B >JB
PR6%WQIÖ7 ø WXE�6%GJ>�#HE
þ'>k7�P 6ÜB;7�6%7X>´OÙGJ>AURW�6bWXüÕS E�7�6��NP ø W��À�¶PREÛO ø @RO1E���7 ø C
I�üy@R6%S3>´O�6bGAGJüÕW�E ø WX_\6%@N>)#�>J@N_
I ø O1úNS3EH@`73O ø GAGJEHO17X> ø @RB=O ø úRGJI UVEØ>JS�NGJE�S3E�@\7XE�I þ'>A7XPÜù86%W�>´687X> ø @�B ø C¶7�PNE�7�PNEH6%7XE�W
S3E17�6��NP ø W��

7 M�OHO ø WQI�>J@N_=7 ø 7XPREeOQP�6%WQ6bOY7�E�W�>�#H>A@R_=I�>��VEHWXEH@RO1E�B¶U�E�7DþiEHE�@�G ø O ø S ø 7�> ø @°6%@�I�7�PNEH6%7XE�WS3E17�6��NP ø W�BHL�G ø O ø S ø 7�> ø @ÛS3E17Q6*�NP ø WQB&6%W�E��XE�_ ø O�E�@\7XW�>´O���6%@RI 7XPNE�687�E�W/S3E17Q6*�NP ø WQB
�XI ø O�úRO1EH@`7�WX>´O�����"m@
7XPNE'O ø @\7XE��\7 ø C�6¾I ø O1úRS EH@\7!O ø GJGAE�OY7X> ø @ 6*�!�RGA>´O�6%7X> ø @�LH7XPNE¶úRBXE�W�� B
� ø B;>A7X> ø @Û>JBeGJEHB�B¾>AS� ø WX7�6b@`7 ø W¾E�ù`E�@ ø C?@ ø �R6bW;7�>JO�úNGJ6bW�S3E�6%@N>J@N_����¶PNEHWXE�C ø W�EbLV7XPRE
>A@NC ø W�S36%7X> ø @°G ø 6bI�@RE�EHINEHI×C ø W¶úN@RI�EHW�B;7�6b@RI�>J@N_ 6b@RIØBXúN>A7�6bUNGAü�OQP�6%@N_`>A@N_
7XPNEeúRBXE�W�� B
� ø B;>A7X> ø @�OH6%@×UVE�úRBXEHI×C ø W�7�PNE�S ø W�E�>JS� ø W;7Q6%@\7i6%@�6%GJüyBX>´B ø CÃI ø O�úNS3E�@\7ñ� ø BX>k7�> ø @RB�L
O ø @`7�E�@\7HLN6b@RI�WXEHGJ6%7X> ø @RBdUVE17DþdE�EH@+I ø O�úNS3E�@\7�B��

7 �¶PNEH6%7XEHW�S3E17�6��NP ø W�B�6bGJB ø PR6Zù`E¶7XPNE�6`I�ù86%@\7�6b_bEd7XP�687?úRBXE�WQB#þ'>A7XP�@ ø E5����EHWX>JE�@�O1E�>J@
@R6Zùy>A_\687�>A@N_×>J@Ùùy>JW;7�úR6%GO,^�â� E�@yùy>JW ø @NS3E�@\7�B�6%@RI�L�>A@ÛO ø S�NGJE5�^EH@\ùy>JW ø @NS3E�@\7�BHLR6bGJB ø
E5���VE�WX7�úRB;EHW�B¶6bWXEe@ ø 7�>A@+IN6%@R_bE�W ø Cª_`E17;7�>A@R_×G ø BD7'>J@0,*�.� B+�R6`O1E��
�¶PNE
`G ø UR6%Gªù\>´BXúR6%GJ>�#�687�> ø @Ù6%@RI^@�6Zù\>J`6%7X> ø @^S3E17Q6*�NP ø W�7XPR6%7�þ¶6bB¾OQP ø BXE�@^þ'>A7XPÛWXE��

_`6%WQI�7 ø 7�PNEHBXE?O ø @RBX>JINE�WQ687X> ø @�B�>JBª6'ù86%W�>J6%7X> ø @ ø Cy7XPRE�7XPREH687�E�WªS E�7�6��NP ø Wª6%@RIeþ'>JGAG`PNE�@�O1E5�
C ø WX7XP�UVE�W�E1CFEHWXW�EHI×7 ø 6`B�7�PNE�p�ú�q^k�ù ú7p[Z�i�o�l^�X\�y�pâlXV!ú�q^�9��� PNEH@ØúRBX>J@N_/7�PN>JBdS3E17Q6*�NP ø W�L
7XPNE¾úRBXE�Wºò]>=� E��JL\7XPNE¾ùy>AEHþ(� ø >A@\79ó#>´B�û!��E�I�6%@RI×7XPNE¾ùy>JBXúR6%GJ>)#H687�> ø @×E�GJE�S3E�@\7QBi6bWXE�INü\@�6%S3>��
O�6%GJGJü/S ø ùbEHI=6%W ø úN@�I/þ'>A7XP3WXE�B8�VEHO17!7 ø 7XPNE�O�úNW�WXEH@`7!úRBXE�W#@NEHEHI��%M	�R6%WX7!CFW ø S W�EHB;7XW�>JO17X>J@N_
7XPNE=ù\>JE�þ(� ø >J@\7�7 ø 6�B;7�687�>JO>� ø >A@\7 ø C#WXE�CFE�W�E�@RO�EbLR7XPN>´B�6bGAG ø þ�B'7�PNE
ú�B;E ø C�S
úNGA7X>)�NGJE=O�WXE��
687X>JùbE¶I�üy@R6bS >´Oiù\>´BXúR6%GJ>�#�687�> ø @RB��ZBXS36bGAG�B�O1EH@NE?EHGAEHS EH@\7�B!GJ>Aÿ`EiI ø O1úRS EH@\7!W�E��RWXE�B;EH@`7Q687�> ø @RB
O�6%@+UVE/S ø ùbE�I�6bW ø úN@RI°>A@+7�PNE/ùy>JE�þ'>J@N_×ù ø GAúNS3E/6b@RI+O1W�EH687�E&ù86%W�> ø úRB(,^�â� B;7XW�úROY7�úNW�EHBHL

40

I�EHO ø WQ687X> ø @�B ø Wi_`G ø UR6%G�BD7�WXú�OY7XúRWXE¾E�GJE�S3E�@\7QBiGJ>JÿbE¾þd6bGAG´BiOH6%@�OQPR6%@N_`E�7�PNE�>JW'6*�!�VEH6bW�6b@RO1E`L
6%@RIÜ6bGAGiùy>JBXúR6%GJ>)#H687�> ø @ÒE�GJE�S3E�@\7�B O�6b@ U�E°S ø ùbEHI ø ú�7 ø C¶7XPNEØûRE�G´I ø C�ùy>JE�þ&L�� ø BXBX>AURGAü
WXEHùbEH6bGA>J@N_ ø 7�PNE�WiE�GJE�S3E�@\7QB�UVE�PN>J@RI 7XPRE�S0� �¶PRE�S3E�@\7�6bGRS ø I�E�GR7XPR6%7dBXP ø úNG´I3I�E�ù`E�G ø �×>J@
7XPNE úRBXE�W�� B�S >J@RI þ'PNE�@Û>A@\7XEHW�6`OY7�>A@N_Øþ'>k7�PÛ6Ø6��!�NGJ>JOH687�> ø @Ù>AS�NGJE�S3EH@`7�>A@R_Ø7�PNE/7�P ø úN_`P\7
þ'>�#�6%WQI=S3E�7�6*�RP ø W�S3>J_bP\7�UVE�O1G ø BXE¶7 ø 7�PR687 ø C�U�EH>A@N_=6%@ ø G´I þ'>JBXE�þ ø S×6%@ úRBX>A@N_
S36b_b>´O
7XW�>JOQÿ�Bd7 ø _bE17�6bGAG�7XPNE&>J@�C ø W�S×687�> ø @+BXPNE&@NEHEHINBHLRI�>JW�EHOY7�>A@R_×S
úNGA7X>)�NGJE
I ø O1úNS3EH@`7QB�BX>AS=úNG��
7�6%@RE ø ú�B;GJüØ7 ø 6°B8�VEHO�>kûRE�IQ,^�â� G ø O�6%7X> ø @^þ'>A7XP ø ú�7�E�� ø W;7�LV6b@RI^PR6Zùy>J@N_×7�PNE>� ø þiEHW�6b@RI
O1GJE�ùbEHWX@REHB�B!7 ø I ø 6%GJGR@REHO1E�BXB�6%W�ü
ÿy@ ø þ'GJEHIN_bE�þ ø W�ÿ
Uyü3O ø S C ø W;7Q6%UNGJü BX>A7;7X>J@N_=U�EHPN>A@�I×PNE�W
I�EHBXÿØ6%@�I°ú�B;>J@N_3_bE�BD7�úNWXE�B¶6%@RI�S×6%_`>JO¾þ ø WQINB��

ôuI$ô] �?L�Wz\ UP&N7d���\^TV�OU�TXWYS�WzZ	PcWu�'e,5ÕW�\^fX�

^>_:`badc�afehgji#k�imlKnonml�prqLs�k
qrtvu0q�w�sjxyqrzXn|{

}�~j��u0q�w�sjxyqrzXn|{�lr�j�jn|i|w�ldk�i|qrg��4kXlrz4kW�
� i�kX~�l���i|��s)lKn|i|��ldkXi#qLg�qKt�lKn|n�{jq�w�sj�T��g"kX�
i#g�k�~j�@�4kXldkX��qrtG����i#g)���4k�qLz��={�i#g���qr�T�
�jn|lLw���i#g�kX~j�I��lrwW���rzXqrsjg�{��)���0i#k�w�lrg����
�4����g@i#g@�vi#�����"�fkX~j���4kXlKz�k n|l�pLqrs�k	qKt
k�~)�
¡ g)lKn"zX��lKn|i|��ldkXi#qLg qKt)u0q�w�sjxyqrzXn|{I{�i|���jnml�p��
lKn|nT{jq�w�sj�T��g"kX�yi|g¢kX~j�£tCqLz��¤qrt���q"qL���
�.kWlKg){�i|gj�¥ldk	l���q�qr�Lw�lr���Gi|g�k�~)���)lLwW�¥qKt
k�~j�GzXq�qr�¥�)}�~j�Is)�4��z'w�lrg��jz��=�4��n#�=w¦k'{�q�w¦§
sj�T��g"kX�Tqrt'k�~jim�¨w�qLn#n|��w�k�i|qrg���p@k.p��ji|gj�@l
�4�=lKzWwW~�©"sj��zXp¥i#g�k�~j�ª�rzWl�p«����lrzXwW~�©"sj��z�p
�)lKgj��n¬��}�~j�T����lKzWwW~��)lrgj��n�im�0i|g��rqL�r��{¥��p
l¥�r���4k�s)z��L� � ~jimwW~y�Tqd�L���	i#kGk�q¥kX~j����qKk4§
k�qr�qrt�k�~j����w�z�����g � i#k�~�k�~j�0�rzWl�pª����lrzXwW~
¡ ��nm{«qrg«k�~j� n|��t®k���im{��r�

^>_¬`,a�¯,a�°[zX������n|��w�k���{«{�q�w�s)�ª��g"kX�

}�~j�I�jzX������n|��w�k��={�{�q�w�sj�T��g"kW��w�lrg����
k�~jqLsj�r~"k±qrt�lL�[����n|qrgj�Li#g)�	k�qIl ~)i#�L~j��z
�4��§
�Tlrg"k�imw���q�qL�²n|���L��n0k�~)lrg�k�~)qL����i|g³k�~)�
��q�qr�"w�lL�4�Ilrg){���~jqLsjn|{�k�~j��z���tCqrzX�G���T{�im�.§
�jn|l�pL��{ � i�kX~��TqrzX��{���kWlKi|n¬�d�vi#�LsjzX�
´0i#n|n|s)�.§
k�zWldk��=��k�~)�G��i|��s)lKn|i|��ldkXi#qLg«�4kXlKk��Gqrt�u0q�w�s�§
x�qLz�nm{ � ~j��gµ�4qL�T�¶{�q�w�sj�T��gLkW�¢~)l��L�
������gI�)z��=�4��n#�=w¦k��={���}�~j�����S{�q�w�sj�T��g"kX�vlKzX�
�ªqd�L��{�qrs�k>qKtbk�~j� ��q�qr�"w�lr���r�"zXqKkXlKk��={���q
k�~)lKkbkX~j��i|z,kX��·�k�s)z��={	tCz�qLg"kb�)lr�r�2t:lLw����,k�~)�
s)�4��z��SlKg){�¸)q � g�kXq¹k�~j��i#z��jn|lLw���i|gºk�~)�
�.kWlKz�k>w�qrg ¡ �rsjzWldkXi#qLg�qKtbk�~j�	�jnmlKgj�	nml�prqLs�k
» � ~jimwW~ � i|n#nv���ª{����Xw�zXi|���={�n|lKk���zW¼��)x�~ji|n#�
k�~j�>�jzX������n|��w�k�i|qrgª�4�=lKzWwW~�©"sj��zXpG~)lL�bk�q ���
k.p"����{ºi|g�k�~j��n#��t®k��4�=lKzWwW~�©"sj��z�p£�)lKgj��n¬�

lr{j{�i#k�i|qrg�lKnf�4�=lKzWwW~�©"sj��zXi#�=�[k.p�����{�i#g�k�~j�	w�qLn#qLz4§hw�q�{��={Tz�i|�r~"k��4�=lKzWwW~�©"sj��zXpT�)lKgj��n|�
w�lrg
��� s)����{�tCqLz>�ªqLz�� {���kXlri#n|��{�z��=©"sj���4kX���j}�~j� zX����sjn�kW��qKtbk�~j�=�4�G����lrzXwW~«©Ls)��zXi#�=�>lKzX����im�4sj§
lKn|i#����{�i#g¥�dlKzXi#qLs)�
�Tq�{j����kX~)ldk�lrn#n|q � {�i#½���z���g"k'i#g)��i|�r~"kX��i|g«k�~j�G{jlKkXlTw�qLn#n|��w�k�i|qrgo�

41

"mS�� ø WX7�6b@\7¾I ø O1úRS EH@\7�B¾þ'>AGJG#B;P ø þ 6%@Û6b@N>JS36%7XE�IQ�NúNG´BX>A@N_�UVE�PR6Zùy> ø W�6b@RI^7�PyúRB¾>A@��
BD7Q6%@\7XGJü/O�6%7�OQP=7XPNE¶úRBXE�W�� BªE�ü`E��*�¶PNEHWXEd>´B�6bGJB ø 7XPNE�� ø B�B;>JUN>JGA>A7Düe7 ø S×6%W�ÿ/I ø O1úNS3EH@`7QB�þ'>k7�P
WXE�I×O1W ø B�B;E�B#>A@ ø WQI�E�W?7 ø INE1ûR@NE�úRBXE�W+� ø W?7�6bBXÿ � B+�VEHO1>Aû�O'>J@\7XEHWXE�BD7QB?6%@�I×@ ø 7i7 ø G ø BXE�BX>J_bP\7
ø C�7�PNE�S þ'PNEH@Ù7�PNE�ü^S ø ùbE
7 ø I�>��VEHWXEH@`7è�NG´6bO�EHB�>A@ÖI�>���E�W�E�@\7eS ø INEHB��x� ø _`E17&6ØO�G ø B;EHW
ù\>JE�þ ø C�BX>A@R_bGJE�I ø O1úNS3EH@`7QB�Lb7XPNEHü OH6%@3UVE�S ø ùbEHI=7 ø 7XPNE�CFW ø @`7�ò¼7XPRE�WXE�6bI�>J@N_�� ø BX>k7�> ø @zó9�
M�GA7XP ø úN_bP�� ø O�ú!� ø WXG´I I ø EHB @ ø 7ØB;ú!��� ø W;737XPREHBXE°CFE�687�úNWXE�B�L#W�ú�¾×>J@N_Ö7XPNW ø úN_`PÉ�R6b_bE�B
6%@RIÒ6%@R@ ø 7Q687X>J@N_�7XPRE37XE5�y7
O ø úNG´IÖU�E�6bGAG ø þiE�IÙ>J@ WXE�6bI�>J@N_�S ø INE��u"m@ 6bIRI�>k7�> ø @Ö7 ø 7XPRE
WXE�6bI�>J@N_�S ø I�EbL�66�NW�E�ùy>JE�þ >JS36b_bE ø C!7XPNE=CFW ø @\7	�R6b_bE ø C#7XPNE I ø O1úNS3E�@\7QB�>´B�BXP ø þ'@^>J@
7XPNE�ú��!��EHW�W�>A_`P`7�O ø W�@NE�W ø C�7�PNE�B�O1W�E�E�@ÃL8þ'PNE�@37�PNE'S ø úRBXE'S ø ùbEHB ø ù`E�W#I ø O1úRS EH@\7�B�ò:B;EHE
�ª>J_búRWXE¨O'ó5�?� ø _`6%>J@ÖU�E�7;7XEHW/>J@RB;>J_bP\7/>J@Ö7XPNE2,*�.� B;7XW�úRO17XúNW�E ø C'I ø O1úNS3E�@\7QB ø W�_`6b@N>�#HEHI
>A@0,^�â� B8��6bO1E`Ly7XPNE&B;7XW�úROY7�úNW�EeOH6%@�U�E&W ø 7Q687�EHI�Uyü�S ø úRB;Ee_`EHB;7XúNW�EHB ø W¶W ø OQÿbEHIØþ'>k7�P�6b@
E51�O1>JE�@\7��NW�EHI�E�ûR@NE�IØW ø 7Q687X> ø @?�

ôuI)÷ �u�ñN7��T=_!fÀP&Wu�'e,5tWz\^fX�bacT=d�eO_!f=TXg�_!U�TXWYSÅ�3WzSO��N �OU�d

��U�\ eO�*U�e?\^NÕWzS P&N7]`_!SO� �¶PNEÛ7XE�W�S �XI�E�7�6b>AG´B ø @ I�EHS×6%@RI!� >JB+O ø S3S ø @NGJü úRB;E�I
>A@ 7XPRE O ø @`7�E5�y7 ø C&BXE�S×6%@\7X>´O&# øyø Sý6%@RI >J@\7XE�WQ6bO17X>JùbE�C ø O1úRBØ6%@RI O ø @\7XE5�y7�ùy>JE�þ�B���"m@
7XPNE�B;E¾B;ü�B;7XE�S×BHLb7�PNE�ú�B;EHWiB;7�6%WX7�B?þ'>k7�P°6b@ ø ùbEHWXùy>JE�þ ùy>´B;ú�6%GJ>�#�687X> ø @�6b@RI�I�EHS×6%@RINBiS ø W�E
I�E17Q6%>JGJB ø C�B8�VEHO�>J6bG'ùy>JBXúR6%GJ>)#H687�> ø @Ü>A7XE�S×B���"m@ 7�WXüy>J@N_Û7 ø ûR@RI 6 _ øyø IÕO ø S��RW ø S >´BXE°>J@
7XPNE&7�W�6`I�E5� ø �ÙUVE17DþdE�EH@+7XPNE&@yúNS=U�EHW ø C�>J@�C ø W�S×687�> ø @�>A7XEHS×B'U�EH>A@R_ØI�>´B8�NG´6ZübE�I°6b@RI�7XPRE
��EHW�O�E�>JùZ6bUN>JGA>A7Dü ø C�7XPRE�B;7XW�úROY7�úNWXE`Lb7�PNEs��I�E17Q6%>JGJB ø @°I�E�S×6%@�I!�/O ø @RO1E���7iþ¶6bB�7XWQ6%@RB;CFE�W�W�EHI
7 ø 7XPRE��XB;7XW�úROY7�úNWXE ø @ I�EHS×6%@RI!�ÒO ø @RO�E���7��ñ�¶PNE^>´I�EH6 ø C¾7XPR>JB�O ø @RO�E���7�>´B37 ø û�@RI 6
O ø @\7�E5�y78�=6b@RI úRBXE�W+� BXE�@�B;>A7X>JùbE^B ø GJú�7X> ø @ 7 ø 7XPNEÛ>A@�C ø WXS×6%7X> ø @ BD7�WXú�OY7XúRWXE+7�W�6`I�E5� ø � Uyü
6%GJG ø þ'>J@N_e7XPRE�úRBXE�W�7 ø O�6bGAG�ú!�Ø6b@RI3WXEHS ø ùbE'O1EHW;7Q6%>J@�BD7�WXúRO17XúNW�E�EHGAEHS EH@\7�B?INE��VE�@RI�>J@N_ ø @
7XPNE/O�úNWXW�E�@\7¶7�6`B;ÿ°6%@RI°úRBXE�W�B+��E�O1>Aû�Oè�NW�E1CFE�W�E�@�O1EHB��

"m@Õ7�PNEÙ>JS�NGAEHS3E�@\7�6%7X> ø @ ø CM� ø O�ú!� ø W�GJI�L�7XPNE BXEH6bW�OQPb�R6b@NE�G´B�O�6b@ U�E OH6%GJGAE�I ú!�
6%@RI WXEHS ø ù`EHI Uyü 6Û_bEHB;7XúRWXE`Lªþ'PN>´OQP S ø ù`EHB/7XPNEHS(>A@ ø W ø úN7 >J@Õ6b@Õ6%@R>AS×687�EHI þd6Zü'�
�¶PNE=S3EHS ø WXü � GA>J@NE
B;7XW�úRO17XúNW�E=I�E�BXO�WX>JUVEHI^>J@Ö[yE�OY7��x,��NM×6%@RIÙBXP ø þ'@Ù>J@/��>J_��fPØOH6%@ 6bGJB ø
U�E OH6%GJGAE�I ú�� ø @ I�E�S×6b@RI�L�þ'PN>´OQP >JBs
`úR>k7�E^úRB;E�CFúNG�6`B3>k7°>JB6� ø BX>A7X> ø @NE�IÕ>J@ CFW ø @\7 ø C
6%GJG ø 7XPNEHW¾I ø O�úNS3E�@\7�Be6%@�I+7XPyúRBº�R6%WX7Dü ø O�O1GJúRI�E�B�7�PNE�S0��<�ù`E�@^7�PNE S36b>A@/� ø O1ú�� ø WXG´I
BD7�WXúRO17XúNW�EbLV7�PNE=þ¶6%GJG´B�L�O�6b@ÙU�E3W�E�S ø ùbE�I�7 ø WXEHùbE�6%G�7�PNE×6%W�EH6×UVE�PR>A@RIÛ>A7¾>J@ þ'PN>´OQP/,*�.�
BD7�WXúRO17XúNW�EHB#C ø W#úRBXE�W+� B+�VEHO1>Aû�O��NG´6bO�E�S3E�@\7 ø C�I ø O�úNS3E�@\7�B�6bWXE¶G ø O�687�EHI�L`6%@RI3O�6bGAGJEHI36b_`6%>J@
þ'PNE�@+7�PNE
þ¶6%GJGJB�6%W�E&@NE�E�I�EHI�7 ø ��EHW�O�E�>JùbEe7�PNE3,*�.� BD7�WXúRO17XúNW�E ø C!7�PNE
S×6%>J@ÙI ø O1úRS EH@\7
ù\>´BXúR6%GJ>�#�687�> ø @ÜS ø W�EØEH6`B;>JGJü����¶PNE°U øyø ÿ\O�6bBXE°6b@RI 7�PNE�S36b>A@ I ø O1úNS3EH@`73ùy>JBXúR6bGA>)#H6%7X> ø @
6%W�EH6 O�6%@+6%G´B ø UVE/O�6bGAGJEHI°ú!� ø @+I�EHS36b@RI��

Q&L�WYd�UºPcWu�'e�]ÉN SxU�d � ø O1ú!� ø W�G´I/þ'>JGAGN6bGAG ø þÜ6%WX7X>Aû�O1>´6%GJGJüeO ø S�Nú�7�EHI B;EHS×6%@\7X>´OiB;7XW�úRO5�
7XúNW�EHBi6bB�þdE�GJG�6bB?I ø O�úNS3E�@\7�B ø W�_`6b@N>)#�EHI Uyü úRB;EHW�B��'�¶PR>JBiGAE�6bINB�7 ø 7XPNEº�NW ø UNGJE�S ø C�P ø þ
7 ø 7�WXE�687?ú�B;EHW8�.�NG´6bO1E�I3I ø O1úNS3E�@\7QB�� ø @37�PNE ø @NE�PR6b@RI�L`7XPNE�S EH@\7�6%G�S ø INE�G ø C�7XPNE¾I ø O1ú��
S EH@\7¶W�E��RWXE�B;EH@`7Q687�> ø @�>JBi7�PR687 ø C!6%@ ø U�9DE�OY7'þ'>k7�P�6b@Ø>´I�E�@\7�>k7Dü×7�PR687�OH6%@ØUVEeG ø OH687XE�IØ6%7
ø @NGJü ø @NEè�NG´6bO�E¾6%7¶6=7�>AS3E�ü ø @�7�PNE ø 7XPRE�W¶PR6%@�I�LNI ø O1úNS3EH@`7QB��NG´6bO1E�IØ6%7¶ú�B;EHW8�mB8�VEHO�>kû�EHI
G ø O�6%7X> ø @RB�6%W�E ø C?B+�VEHO1>´6%G�>J@`7�E�W�EHB;7�7 ø 7XPNE=úRBXE�We6%@RI+>A7¾S3>J_bP\7�UVE
PRE�G)��CFúNG�7 ø BXE�E
7XPNEH>AW
� ø B;>A7X> ø @�>J@Ø6=O ø S�NúN7XEHIØB;EHS36b@\7X>´O�BD7�WXú�OY7XúRWXE¾6bB�þdE�GJG�L`UNúN7dI�>´B8�RGJ6Züy>J@N_ ø @RE�I ø O1úRS EH@\7
687�I�>��VEHWXEH@\7¶G ø O�6%7X> ø @RB¶þ ø úNG´I�O ø @\7�W�6`I�>JO17¶7XPNE&>´I�EH6 ø C�I ø O1úRS EH@\7�>JI�EH@\7X>A7Dü��

42

^>_:`ba=¿,a	À�~jq"�.k�{�q�w�s)�ª��g"kX�¥ldk��T���TqrzXp"§
n#i|gj�

}�~j�±��qrn|s�k�i|qrg i|�T�jn#���T��g"k��={ i#gGu0q�w�s�§
x�qLz�nm{Ái|�Âk�~)lKkBqKtÄÃdÅ�Æ�Ç¦È�ÉLÆ�Ê�Ë�Ì¨Í�Î�È:ÇrÏ
Ð zX��lKnmÑ�{jq�w�sj�T��g"kX�Tlrz���n#q�w�lKk��={�qrg)n#p¹i|g
lKz�k�i ¡ w�imlKn|n#p�qrzX�LlKg)i#����{�lrz��=lr���fx�~j��gj���r��z
k�~j�
s)����zb{j��w�im{��=��k�q��.kXqrzX�±l'{�q�w�sj�T��g"kvlKk
l¨�4����w�i ¡ w	�)n|lLw��r��l Ð �r~)qL�4kXÑ�qKtvk�~jim�'{�q�w¦§
sj�T��g"kGi|� lrs�k�qL�¨ldk�imw�lrn#n|p�w�zX��lKk��={ � ~jimwW~
i|�ª�Tqd�r�={¹tCzXqr�Ák�~)��qLz�i|�ri|g)lKn�{�q�w�s)�ª��g"k
k�qGkX~j�0����n|��w�k��={��.kXqrzXi#g)� �jn|lLw��L� � ~ji|n|�'k�~)�
qrzXi#�Li#g)lrnb{�q�w�sj�T��g"k��4kXl�p�� � ~)��zX�Ii#k � lr���
�bi|�rs)z��GÒ¨��~jq � �'l¨w�qr�T�js�kX��{�{�q�w�s)�ª��g"k
�.kXz�s)w�k�sjzX�	i#g�k�~)����lrwW���rzXqrsjg�{�lKg){«��qr�T�
�r~jq"�.k¨{�q�w�sj�T��gLkW�Tqrg£k�~j�¥�T���TqrzXp"§Ón|i|gj�
�.kXz�s)w�k�sjzX��{��=��w�z�i|����{Ti|g�Ô���w�k���Õj���"�LÀ�~)qL�4k
{�q�w�sj�T��g"kW���
i#g�w�qrg"kXzXlL�.k�kXq�zX��lKn�{�q�w�s�§
�ª��g"kX����~)l��L�Ggjq«Õd§huB��~)lK���r���js�k	qrgjn|p¥l

¸�ldk=����n#i|�r~"k�n|p�kXzXlrg)���)lKzX��g"k'�4s)z4t:lLw�� � ~jimwW~��¨lK�r�=��k�~)���Ön#q�qr��i#�T�¨ldkX��zXi|lrn,lKg�{¥�r~jq"�.k�§
n#i|�r�L��e×k�im����qL�X�4i|�jn|�0kXqT�"im��s)lKn|n#p�i#g){ji|w�ldk���kX~j� {�q�w�sj�T��g"k>kX~j�	�r~jq"�.k>�.kWlKg){)�
tCqrz � i#k�~¥l
�4����w�i|lrn)�r�=�.kXsjzX�>k�~)lKk±kXz�i|�r�L��zW��k�~j�0z���g){���z�i|gj� qKt,lI�4���ªi#k�zWlKg��4�)lrz���g"k[�jn#s)����q�·Tlrz�qLsjg){
k�~j�Gw�qrzXz��=�4��qrg){ji#gj�ªzX��lKn�{�q�w�sj�T��g"k��

ØSÙjÚrÛ _ ÚrÙjÜ
Ý[ÞoÞ�ß ehg�w�qrg��L��g"k�i|qrg)lrnjÕd§hu³��im�4s)lrn#i|��lKk�i|qrg)� � i�kX~�����zX������w¦kXi#�L�'�jzXqKà.�=w¦k�i|qrg,�
k�~j��qr����zWldk�i|qrg@qrt>�Xw�lrn#i|gj��lrg){yk�~j��qr����zWldkXi#qLgyqrt>�ªqd��i|gj�¥k�~)����i#� � ��qLi#g"k�lrn#qLgj�¥k�~)�
á §hld·�im��lrz��Tim�4qL�TqrzX�j~jimwIqL����zXlKk�i|qrg)��� � ~ji|wW~@�T��lrg)��k�~�ldkG�Tqd��i#gj�«kX~j�¨��i#� � ��qLi#g"kG~)lL�
k�~j���XlK�T��zX����sjn#k�lr�Tl���lKz�k�imw�sjnmlKz¨�Xw�lKn|i|gj��qL����zXlKk�i|qrgo��}�~jim�Ti|���2~jq � ���L��z=�bqLgjn#p@kXz�s)�
tCqrz«âj� ãd§×uä�"im��s)lKn|i#�=ldkXi#qLg)��Ï[lL����q�qrg�lr���4k���z���q¹��i#� � i#gj�£i|����g)lr�jn#�={��Sl¹�Xw�lrn#�={�{�q � g
qr��à.�=w¦k�i|g�k�~)�GtCzXqrg"k0w�lrg�����{�im�.kXi#g)�rsjim�4~)��{«tCzXqr�/lKg�qL��à.��w�k��Tqd�r��{«kXq¨k�~)�I�)lLwW�«{�s)�
k�q��ji|gjq�w�s)n|lrz0{�im�4��lKzXi�k.pL��k�~)lKk0im�'�TqrzX� qrz0n#�=���'qr����i#qLs)�'{�������g){�i|gj��qLg¥k�~j�I©"s)lrn#i#k.p«qKt
k�~j��Õd§hu�qLs�k��jsjk�{�����i|w��r��å'���L��z�k�~j��n#�=������kX~j� » gj�=lKz¦¼�im�4qL�ªqLz��)~ji|���æ����k � ����gI�Xw�lrn#i|gj��lrg){
k�zWlKg)��n|lKk�i|gj�>i|g k�~j� á §h{�i|z��=w¦kXi#qLg��¨lr�r���,i�kv��q"����i|�jn#�[k�q�s��4�[qLgj�[qL����zXlKk�i|qrg i|g)�.kX��lL{	qKt�k�~)�
qKk�~)��z2qrz�kXqGw�qL�I�ji|gj����qrk�~Tqr����zWldkXi#qLg)�vi#gTqLzX{���z�k�q w�zX��lKk���gj� � w�z��=ldk�i|�r�
��i|��s)lrn#i|��lKk�i|qrg
qrzvi#g"k���zXlLw¦kXi#qLg k�q�qrnm���=ç�i|gj�
��k2lKnÓ�"è#é�êKëÓ��tCqrz�i|g)�4kXlKg�w��r�=s)����{�lKs�kXqr�¨ldkXi|wS��w�lKn|i#gj��tCqrzbk�~j��i#z
Ç�ÊWìKí#ÍWÉTî±Ædï¦í#ÉIÃKï�ìLðKÏ�i|g)�4k���lL{¨qKtb�ªqd��i|gj� kX~j�0qL��à.��w�kSkXqGkX~j�0s��4��z�ñ �[~)lrg){�qLz[kX~j�0s��4��z±kXq
k�~j��qr��à.�=w¦k=�Kk�~)� � qrzXn|{¨w�qrg"kXlri#g)i#gj�Gk�~j�0qr��à.�=w¦kSim�
��w�lKn|��{¨sjg"kXi#n�k�~j��s)����z
w�lKg�z��=lrwW~Tk�~)�
qr��à.�=w¦k��
�jqrzTkX~j���jsjzX��qL�����TqKt	u�q�w�sjx�qLz�nm{�i�k � lr�¨{j��w�im{��={£kXq@��·�����z�i|�T��g"k � i#k�~ á §hld·�im�

k�zWlKg)��n|lKk�i|qrg¥lKg){¥�Xw�lrn#i|gj�¨i|g�lª{ji�½f��zX��g"k0lr�j�jzXqLlrwW~,ÏjlK��qrn|i|��~ji|gj�ªk�~j�Gg�ldk�s)zXlrn,�4���¨lKg"k�imw
w�qrg)gj��w�k�i|qrgT����k � ����gªk�zWlKg��4nmldkXi#qLgªlrg){T��w�lKn|i#gj�	�Ti|�r~"kSlKn|n|q � s)���>qKt�k�~j�0��w�lKn|�St:lLw¦kXqrz±lL�
lKg@lr{j{�i#k�i|qrg�lKn2��i|��s)lrn#i|��lKk�i|qrg�{ji#�T��g��4i|qrgo�o}�~)�ªim{��=lj�ow�lrn#n|��{òÈhìrÊ�È¬ó:ÊWìdívô�Æ=ÆdÌª�oim��k�q¥s)���
á §hld·�im�okXzXlrg)�4nmldkXi#qLgª��i|�ª�)n#pIlrg){�i#g"k�s)i�kXi#�L��n|p k�q qLz��"lKgji|���
{�q�w�sj�T��g"kW��i#g¨Õd§hu����)lrw��
lrg){
k�qIs��4��k�~j����w�lKn|�'qrzS��q�qr�õqr����zWldkXi#qLg¨gjqKk�lr�±l��4s)�)�.kXi�kXs�k���tCqrz á §hld·�im��k�zWlKg��4nmldkXi#qLgo�K�js�k
tCqrzIqrk�~j��z��bkXlLw¦kXi|w�lKn±�)sjz���qL�������vehg£lrw�w�qrzW{jlrg)w�� � i#k�~¹kX~jim�Iim{���l)�,kX~j���)~"p���i|w�lKn
�4i|����qKt
{�q�w�sj�T��g"kW� � qLsjnm{�g)qKk'��� ¡ ·���{����js�k'zWldk�~)��z>qr�)��qLz4kXsjgjim�.kXi|w�lKn|n#p«wW~)lKgj�L��{«{�������g�{�i#g)�
qrg�k�~j�¨��im�4s)lrn#i|��lKk�i|qrg@�4i#k�s�ldk�i|qrg,�fk�~�s)� �¨lK��i|gj�¥�TqrzX�ª��ö�w�i|��g"k s)�4�¨qrt
ÕK§×u÷���)lLw��r��e×t.�
tCqrzI��·jlK�T�jn|�r�okX~j��{�q�w�sj�T��g"kX��i#g@kX~j����q�qr�"w�lr���¨gj����{yk�q�~)l��r��l���lKz�k�imw�sjnmlKzI��i|���¨kXq

43

6%GJG�ûR7¶>J@\7 ø 7XPNEeU øyø ÿ`OH6bBXEbLy6%@RI°6%@ ø 7XPNEHW'I ø O1úNS3E�@\7'B;>)#�E¾þ ø úNG´I�UVEeS ø WXEe6*���NW ø �NW�>J6%7XE
C ø W ø WX_\6%@N>)#�>J@N_Ö7XPNEÙI ø O�úNS3E�@\7�BØ>A@Å,*�.� B8�R6`O1E`L#7XPNEHü O ø úNG´I B;>JS�NGJüÕUVEÙW�EHBX>�#HEHI���" CDL
>A@RB;7XE�6bI ø CdWXE�BXOH6%GJ>A@N_�L ø @NGJü 6+O ø @\ù`E�@\7X> ø @�6%Gª7XWQ6%@RBXGJ6%7X> ø @Ö6%G ø @N_°7XPNE2ð��m6^��>JB�PR6`IÛUVE�EH@
úRB;E�I�LV7XPN>´B¾þ ø úNG´I^PR6ZùbE
GAE�6bI+7 ø 6Ø@ ø @�� ø �N7X>JS36bGªú�B;E ø C?B+�R6bO�EbL�6bB�>A@ 7XPNE E5�N6bS��RGAE ø C
7XPNE�U øyø ÿ\O�6bBXE'BD7Q6%@RIN>A@N_&>J@37XPRE�S3>JININGAE ø C�7XPNE�B�O1EH@NE ø W?E�ùbEH@ ø U�9DE�OY7�B�>A@\7XEHW�BXEHO17X>J@N_e7XPRE
U ø W�I�EHW�B ø C�7�PNE�ùy>JE�þ'>J@N_&CFW�úRB;7XúNS >J@×7XPRE¾OH6bBXE ø C�7�PNE ø WX_\6%@N>´O�B;7XW�úROY7�úNWXE�S ø ù`EHI×O�G ø B;EHW
7 ø 7�PNE�ùy>JE�þdE�W����ª6`OY7�>JOH6%G!# ø\ø S >´B?6bGJB ø úRBXEHI×þ'PRE�@ ø UN9DEHOY7QB�EH@`7�E�W ø W?GJEH6Zù`E¶7XPNE�W�EH6`I�>J@N_
BD7Q687XE'�R6bB¶>A7�þ¶6bB'I�E�O1>´I�EHI°7 ø S ø ù`EeI ø O�úNS3E�@\7�BdC ø W ø �N7X>JS36bG�WXE�6bIN6bUN>JGA>A7Dü×7 ø 7�PNEeC ø O1úRB
�NGJ6b@NEs�VE�W´�VE�@RI�>´O1úRGJ6bW
7 ø 7XPRE&ð�� 6*��>JB
U�E�O�6%ú�B;EØ7XPNEHWXE°>JB=@ ø UR>A@ ø O�úNGJ6bW IN>JB+�R6%W�>A7DüÖ6b@RI
@ ø @�� W�EHB�O�6%GJEHIØI ø O1úNS3E�@\7QB'6%W�E¾B;7X>JGAG�7 øyø B;S×6%GJGV7 ø UVE&WXE�6bIN6bUNGAEe687¶7�PR687�I�>´BD7Q6%@RO�EbLy7�PNE�ü
6%W�E=W�EHB�O�6bGAE�I+7 ø O ø ù`E�W�7XPNE3þ'P ø GAE×B�O1W�E�EH@u�?��CdO ø úNWQB;E`LR7�PN>JB
6%G´B ø GAE�6bINB¾7 ø O ø @��R>´OY7�>A@R_
I�E���7�P�O1GJúNEHB���õ�E�ùbEHW;7�PNE�GJEHB�BHL%>k7�>´B�@ ø 7�>JS�� ø WX7�6b@\7#7 ø 7XPRE�B;ú�O�O1E�BXB ø C�7XPNE�6��!�NGJ>JOH687X> ø @ 7 ø
úN@RI�EHW�B;7�6b@RI°6%7dþ'P�687�I�>´BD7Q6%@RO�E�7�PNE/I ø O1úNS3EH@`7QBd>A@�;�G´6%@RE�� ø I�E¾6%W�E¾O ø S�R6%W�EHI�7 ø 7XPRE
ø @NE¾>A@�W�EH6bIN>A@N_=S ø INE ø Wd7XPNE ø @REHB¶687d7XPNEeU øyø ÿ`OH6bBXE�� " 7'>JB ø @NGAü×E�BXBXE�@\7�>J6bGR7 ø �VE�WQO1EH>Aù`E
7XPNE/B+�R6bO�>J6bG�WXEHGJ6%7X> ø @RBXPN>)�RB¶6%@RI�I�>´BD7Q6%@RO�EHB'UVE17DþdE�EH@�I ø O�úNS3E�@\7�B�>A@ ø @RE¾S ø I�E'�

ôuI�ÿ a&TXd�e�_!f=TXg'_�U�T=WzSbWzZ��uN7_�\^� L³øsN7d�e�fXU�d

� T=�?I*J�ù?I [�EH6%WQOQP W�EHBXúNGA7�B >J@
;?GJ6b@NE�� ø I�E

��@NE�� ø O1ú�� ø WXG´I ù\>´BXúR6%GJ>�#�687�> ø @ S ø I�E C ø W
B;E�6%WQOQP�WXE�B;úRGk7QB?>´B�;�G´6%@NE=� ø I�E3ò:B;EHE���>J_��x��J ó9�
�¶PNEM�NW�EHBXE�GJEHO17XEHI+I ø O�úNS3E�@\7�B�6bWXE ø WX_\6%@N>)#�E�I
þ'>k7�PÙ7XPRE
CFW ø @\7è�R6%_`E/C]6bO�>A@R_�7XPRE=úRBXE�W¾>J@Û6%@
ú)û �}�RGJ6b@NE?>J@&CFW ø @\7 ø C�7XPNEiU øyø ÿ\O�6`B;E'���¶PNEdB;>)#�E
ø C?7�PNEHBXE×I ø O1úNS3EH@`7QBe>JB ø ��7X>JS3>�#HEHIÖI�E��VE�@�I7�
>A@N_ ø @ 7XPNEÖ@yúNS
UVE�W ø C>�NW�EHBXE�GJEHOY7�EHIÎI ø O�ú��
S EH@\7�B�6`O�O ø W�IN>A@N_�7 ø 7�PNE¶7�6`OY7�>JOH6%G!# ø\ø S O ø @��
O1E��N7��/[yE�S3>A7XWQ6%@RB+�R6bWXEH@`7ÖO ø G ø W+�mO ø I�EHI B�O ø WXE
UR6%WQB!>A@3CFW ø @\7 ø CV7XPRE�I ø O1úNS3EH@`7QB�I�>´B8�RGJ6Zü&7�PNE
WXEHGAEHùZ6b@RO1E ø C#7XPRE
>J@RI�>Jù\>´I�úR6bGªBXEH6bW�OQPQ
\úNEHWX>JEHB
C ø WdEH6bOQP�I ø O�úNS3E�@\7����¶PNE�7XWQ6%@RBXG´687X> ø @ ø C�E�ù �
E�W�üeI ø O�úNS3E�@\7#6%G ø @N_�7XPNE¸� ø B;>A7X>JùbE�ð�� 6*�y>´BÃ6`O9�
O ø WQI�>J@N_�7 ø >A7�B!BXEH6%WQOQP&W�EHBXúNGk7#I�E���EH@RINB ø @&7�PNE
B;úNS ø C�7�PNE^W�E�GJE�ù86%@RO�E°ù86bGAúNE�B WXE�7XúNW�@NEHIÕUyü
7XPNE
BXEH6bW�OQP%
\úNEHWX>JEHBHLNUNW�>A@R_b>J@N_37XPNE
S ø BD7�WXEHGAEHùZ6b@\7�I ø O1úNS3E�@\7QB'7 ø 7XPNE
CFW ø @`7�6b@RI�7XPyúRB
7 ø 7XPRE�C ø O�úRB ø C�7XPRE&úRB;EHW��

ôuImü P&Wu��eO]`N7SxU�øcN7fX_�U�TXWYS�ýÀ_r9YWze�U

�¶PNE�7�PNWXEHEiI�üy@R6bS3>JOH6%GJGAü¾_bEH@NE�WQ687�EHIeW�E�G´687X> ø @e7Dü7�VEHBª>A@
7XPNEi_bEH@NE�WQ6%GbC ø W�S ø C��XI ø O1úRS EH@\7
FÕ>´B!W�E�G´687XE�I&7 ø I ø O�úNS3E�@\72þÜLdÿ×L�������L%6b@RI��	�NL8þ'PN>´OQP=O�WXE�687�Ed6¾I�>JWXE�OY7XE�I
_`W�6��NP=B;7XW�úRO5�
7XúNW�EbLyþ'PNEHWXE¾EH6`OQP°I ø O1úRS EH@\7d>´BdWXEHGJ6%7XEHI�7 ø J/7 ø ýL� ø 7XPNEHW¶I ø O�úNS3E�@\7�BHL�6%W�E�ùy>´B;ú�6%GJ>�#HEHI
>A@Ø7XPNW�E�E¾I�>���E�W�E�@\7dþd6Zü�B<; ø @NE'WXEHGJ6%7X> ø @×ùy>´B;úR6bGA>)#H6%7X> ø @×C ø W?E�6bOQP�W�E�G´687�> ø @37Dü �VE9; þ'PN>´OQP
B;P ø úNG´I U�E^BXE�EH@ 6bB=E5�N6%S�NGJEØW�E�G´687�> ø @Üùy>JBXúR6bGA>)#H6%7X> ø @RB/7XPR6%73O ø úNG´IÜUVE°E��NOQPR6%@N_`EHI ø W
B;ú!���NGAEHS3E�@\7XE�I°þ'>A7XP ø 7XPNEHW'WXEHGJ6%7X> ø @RB��

44

^>_¬`,a�����a��'��nmldk�i|qrg¥}Sp"�����Gé	lrg){¥â��

}�~j� ¡ zW�.k�k � qªzX��nmldkXi#qLg�k.p������'lrz�����i�§
�4s)lrn#i|���={ lr����~jq � gõi#g�vi#����éréL���>��n|lK§
k�i|qrg£}Sp�����é�i|�Ii#g"k�s)i�kXi#�L��n|p�zX���jzX������g"kX��{
�"pªw�qLgjgj��w�k�i|gj��k�~j�'{jq�w�sj�T��g"k2sjg){���z2k�~)�
�ªqLs)������qri|gLkX��z��"pºw�s)z��L���¨kXq¹k�~)��{�q�w¦§
sj�T��g"kX��k�q � ~ji|wW~Äi�k¥i|��zX��nmldk��={��S}�~)�����
w�sjzX�r�=���Ti#�L~Lkyw�zX��ldkX��l��T��g"kXlrnI�Tq�{���n
n#i|�r�>kX~)ldk
qKt2È:Å�ÆdËrÃdÅ"È	�>ìdÇ�ÅjÍ¦Ç'�Tqd��i|gj� k�~)�
s)�4��z�ñ �vldk4kX��g"k�i|qrgGtCz�qL��kX~j��w�sjzXz���g"kb{�q�w�s�§
�ª��g"k±k�q�z���n|lKk��={¨{�q�w�sj�T��g"kW���"}�~ji|�S�T��g�§
kXlKn��Tq�{���n�im�>��sj�r�L���4k���{�gjqKk�qrgjn|p¨��p¨k�~)�
� l�p kX~j�'w�s)z��L����lKzX��z���g){���zX��{ � i#k�~¨�4~)i#g�§
i#gj�T�)lrz4kXi|w�n#�=�����jsjk>lrn|��qª�"p�k�~j��t:lrw�k�k�~)lKk
k�~j��w�sjz��L����lrz��@lKgji|�¨ldkX��{��'�4kXlrz4kXi#gj��lKk
k�~j��{�q�w�sj�T��gLk�sjg){j��zbk�~j�
�Tqrs)���±��qri|g"k���z

lKg){@�jzXqr��lK�LlKk�i|gj��k�q�kX~j��zX��nmldk��={@{�q�w�sj�T��g"kW���v}�~j��lr{j��lrg"kXlK�L�TqKt�k�~jim� � l�p�qrt�zX���j§
z��=�4��gLkXi#g)�¨z���n|lKk�i|qrg)��i|�'k�~)lKk0{�q�w�sj�T��gLkW�0lrz�� ��im�4s�lKn|n#p¥�.kXz�qLgj�rn|p�w�qrgjg)��w¦kX��{¥��p¥w�sjzX�r�=�
� ~ji|wW~@�TqrzX��qd�L��z�w�zX��ldkX�¨lKgyi#�T�jzX���X�4i|�r�¨ÕK§×u�4k�zXs)w¦kXsjzX�r�o}�~j��{�im�Xlr{��dlKg"kWlK�r�ªqKt
n#i#k���z4§
lKn|n#p¹w�qLgjgj�=w¦k�i|gj�@{�q�w�sj�T��gLkW�ªi|�Ik�~)lKk�kX~j�«k�~jqLsj�r~"k�¸�lr��~j����q�w�w�n#s){j��kX~j�«{jq�w�sj�T��g"kX�
����~ji#g�{�kX~j���¥� � ~)i|wW~y�¨lK�r�=��i�kG��qr�T��kXi#�T���	~�lKzW{�k�q¥sjg�{���zW�.kWlKg){ � ~jimwW~y{jq�w�sj�T��g"kX�
k�~j�Gw�sjz��L����lKzX�	��qLi#g"kXi#gj�ªkXq)�

}�~j�0��im�4s�lKn|i#�=ldk�i|qrg�qKt
�>��nmldkXi#qLg«}Sp���� âIk�zXi#�=�±kXqT�Tlr�r��sj��tCqrz
k�~jim�'{�im�Xlr{��dlKg"kWlK�r�LÏ
k�~j�I{jq�w�sj�T��g"kX� � ~jimwW~¥lrz�� zX��nmldkX��{�k�q�k�~j�I{jq�w�sj�T��g"k�sjg�{���z>kX~j�G�Tqrs��4�G��qri|g"k���z�lKzX�
�4i|�T�jn#p	��im�4s)lrn#i|���={ � i#k�~������Ti#k�zWlKg)���)lrz���gLko�Lz�����g ��q�·����vlKzXqrsjg){�kX~j���¥�d}�~�s)����kX~j��p w�lrg
��������zWw���i#�L��{y�jzX��lKk4k���g"k�i|�r��n|p�lrg){¹{�q�gjqrkIq�w�w�n|s){���lrg�pLkX~ji|gj��lr�	kX~j����q�·���� lKzX�¨gjqrk
�Is)wW~@nmlKzX�r��z�kX~)lKgyk�~)��{�q�w�sj�T��g"kW�	k�~j���¨�4��n#�L�����,�'nm�4q��fk�~j����q�·�zX���)z��=�4��gLkWldkXi#qLg�w�lrg
����s)�4�={ � i�kX~jqrsjkªw�qL�T�jn#imw�lKk�i|qrg)�Gi#g£°±n|lrgj��ç�q�{j��lKg){@i|g@k�~)����q"qL�Lw�lr���r�
�±qL�ª��lKzX��{
k�q��>��n|lKk�i|qrgæér�2kX~j��w�qLgjgj��w�k�i|qrgºqKt�k�~)��{�q�w�sj�T��g"k�sjg�{���z¨kX~j���Tqrs)������qri|gLkX��z�lrg){
k�~j�¨qLgj���	i|g@�rzX����g���q�·��=� lKzX�r��~jq � ���L��z=��gjqrkIlr�	i|g"k�sji#k�i|�r��n#p�w�n#�=lKzGlL�	i#g�k�~j��w�lr���TqKt
w�qrg)gj��w�k�i|gj��kX~jqrs)�r~"k0¸�lr��~j�������gj����qL�X��i#�jn|�T�4qLn#s�kXi#qLg�kXq�kX~jim��{ji#n|���T�¨l«�ªi|�r~"k	���ªkXq
w�qr���ji|gj�Tk�~j���"im��s)lKn|i#�=ldkXi#qLg�qrt
��qKkX~��>��nmldkXi#qLg@}Sp����=�GlKg�{�kX~j��i|zIlL{��dlKg"kXlr�r���	i|g@k�~)�
�"im��s)lKn|i#�=ldkXi#qLg�qrt>l���i|gj�rn|�¨z���n|lKk�i|qrg�k.p������ºiÓ� �L�#�,k�q�s)���¨kX~jqrsj�L~"k ¸�lr��~j��� k�~)lKkG��g){¹lKk
{�q�w�sj�T��g"kW�>i#g«�rzX����g���q�·������

}�~j�I��im�4s)lrn#i|��lKk�i|qrg�lrg){�s)���Iqrt��>��n|lKk�i|qrg�}Sp����ªÕ�im��{ji�½f��zX��g"k�tCzXqr�ÖkX~j���)z����"i|qrs��
qrgj�=����x�~j��g���g)lK�jn|��{o��kX~j��s)����z�~)lr�bkXq�kXz�i|�r�L��zbk�~j��{�im�4�jnml�p qKt)k�~j��zX��nmldk�i|qrg���pGw�n|i|wW��i|gj�
qrgTl�{jq�w�sj�T��g"k��L}�~ji|� � i|n|nj{�i|���jnml�p k�~)�'{�q�w�sj�T��g"kW�vk�~j�'����n|��w�k���{ª{�q�w�s)�ª��g"k�im�2zX��nmldkX��{
k�q�i|gGkX~j�StCqrzX�æqrtj�r~jq"�.k�{�q�w�sj�T��gLkW�v~jqd�r��z�i|gj�>����tCqrzX�[kX~j�
�Tlri#g�{�q�w�sj�T��g"k2�4��lrw��L�=}�~)�
s)�4��z±gjq � ~)lL�[kX~j����qL�X��i#�ji|n|i�k.p�k�qª�4��n#�=w¦kSqLgj�'qrt�k�~j�=�4�0�r~jq"�.kW�[��pªw�n#imwW��i#g)�Gqrg�i#k�� � ~jimwW~
� i#n|n�k�zXi#�L�r��zvlrg�lKg)i#�¨ldkXi#qLgGkX~)ldk[�������¨�bk�q w�qrn|n|lr�)�4�
lKn|n�qKt)kX~j���r~jq"�.k2{�q�w�s)�ª��g"kX�bk�q�k�~)�
z��=lKn�{�q�w�sj�T��g"k�k�~j�¨����n|��w�k���{��r~jq"�.k �.kWlKg){)�'tCqLz���lKg�{�k�q�tCsjz�k�~j��z���im�4s�lKn|n#p¥���T�j~�lr��i#���
k�~jim�±{�q�w�sj�T��g"k±��p�{�im���jn|l�p�i|gj�Gl �����Ti�kXzXlrg)���)lKzX��g"k2z��={ª��q�·TlKzXqrsjg){ªi#k±i|gTk�~j�'�TqL�ª��g"k
qKt,w�qLn#nmlK���4�L�rx�i#k�~¨kX~ji|�
��im�4s)lrn#i|��lKk�i|qrgªk��=wW~jgjim©"sj�'tCqLz±zX��nmldk�i|qrg��2k�~)��s)����z=ñ �Sldk�k���g"kXi#qLg�i|�
lKs�kXqr�¨ldkXi|w�lKn|n#p«�Tqd�r��{«tCzXqr�*k�~)�ª����n|��w�k���{�{jq�w�sj�T��g"k�k�q�lrn#nvz���n|lKk��={�{�q�w�sj�T��g"kW�0lrg){
¡ g)lKn|n|pGk�q�kX~j�'zX��nmldk��={�{jq�w�sj�T��g"k2k�~�ldk±�������¨�vkXq ���>�TqL�4k[s)����tCsjnjk�q ~ji|�BqLz2~j��z=�K�jzXqr�

45

7XPN>´B�I ø O1úRS EH@\7¶PRE ø W�B;PRE¾S3>J_bP\7�BD7Q6%WX7¶7XPNEè�NW ø O1EHB�B'6%_\6%>J@�7 ø S ø ù`E ø @NE&BD7�E��°CFúNW;7�PNE�W
7 ø W�E�G´687XE�IØI ø O�úNS3E�@\7�B��

ôuI�� P&Wu��eO]`N7SxU�d�_�U D d�N \sP&N ROSON7��ýñWu�'_�U�T=WzSOd

�¶PNEc�RWXEHù\> ø ú�B;GJü I�EHB�O1W�>AUVEHI I ø O1úNS3E�@\7×O ø GAGJEHO17X> ø @ ùy>´B;ú�6%GJ>�#�687X> ø @ S ø I�E�B=6bWXEØC ø W 7XPRE
6%WX7X>Aû�O1>´6%GJGAü3O ø S�Nú�7XE�I ø W�_`6b@N>)#H687�> ø @ ø CÃI ø O1úRS EH@\7�B�� � ø _b>JùbE�7XPNE¾úRBXE�W�7�PNE	� ø B�BX>AUN>JGJ>k7Dü
7 øØø WX_\6%@N>)#�E=I ø O1úNS3E�@\7QB�6`O�O ø W�IN>A@N_�7 ø PR>JB ø W�PNE�W ø þ'@ ø WX_\6%@N>)#H6%7X> ø @0�NW�>A@RO�>��RGAE�B�6b@RI
7 ø W�E�S3>A@�IØPN>JS ø W¶PNE�W ø C��RWXEHù\> ø ú�Bd7XP ø úN_bP\7�BHL�>A7�þd6`B'I�EHO�>JI�E�I°7 ø 6%G´B ø BXú!�!� ø WX7�úRBXE�W+�
B8�VEHO�>kû�OeB;7XW�úROY7�úNW�EHB���[�EHOY7�> ø @c,�� û >A@\7�W ø I�úRO�EHIØ_bP ø BD7'I ø O1úNS3EH@`7QB¶6bB¶6
þ¶6Zü ø C�B;>´I�E5� Uyü �
B;>´I�E�úRBXE ø C¶ú�B;EHW
BD7�WXú�OY7XúRWXE�B/6%@RI O ø S�Nú�7�EHI B;7XW�úROY7�úNW�EHB&þ'>A7XP ø ú�7 O ø @�CFú�B;>J@N_ÙI ø úNUNGJE
WXE��NWXE�B;EH@\7�687�> ø @RB ø C!I ø O1úNS3E�@\7QB��

� TX��I�J!H�I [\7�6%7XúNE�B�6bB'B;7 ø WX>J@N_��NG´6bO1E�B

� ø O1ú�� ø WXG´Is�RW ø ùy>´I�EHBi7Dþ ø IN>���E�W+�
E�@\7 6%W�EH6`B C ø W úRBXE�W+� I�E�ûR@NE�I�I ø O�ú��
S EH@\70�RGJ6`O1E�S3EH@`7��¶7XPNE S3EHS ø WXü � GA>J@NE
>A@ÕCFW ø @\7 ø C¾6bGAG ø 7�PNE�W�B;7XW�úRO17XúNW�E°EHGAE��
S EH@\7�B�þ'PR>JOQP^O�6b@+U�E
BXE�EH@^>A@%��>J_���PRL
6%@RIÎ7XPNEÒ6%W�EH6 UVE�PR>A@RI 7XPREÛEH@\ùy>JW ø @��
S EH@\7¶þ¶6%GJG´B¶þ'PNE�W�E�_`P ø B;7�I ø O1úNS3EH@`7QB
O�6%@ U�E��NG´6bO�EHI ø @ P\úRS36b@ B;7�6%7XúNE�B
6bB3>JGAGJúRB;7XWQ687XE�IÜ>J@��ª>J_��(� ý�L!>J@ þ'PR>JOQP
7XPNEÜþ¶6%GJG
B;7XW�úROY7�úNW�E >JBÙ6%7 6%@ >J@`7�E�W+�
S E�I�>´687XEÙB;7�6%7XE ø C¾7XPREÙ6%@N>JS×687X> ø @ ø C
U�EH>A@N_ GJ>AC¼7XEHI 7 ø 6%@ >J@\ùy>´B;>JUNGJE��NG´6bO1E'�
�¶PNEÎS3E�S ø W�ü ��GJ>J@NEbL/þ'PR>JOQP þ¶6bBÜI�E��
WX>JùbE�I CFW ø S.7XPRE >´I�EH6 ø C�6ÎO1G ø 7�PNEHB8�
GA>J@NEbL�6%GJG ø þ�Bd7�PNE/úRBXE�W¶7 ø PR6%@N_�6bU ø ú�7
7DþiEH@`7DüØ>AS� ø WX7�6%@\7 ø W¶CFWXE�
`úRE�@\7XGJüØ6bO5�
O1EHB�BXEHI+I ø O1úNS3EH@`7QB ø @^>k7��z"m@+7�PNE
6%W�EH63UVE�PR>A@RI�7�PNE
þ¶6%GJG´B�O�6b@�UVE>�RGJ6`O1EHI+S ø WXE&_`P ø B;7
I ø O1úNS3E�@\7QB
7�PR687×6%W�EØGJEHB�B=CFWXE�
\úNE�@\7XGJü 6bOHO1EHB�BXEHI����¶PyúRB�L�� ø O1ú!� ø W�GJIÉ�NW ø ù\>´I�E�B=6 PN>��
E�WQ6%WQOQPN>JOH6%Gdþ ø WXÿ�B+�R6bO�EØBX>AS3>JGJ6bW=7 ø ÷ 6%WQI�� B&� ý ���ÖE�U�� ø WQ6%_bEHW3�RWXE�B;EH@`7�EHI >A@ [yEHO17��ñý!� ý!�
�¶PNE°OQP ø >JO�E ø C�PyúNS×6b@ÒûR_búNW�EHB=6bB=6ÙBD7 ø W�>A@R_Q�NG´6bO1EØþd6`B/S×6bI�E°U�E�O�6búRB;EØP\úRS36b@ ûR_��
úNWXE�B�LNBXS×6%GJG�OQPR6%@R_bEHBd>J@Ø7�PNE�>JW�6��!��E�6%WQ6%@RO�EbL�6%@�I�7�P\ú�B'6%G´B ø3ø UN9DEHOY7QB'BD7 ø W�EHI ø @�P\úRS36b@
U ø I�>JEHB�6%W�E/EH6`B;üØ7 ø W�EHO ø _b@R>�#HE/6%@RI�7 ø WXEHS3E�S
UVE�W8; S
úROQP^E�6bBX>AEHW'7XPR6b@^WXEHS3E�S
UVE�W�>J@N_
7XPNE&G ø O�687�> ø @ ø C#I ø O1úNS3E�@\7QB ø @^6×O ø @\ù`E�@\7X> ø @�6%G�U øyø ÿ`O�6`B;E'���¶PNE/O1úNW�W�E�@\7�� ø O1ú�� ø WXG´I
>AS�NGJE�S3E�@\7Q687X> ø @ úRB;E�B ø @NGJüÛ7Dþ ø PyúNS×6b@ BD7Q687�úNEHB 687=û!��EHI G ø O�687�> ø @RB��O�¶PN>´B O ø @�O1E��N7
O ø úRGJI�L�P ø þdE�ù`E�W�LRUVE=E��y7XE�@�I�EHI 7 ø 6bINI-ò]I�>���E�W�E�@\7XGJüÙB;P�6*�VEHI�ó�BD7Q687�úNEHB¾þ'PNEH@Ù7XPRE ú�B;EHW
WXE�
`úREHB;7�B�>A7HL�7 ø I�WQ6%_Ø6b@RI^I�W ø �+7XPRE�S 7 ø 6%@yü&�NGJ6`O1E/UVE�PR>A@RIÙ7XPNE=E�@yùy>AW ø @RS EH@\7�þd6bGAG´BHL
6%@RIØ7 ø S ø ùbE�7XPRE�S 7 ø 7XPNE/O�E�@\7XEHW ø C�7XPNE&ùy>´B;ú�6%GJ>�#�687X> ø @�6%W�EH6 6%@RI�W ø 7Q687XE�7XPRE�S0�

� ����B�(Xô�B�ðNöDò?ï B#ï�ó��Öò?ï�õ�(Xô�+yöDò?ï

"m@Õ7�PN>´B×þ ø WXÿ E5��>JB;7X>J@N_ÜI ø O�úNS3E�@\7ØO ø GAGJEHO17X> ø @ B;ü�B;7XE�S×B×þdE�W�E+E�ù86%GJúR6%7XEHI 6%@�Ib� ø O1ú��
� ø WXG´I�LN6�NW ø 7 ø 7Dü7��E�C ø W�63@RE�þ >JS3S3E�WQB;>JùbE�,^�â� BXüyB;7XEHS þ¶6bB¶I�EHùbE�G ø �VEHIu�

46

�¶PNEiI�>�1�O1úNGA7X>JEHB ø CNS ø ùy>J@N_�CFW ø SÔý^�.�Õ>A@\7�E�WXC]6bO1E�B�7 ø ,*�.�Õ>A@\7�E�WXC]6bO1E�B�þdE�W�E?>´I�E�@\7�>kûRE�I
6%@RI B ø GAù`EHI��8>A7�þ¶6bB�E5���NG´6%>J@NEHI=>J@3INE17�6b>AGRP ø þ 7XPRE'GJ6Zü ø ú�7 ø Cx,^�â� ùy>JBXúR6%GJ>)#H687�> ø @RB!B;P ø úNG´I
U�E ø ��7X>JS3>�#HEHI 7 ø S36bÿbE'_ ø\ø I úRBXE ø CV7XPRE�6Zù86%>JGJ6bUNGAE(,*�.� B8�R6`O1E�6b@RI=7XPNE	�¶P ø úN_`P`7�� >)#5�
6%WQI�S3E17Q6*�NP ø Wiþ¶6bBdI�EHùbE�G ø �VEHI°6bB¶6%@°E51�O1>JE�@\7'6%@RI��RE5��>JUNGJE¾_`G ø UR6%GVùy>JBXúR6bGA>)#H6%7X> ø @Ø6b@RI
@R6Zùy>A_\687X> ø @ÛO ø @�O1E��N7�7�PR687/I�üy@R6bS >´O�6bGAGJü^S ø ùbE�B�7�PNE=ùy>´B;ú�6%GJ>�#�687X> ø @Û>k7�E�S×B�7 ø 7XPRE ú�B;EHW
>A@RB;7XE�6bI ø C�C ø WQO1>J@N_Ø7XPNE=úRB;EHW�7 ø°ø WX>JE�@\7¾PN>AS�� ø W¾PNE�WQBXE�GAC�>A@Ö6s,^�â� E�@yùy>AW ø @NS3EH@`7��Y�¶PRE
@NE�E�I^C ø W¾7Dþ ø 7Dü7�VEHB ø CdI ø O1úNS3E�@\7/6%W�EH6`B�L ø @NE=C ø WeúRBXE�W+�mB8�VEHO�>kû�O=I ø O1úNS3EH@`7&S×6%@�6%_bE��
S EH@\7&6b@RI ø @NE=C ø W&6%ú�7 ø S×687�>JOH6%GJGAü^O ø S�Nú�7�EHIÖI ø O1úNS3E�@\7 ø W�_`6b@N>�#�687�> ø @RB�L�þd6`B¾EHB;7�6%U!�
GA>´B;PREHI�L�S3E�S ø W�ü ��GJ>A@REi6%@�I&PyúNS×6%@
B;7�6%7XúNE�BÃþdE�W�E?I�EHùbE�G ø �VEHI
6bB�EHWX_ ø @ ø S3>JO#ú�B;EHWªB;7 ø W�>J@N_
6%W�EH6bBHLy6%@RI°6bB¶63B ø GAú�7�> ø @�7 ø 7�PNEè�NW ø UNGJE�S ø CªI ø úRUNGAEeW�E��NW�EHBXE�@\7Q687X> ø @�B ø C!I ø O1úNS3EH@`7QB�L
>AS3S×687�E�W�>J6bG�_bP ø BD7�I ø O1úRS EH@\7�B¶þdE�W�E¾ú�B;E�I��
÷iø S�R6%W�EHIÜ7 ø 7XPRE��0y�����q^�+l�ù'y��36*�!�NW ø 6`OQP`�NW�EHBXE�@\7XE�IÜ>J@ B;E�OY7X> ø @�ý�� ý/� ø O1ú�� ø WXG´I
�NW ø ùy>´I�EHB#7XPNE�úRB;EHW?þ'>A7XPØ6/S ø WXE'@�687XúRW�6bGRE�@yùy>JW ø @NS3E�@\7HL`S ø WXE���E5��>AURGAEº� ø BXBX>AUR>AGJ>k7�>AE�B#7 ø
BD7 ø W�E�I ø O1úNS3EH@`7QB?6%7?úRBXE�WiINE1ûR@NE�I×G ø OH687�> ø @RB�L\6%@RI 7�PNE�ùy>´B;ú�6%GJ>�#�687X> ø @ ø CÃI ø O1úNS3E�@\7¶B;E��
S36b@\7X>´O�B�7XPRW ø úN_bP 6%ú�7 ø S×687�>JO¶I ø O1úRS EH@\7 ø WX_\6%@N>)#H6%7X> ø @/S ø I�E�B#6%@RI
ù\>´BXúR6%GJGAü
>A@RIN>JOH687XE�I
I ø O1úNS3E�@\7�W�E�G´687�> ø @RBñ; 6=CFEH687�úNW�E¾@ ø 7�6Zù86%>JGJ6bUNGJE�>J@�7XPNE��%y�����q^�+l�ù'y��'6*�!�NW ø 6`OQPu�
M�GJG¶7XPNE�B;EÙ6`B8�VEHO17�BHLª7 ø _`E17XPRE�W3þ'>k7�P 7XPNE+ùy>JBXúR6bGA>)#H6%7X> ø @ ø C�7�PNE^I ø O1úNS3E�@\7�S3E17Q6bIN6%7�6RL
B;E�6%WQOQP W�EHBXúNGA7�BHL`6b@RI37XPRE�W�E�G´687X> ø @�B�UVE17DþdE�E�@�I ø O�úNS3E�@\7�BHLy6%GJG ø þ��NW�EH6%7;7XEH@\7X>JùbE��NW ø O1E�BXB8�
>A@N_ ø C�7XPNE^IN6%7�6NL�EH6`B;üÜ6b@RIÜ>J@\7XúN>A7X>JùbE�úRBXEbL!>JS S3EHW�BX> ø @ >J@Ü7�PNE^6%@N>JS×687XE�IÉ,*�.�TE�@yùy>��
W ø @NS3E�@\7HL�6b@RI @�6Zù\>J_`6%7X> ø @^CFW ø S ø @NE×I ø O1úRS EH@\7¾7 ø 7XPNE ø 7XPNEHW&U\üÛB;>JS�NGAü úRB;>J@N_�7XPRE
�¶P ø úN_`P\7ñ� >�#�6%WQI 7 øyø G´B ø WiIN>JB+�NG´6Zü\>J@N_/I ø O�úNS3E�@\7iW�E�G´687�> ø @RB��\M�GA7XP ø úN_bP°BD7�>AGJG�>J@Ø6��RW ø �
7 ø 7Dü7�VE¾B;7�6%7XE`L � ø O1ú!� ø W�GJI�>JB¶6%@ØE5�N6%S�NGJE�W�EH6bGA>)#H6%7X> ø @ ø C�6>,^�â� I ø O1úNS3E�@\7'O ø GAGJEHO17X> ø @
B;ü�B;7XE�ST7�PR687eþd6`B�7�EHB;7XE�I^þ'>k7�P W�EHBXEH6bW�OQP^G´6%U B;7�6*�O����úNW�>A@N_Ø7XPNE�B;E
7XE�BD7QB�7�PNE >A@\7XúR>k7�>Aù`E
6%@RI�6%@N>JS×687�EHI°ù\>´BXúR6%GJ>�#�687�> ø @s�NW ø ùbE�I37 ø UVE¾E�6bBXü×7 ø úRBXE&6%@RI°S ø W�E�EH@89 ø ü`6bUNGAE�7XP�6%@+6
O ø @yù`E�@\7X> ø @R6bGRI ø O1úRS EH@\7iE5���NG ø W�E�Wi6%GA7XP ø úN_bP37�PNE�W�E�B;7X>JGAG�6%W�E�S×6%@yü WXE�BD7�WX>´OY7�> ø @RB�>J@×7XPRE
�NW ø ùy>´I�EHI�CFúN@RO17X> ø @R6bGA>A7Dü��j� ø WXE ø ùbEHWHLb7XPNEeùy>JBXúR6bG�WXE��NWXE�B;EH@\7�687�> ø @ ø C!I ø O1úNS3EH@`7�BXE�S×6%@!�
7X>´O�B
6`B&7�PNE�W�E�GJE�ù86%@RO�E37 ø BXEH6bW�OQP�
\úNEHWX>JEHB/6b@RIÒW�E�G´687X> ø @�B&U�E�7DþiEHE�@ÜI ø O�úNS3E�@\7�B=6%GJG ø þ
7XPNE=úRB;EHW�7 ø
\úN>´OQÿ\GJü0��EHW�O�E�>JùbE/W�E�GJE�ù86b@`7¾I ø O1úNS3E�@\7QB�6b@RI�7 ø @R6Zùy>A_\687XEeCFW ø S ø @NE
I ø O9�
úNS3E�@\7�6%G ø @N_
7XPNE&I�>´B8�RGJ6Zü`EHI×W�E�G´687�> ø @�7 ø 6=WXEHGJ6%7XEHI°I ø O1úNS3EH@`7��!�¶PNEHBXE�� ø BXBX>AUR>AGJ>k7�>AE�B ø C
WXE��NWXE�B;EH@\7X>J@N_
I ø O1úRS EH@\7¶BXE�S×6%@\7�>JOHBiOH6%@ØP�6%WQI�GAü3UVEº�RW ø ùy>´I�EHI×Uyü 7XWQ6bIN>k7�> ø @R6%G�ý*� 7XE��y7
UR6bBXEHIØ>A@\7XEHW;C]6`O1E�B�Lyþ'PN>´OQP°>J@RI�>´O�6%7XE�B?7�PR687�6�,�� úRBXE�W¶>J@\7XE�WXC]6bO�E�GJ>JÿbEè� ø O1ú�� ø WXG´IØ>´Bd7XPRE
6*�!�NW ø �RWX>´687�E�þ¶6Zü ø C!>AS�NGJE�S3EH@`7�>A@R_37XPNE
[yEHS×6%@\7X>´Oè��E�B;ÿ\7 ø �u�
� ø S ø ùbE=7XPNE��NW�EHBXE�@\7XE�I 6*���NW ø 6bOQP^CFW ø S �RW ø 7 ø 7Dü7�VE B;7�6%7XE=7 ø 6�úRBX6bUNGJE 6��!�NGJ>JOH687X> ø @ÃL
6bINI�>A7X> ø @�6%G?W�EHBXEH6bW�OQP 6b@RIÒ>AS�NGJE�S3EH@`7Q687�> ø @ÜE5� ø WX7�B
þ'>AGJGiUVEØ@REHO1E�BXB�6%W�ü����Nú�7�úNWXE°þ ø WXÿ
þ'>AGJG:L�C ø W/E���6bS�NGAE`L�PR6ZùbE 7 ø C ø O�úRB ø @ 7�PNE�W�E��NG´6bO�E�S3E�@\7 ø CdÿbE�üyU ø 6bW�IÛ_bE�BD7�úNWXE�B¾þ'>k7�P
S ø WXE @R6%7XúNWQ6%G�L�EH6`B;ü ��7 ø � W�E�S3E�S=U�EHWHL�6%@RIÛ>JS S3EHW�BX>Aù`E&ò]PR6%@�I ø WeU ø I�ü!ó¾_bE�BD7�úNW�EHB��x�¶PRE
,^�â� _`W�6��NPN>´O�B�O ø úNG´IÙ6bGJB ø UVE=>JS�NW ø ù`EHI�7 ø O1W�EH6%7XE/S ø WXE O ø @yùy>J@RO1>J@N_Ø6b@RI^>JS��RWXE�BXBX>Aù`E
E5��EHOY7QB��'�NúNWX7XPNEHWXS ø WXE`LH7�PNE��¾@ ø þ�BX>JB�CFWQ6%S3EHþ ø WXÿ&þ'>JGAG�UVE'>J@`7�E�_`W�6%7XEHI=>J@� ø O1ú!� ø W�G´I/7 ø
6bO�
\úN>JW�E�W�E�G´687X> ø @�Bi6b@RI ø 7XPNEHW¶BXE�S×6b@`7�>JO�S3E17�6`IN687Q6!��� ø WXE ø ùbE�W�LbBXú!�!�NGJE�S3EH@`7Q6%W�ü6� ø BXBX>��
UN>AGJ>A7X>JEHB ø C�>J@�C ø W�S×687X> ø @×W�E17�WX>JE�ù86bG�6%@�I×ÿy@ ø þ'GAE�I�_bE�6`O�
\úN>´B;>A7X> ø @�6`B�þdE�GJGV6`B�� ø B�B;>JUN>JGA>A7X>JEHB
7 ø >A@\7XEHW�6`OY7dþ'>k7�P°I ø O1úRS EH@\7¶O ø GJGAE�OY7X> ø @�B�GJ>Aÿ`E¾I�WQ6%_`_b>J@N_/I ø O1úRS EH@\7�Bi7XPNW ø úR_bPØB+�R6bO�E ø W
BX6Zùy>J@N_Ø>J@\7XE�W�EHB;7X>J@N_�O ø @NûR_búNWQ687�> ø @RB�6b@RI I ø O�úNS3E�@\7&6%W�W�6b@N_bEHS EH@\7�B¶C ø W¾G´687�E�W¾úRBXE=þ'>JGAG
PR6ZùbEd7 ø UVE�6bIRI�EHI=7 ø O�WXE�687XE'6è� ø þiEHW;CFúRGN6*�!�NGJ>´O�687�> ø @
7�PR687dI ø EHB!@ ø 7�WXE�BD7�WX>´OY7!7XPRE�úRBXE�W��

47

1bC?D´CÃñ!CÃï�õxCb+

 � ±?zQÓ%hp�&sHrDsbw"! � w%�i�DzQzQtRw$# �&% x!|\z!hptb³´sH�D�/n1rDhps�te{Ql`v�z % }djmhpt\¹irm�;nHt\jmÏ\n��DzQt`{���hpte��Ñ�hpt`³´s��D�/n�Ð
rDhpsHt ~%hpjmlynHophpqYn1rDhksHt � ¸�t %`� �Ds8{Qz�zYÑ`hpt\¹Hj�sH³�rD|`z'x!|\h��;Ñ µ?t\t%lyn�o Í s��DÓbjm|`s�Ï=s�t ¸:t`³JsH�D�/n�rDhpsHt
x�zQ{X|`t\sHoksH¹�hpzQj�')(%�bj rDzQ�&j'º Í ¸�x*(+ ����À � º ���H�ZÀ Á��-, �ZÁ

Á � ²!n1�;ÑRw.(� � � w�±isHv�z��mrDjms�tRwÃ� � � � w0/ªsH�DÓ�w Í �1% x!|`z&Ô!zQv`v�s8s�Ó^n�tyÑ�rD|\z/Ô!z�v+³´sH�;n�¹�z�� % n�t
hptb³´sH�D�/n1rDhps�t+Ô!s��DÓ%jmÏynH{�z
³JsH�¾rD|`z&Ô!sH�DokÑ%Ð]Ô�hkÑbz
Ô�zQv � ¸:t % ²�¿d¸�+ ��� %Ã� �Ds8{Qz�zYÑ`hpt\¹Hj¾s�³?rD|`z
(%¸m�'²�¿i¸V{QsHt`³´zX�DzQt\{Qz�sHt¾¿dl`�/nHt�³¼nH{XrDsH�DjÃhkt¾{Qs��&Ï`l`rDhpt\¹ij �`j rDz��&jQw32iz�Ô4/�s��DÓ�w325/¾wH}6(bµ�w
µ?²7# � �DzQjmj�º ���H�ZÀ $ 3 ,Zì �

� � (%zQv`�Dz�{X|8rDjQw8# � # � wN²�l\¹Hhpt\h¼w9! � g � w�uVn�jmÓZsYÔ�jmÓ%hFw9(� ! � w`g�n�jmhpoAn�Ó%hkjQw:! � w	# hpopopz��Yw	# � (�&% gihpjmlynHo�Ð
hpqYn1rDhps�t¾s�³�jmzYn1�D{X|��DzQjml\o�rDj % ni{QsH�&Ïyn��;n1rDhp~Zz!zQ~HnHoplyn1rDhps�t¾s�³\rDz��%rYw�ÁHÑNwHnHtyÑ���Ñ�hpt%rDzX�m³¼nH{�zQj � ¸:t %
(%¸m�d¸:±;+ ��� %R� �Ds8{QzQzQÑ`hpt\¹Hj¶sH³ÃrD|\z¾Á�Á1tyÑ�nHt`tbl\nHo�hpt8rDz��Dt\n�rDhps�t\nHo�µ?²7#<(%¸m�d¸�± {Qs�tb³´z��DzQt`{Qz
sHt&±iz�jmzYn��D{;|/nHt\Ñ&Ñ`zQ~Zz�oksHÏ\�&zQt8r�hpt&hpt`³JsH�D�/n�rDhpsHte�Dz�rm�DhpzQ~�n�o¼w=2dz�Ô>/�s��DÓ�w$25/¾wH}6(`µ�w8µ?²7#
� �DzQjmj�º �H����À?�?, �

� � uRzQl\jmÓ%h¼wVµ � w�µ?opoAn�t�w�! �1% uRhk¹H|8rD|\s�l`jmz % (b|\sYÔ�hpt\¹3rD|`z¾Ô#nQ�ØrDs3�DzQopzQ~HnHt8r�hpt`³´s��D�/n�rDhps�t � ¸:t %
¸@2¶½ � gd¸A(� º]Á����H�ZÀ Á��-, ���

� � ±?s�v�zX�mrDjms�t�wy� � � � w�~�n�t »'n�t8rDqQhp{X|RwB# � wy±?s�v`v\hpt\jQw`» � ² � wN²�qQzX�mÔ�hkt`jmÓ%hFw	# � w\¿dhpt\{;Ó%opz��8w\� � w
±?hpjDÑ`zQtRwy� � wNx!|`hkz�oFwN» � wN�dsH�Ds�Ó%|`s�~%jmÓ8�8w`g �1% x!|\z�r;nHjmÓ3¹�nHopopz��m� % n
�HÑ Ô�hptyÑ`sYÔ �/n�tyn�¹�z�� �
¸:t % ²�¿d¸ � º]Á����H�ZÀ#�Z�H��,b���

� ��% ºFxVnH{�rDhpopz��H» }ijmz��?¸�t8rDz��m³¼n�{Qz % |%rmrDÏ % C$C r;n�{�rDhpopzY��Ñ � {�s�� C À
� � uRl\{Qz�t\z % º¼|8rmrDÏ % C3C opl\{Qz�t\z � nHÏ\nH{;|\z � s��D¹ C À
Â � (bnHl`z��D�/nHt`t�wYu �1% x!|\zÃ¹�t`sYÔ�jmhkj�D l\jmhpt\¹?jmzQ�/nHt8rDhp{�Ô!zQv'rDzQ{;|\t`s�ops�¹HhpzQj�rDs�v\l\hpokÑ�n#jmzQ�/nHt8rDhp{
ÑbzQjmÓ8rDs�Ï � #3nHj rDz��?+ j�rD|\zQjmhpjQw�x�zQ{X|`t\hp{Yn�o�}it\hp~Zz��Djmh�r��
s�³�gdhpzQt`tyn=º]Á����H�ZÀ

� � (bnHl`z��D�/nHt`t�wNu �&% x!|\zejmzQ�/n�t8rDhk{¾Ñ`zQjmÓ8rDsHÏ°Ð?n=v\nHjmhpj'³´s���Ï�zX�Djms�tyn�oªÓ%t`s1Ô�opzYÑb¹�ze�/n�tyn�¹�z�Ð
�&z�t%r � º]ÁH������À?ÁH���",%�H�

 � � # hpt`z�wE# � ± � w � �Ds8s�Ó%jQwE!H� � wN½ � ��� w	(bzYÚ8l\hptRwN² � ¿ �1% # s1~bhpt`¹&s�v�F zQ{�rDjdhkt×jmÏ\nH{Qz %	G �bÏ`oksHh�rDhkt`¹
Ïb�Ds�Ïb�Dhks8{�zQÏ`rDhps�t�hpt×~%h��mrDlynHo�Ð]zQt%~%h��Ds�t\�&z�t%r�hpt8rDz��;n�{�rDhps�t � ²�sH�&Ï\l`rDzX�'�i�;n�Ï\|\hp{QjIHEJ°º ������À
 ��,%ÁH�

48

Human and Social Aspects of Decentralized
Knowledge Communities

Indratmo and Julita Vassileva

Department of Computer Science, University of Saskatchewan
Saskatoon, SK S7N 5C9, Canada

j.indratmo@usask.ca, jiv@cs.usask.ca

Abstract. To design an infrastructure for knowledge communities, we
need both technical expertise and an understanding of human and social
aspects of communities. Technologies for implementing such infrastruc-
tures are often available. However, there is no clear, proven procedure
for building successful communities. In this paper, we review research lit-
erature concerning user practices and social aspects of information and
knowledge management. Based on this review, we propose preliminary
design criteria for Semantic Desktop systems.

1 Introduction

Designing an infrastructure for knowledge communities requires not only techni-
cal expertise, but also a proper understanding of the human and social aspects
of communities. Understanding these aspects is necessary because the success of
communities often depends on subtle design issues [1, 2].

The structure and dynamics of a community emerge from local interactions of
its members. These interactions cannot be controlled to produce specific collec-
tive behaviour, as each community member is autonomous and interdependent.
However, we can support communities by designing an infrastructure that fosters
characteristics of successful communities, such as a high level of participation,
contribution, and cooperation among community members.

Recently, a vision [3] has emerged of building peer-to-peer (P2P), seman-
tically rich knowledge communities. The basic idea is to apply Semantic Web
principles [4] to personal information management (PIM), resulting in Semantic
Desktop systems (e.g., [5, 6]). Then these systems are interconnected using a
P2P protocol, providing an infrastructure for online communities. Some of the
technical aspects of such infrastructures have been discussed elsewhere (e.g., [3,
5–7]). However, the discussions so far have overlooked the existing user practices
in PIM and social aspects of communities. Unless the new infrastructures accom-
modate these practices, they will not be adopted by users, and their applications
will be severely limited.

In this paper, we review previous research on personal information manage-
ment and social aspects of knowledge management, so that lessons from many
user studies about PIM and online communities can be used for implementing the

49

vision of P2P knowledge communities [3]. The paper consists of five main parts:
(1) user practices in PIM, (2) problems in information management, (3) various
approaches to solving the problems, (4) design criteria for Semantic Desktop
systems, and (5) social aspects of knowledge communities.

In the first three parts, we give background information about PIM—activities
in organizing and managing information for personal use. The discussion focuses
on human factors in PIM, which then become the basis for the development
of criteria for designing Semantic Desktop systems. In the last part, we discuss
social aspects of communities, such as the role of social networks in information
and knowledge management, and factors that motivate users to contribute to
their communities.

2 User Practices in Personal Information Management

This section discusses existing research on user practices in personal information
management. First, it outlines common purposes of PIM, then discusses different
types of filing behaviours, and finally highlights the importance of various cues
in information management.

2.1 Basic Purposes: Finding and Reminding

People manage their documents not only to make it easier to find them later,
but also to remind themselves of their tasks [8, 9]. To make finding documents
easier, people arrange the documents according to some logical order. To achieve
the reminding function, they make relevant documents more visible than others.
For example, putting a document on a computer desktop can remind the user
to work on the document.

To support finding and reminding, people organize their documents using
“files” and “piles” [8, 10]. Files are organized document collections and usually
contain archived information. Piles, on the other hand, are disorganized docu-
ment collections and typically contain work-in-progress documents. A pile can
function as a reminder and a temporary organizational unit. Although not or-
ganized explicitly, elements of a pile may naturally follow reverse chronological
order [8].

When searching for specific information on their personal computer, users
prefer to browse their directories manually than to use a search tool [9, 11, 12].
This preference may result from users’ familiarity with their personal workspace:
they feel that they know where they have saved a document. Users tend to use
a search tool only when they cannot find a document manually, or when they
search information that is available outside their personal workspace, such as on
a shared file server or on the Web.

2.2 Filing Behaviour

A common activity in information management is to file documents; that is, to
place documents in an appropriate folder or category.

50

People’s behaviour in organizing their documents ranges from “pilers” to
“filers” [12–14]. Pilers are users who do not categorize their documents. An
example is an email user who leaves all incoming messages in the inbox. Filers,
on the other hand, are those who use folders extensively; they create many folders
and classify their documents into various folders on a daily basis.

Personality traits and job types affect people’s filing behaviour. Some people
tend to be more organized than others. People whose tasks are structured and
routine tend to file their documents more frequently than those whose tasks are
unstructured [8]. For knowledge workers [15], for example, filing information is
often not so important, as their work relies heavily on creativity and knowledge
that is in their mind. Thus, knowledge workers focus on absorbing information
contained in documents, rather than relying on them.

Researchers have observed filing behaviour in various applications, such as
email [12, 14], Web bookmarks [12, 13], and file systems [12]. The classification of
filing behaviour in these studies, however, is not absolute. People’s behaviour is
complex, so it is possible to refine the suggested classification schemes. Boardman
and Sasse [12] observe that users in practice use multiple strategies to manage
emails and Web bookmarks. Specifically, some email users file important mes-
sages immediately (frequent filers), but leave other messages in the inbox and
organize them occasionally (spring cleaners). Similarly, Internet users organize
some of their new Web bookmarks at the creation time (creation-time filers),
but leave others as they are (no-filers).

The research discussed above studies how frequently and when people file
their documents, but it does not discuss how people group their documents.
What factors affect classificatory decisions?

Documents’ intended use or purpose appears to be a strong factor that af-
fects classificatory decisions [16]. People tend to group documents based on the
task related to the documents, such as grouping all materials for teaching a
course Computer Science 101. Basic properties of documents—their size, type,
or author—are less influential than their intended use. In organizing photos [17],
however, people typically use temporal information, such as events or date, as
the main factor in making classificatory decisions.

2.3 The Importance of Context and Cues

People use various cues to maintain contextual information of their documents.
A business card attached on a paper may serve as a reminder to send the paper
to a particular person. A date written on top of a document may remind the
user of a project’s deadline. A red folder may indicate the urgency of documents
within it. These cues, however, can be interpreted and used in different ways.
Therefore, knowing the context in which such cues are being used is crucial.

Context is important for a proper understanding of information and in the
recall process [18]. A classic example, as discussed in [18], is a chess study [19].
This study suggests that chess experts can reconstruct chess positions from real
play well because the positions are meaningful to them, which helps in recall.
When the positions are randomized, their ability to recall declines significantly.

51

In the context of information management, associating a document with various
cues—visual, spatial, chronological, or contextual—can improve people’s ability
to find the document because humans are good at remembering the appearance,
essence, and context of a document. Without such cues, people have to remember
details, such as filenames, which they are not good at.

Spatial locations of documents also carry semantic information to the user. In
office organization, people keep documents that are more recent or urgent closer
to the centre of their working area [8, 20]. In desktop organization, computer
users arrange their screen systematically [11]: they group program shortcuts on
a specific region, put related documents close to each other, and try to arrange
their screen’s layout symmetrically. Such spatial organizations can help users
locate frequently used programs and documents on their computer.

3 Problems in Information Management

Current systems for PIM are far from being perfect. Studies report four areas
where improvement is necessary: supporting information organization better,
maintaining context and retrieval cues, dealing with the problem of information
overload, and supporting interoperability between individuals or organizations.

3.1 Filing

Filing information is difficult. It has been observed in various studies, including
office organization [8, 10], email management [14], and desktop organization [11].
In these studies, users state that filing is a heavyweight cognitive activity: they
cannot make classificatory decisions easily. When filing a document, users try
to put the document into a category in which they expect to remember it for
later retrieval. Because there are many ways to organize documents, as discussed
in section 2.2, a classification scheme that is currently appropriate may become
unsuitable as the user requirements or goals change over time.

The currently predominant hierarchical structure in information management
makes filing information difficult and inflexible. In the physical world, people are
limited to having to put a document into one specific folder, unless they make a
copy of the document, which then can be put in a different folder. Unfortunately,
most file systems and computer applications impose the same restriction: they
do not allow users to classify a document into multiple categories (e.g., folders
or directories). Although users can alleviate this problem by making copies of
documents or links to files, they normally do not do this [10].

Hierarchies also restrict users from capturing multiple semantics of a docu-
ment. Where should a user save a paper about the Semantic Web and ontology,
in a “Semantic Web” or an “Ontology” directory? Filing the paper in either of
these categories causes loss of information about the document’s content. And
it complicates the retrieval process, as the user has to remember exactly the
location of the paper. Although the user could create a “Semantic Web and On-
tology” directory, it is uncommon to have a category with multiple semantics.

52

The ambiguity of natural languages also contributes to the difficulty of filing
information. A word can refer to different things. A category “Networks” may
refer to network protocols, Internet applications, or even network marketing.
Thus, it is difficult to choose good names for semantic categories. In addition,
it is hard later to remember the intended semantics of the categories, as the
mind-set of the user may change in the meantime. Often a category created with
a specific semantics “evolves” due to filing of documents that do not exactly fit
in it, because users are reluctant to create a new category, since this may require
reorganization of the previously classified documents.

3.2 Maintaining Context and Retrieval Cues

Computer systems offer limited supports for maintaining context and retrieval
cues in information management. Visual, contextual, and spatial cues are impor-
tant for finding and reminding [18]. In the physical world, tangible documents
have rich features, such as colour, size and thickness, which can serve as retrieval
cues. For example, when searching for a book, people may forget the book’s title,
but they usually can still remember the book’s appearance. Therefore, they can
limit their search based on these cues. Unfortunately, many of these cues are
lost in the digital world. Instead of maintaining visual retrieval cues, computer
systems display details of files, such as their name, type, and size, which are
less useful for retrieval cues. Furthermore, there are only limited possibilities for
users to arrange the spatial layout of their document collections.

Filing documents removes some contextual information of the documents.
Suppose that in an office, a user keeps urgent documents in a red folder. While
the folder is on a desk, it can remind the user of the urgency of the documents
within it. However, when the user puts the folder into a filing cabinet, the user
can no longer see the urgency denoted by the red colour. A similar effect applies
to digital documents. For example, saving an email attachment in a file folder
removes the contextual information (e.g., from whom and when the document
was received), which is usually available in the email body [20].

Context can also be lost because of some habitual use of computer applica-
tions. For example, an email’s subject and its content are not necessarily con-
sistent, as users often simply press “reply” to an old message when starting new
conversational threads. In a long conversational thread, users may not include all
previous messages when sending a reply. They may also discuss topics that are
irrelevant to the initial topic of discussion without changing the email subject.

3.3 Information Overload

People often have to deal with amounts of information exceeding their processing
capability. This phenomenon appears in various studies of management of files
[9], paper archives [21], email [14], and social networks [22, 23]. Across these stud-
ies, the main problem is related to the volume of information that people have
to manage. On a closer look, however, there are finer issues in the information
overload problem as discussed below.

53

People need to manage many ephemeral documents [9], such as emails and
memos. Ephemeral documents usually serve as reminders, so they should be kept
visible. However, computer screens are spatially limited, so users cannot arrange
such documents freely. Moreover, the lifetime of these documents sometimes
depends on other people. For example, a note is only relevant until a reply from
another person arrives. Unfortunately, not all people respond to others’ requests
timely, making the management of ephemeral documents more difficult.

Studies [14, 24] observe that people use email not only for communication,
but also for reminders, personal archiving, and task and contact management.
These practices exacerbate the information overload problem, as they cause users
to receive and manage more messages without using the right tool.

Another problem related to information overload, called premature filing, is
observed in the management of paper archives [21]. This problem is described as
follows. When receiving many documents, people cannot always decide the use-
fulness of these documents immediately. While they do not want to keep useless
documents, they consider the potential value of these documents and hence hes-
itate to discard them right away. So they decide to file these documents, hoping
to find time to assess their value later. Unfortunately, filing makes documents
less visible. As people receive many new documents, they often forget about
their filed documents. As a result, they keep many documents, which have little
value to them, and are often discarded later without ever being read [21].

3.4 Interoperability

Problems in personal information management escalate when people have to
share documents. People are familiar with their personal workspace: they or-
ganize it personally, know the contents of their document collections well, and
decide the semantic organization of their workspace by themselves. These char-
acteristics, however, do not exist in a shared repository: several people have
access to the repository; others may add new documents to it; and as a team,
they have to agree to some convention of how to organize this repository.

Due to the rich semantics in natural languages, people often use different
words to refer to the same concept, and use the same word to refer to different
concepts. According to Furnas et al. [25], the probability of two persons choosing
the same word to describe the same concept is less than 0.20. In other words, it
is unlikely that people will use the same vocabulary to describe the same things.

In collaborative work involving different groups of people, each group may
require local customizations of documents, have different views of the shared
objects, or favour a certain filing scheme [26, 27]. Dourish et al. [27] report that
in an organization that has a standard filing scheme, each group still needs to
adjust the standard filing scheme to meet requirements of different projects. As
each group has its own local view, document sharing between groups becomes
complicated. To be understandable, local customizations should be presented to
each group differently, ideally, according to the corresponding group’s local view.

Even for a small, relatively homogeneous team [28], interoperability prob-
lems exist. These problems include personal preferences over coarse- or fine-

54

grained categorization, topic- or purpose-based categorization, and syntactic- or
semantic-based categorization.

4 Approaches to Handling Problems in Information
Management

A variety of approaches have been proposed to deal with the problems discussed
in the previous section. We focus on four main approaches below: tagging, flexible
collections, temporal-based organizations, and the Semantic Desktop.

4.1 Tagging

The basic principle of tagging is to assign attributes (i.e., 〈field, value〉 pairs)
to documents, and then to allow users to use these attributes to organize and
retrieve documents [29–31]. This principle enables users to assign multiple at-
tributes to a document, so they can express the semantics of a document more
flexibly. Users are no longer limited to having to classify a document into a single
category as with filing.

The concept of tagging has been applied to several file systems [29, 30, 32].
These systems use tagging for providing a flexible way of retrieving and grouping
files. To retrieve and group files, users are no longer restricted to one strict
hierarchical structure. Instead, they can group files based on a certain attribute
of the files. For example, in a Semantic File System [29], to retrieve all papers
about Semantic Web, a user can submit a query “topic=semantic web”1 and the
system will create a virtual directory containing all files that match the query.

Attributes have been used not only for providing associative access in file
systems, but also for providing personalized services [33] and managing docu-
ments [31, 34, 35]. In general, these systems use attributes to capture metadata
and to provide a flexible way of organizing and retrieving documents. Placeless
Document Systems [34], however, extend this usage by allowing an attribute’s
value to be active code. So, for example, users can assign a program to a doc-
ument, which backups the document periodically. This allows to associate not
just semantics, but also computation with the corresponding documents.

4.2 Flexible Collections

Collections are an abstraction for handling the limitations of a hierarchical struc-
ture and for providing a flexible way of organizing various types of documents.
There are two main principles of collections [31, 36]: (1) a document can be-
long to multiple collections, and (2) a collection can contain different types of
documents.

The first principle allows a document to become a member of several different
collections. This membership can be static, dynamic, or a combination of static
1 The actual form of queries in Semantic File Systems is specified as virtual directory

names, e.g., /sfs/topic:/semanticweb.

55

and dynamic. For example, semantic directories [30] and fluid collections [31]
enable users to specify an inclusion list, an exclusion list, and a query to create a
collection. The inclusion list contains a list of documents that must be included
in the collection regardless of the query. The exclusion list specifies documents
that must be excluded from the collection even if they match the query. The
query states the criteria of documents to be included in the collection.

The second principle enables users to put various types of documents—such
as emails, Web bookmarks, appointments, contact lists, and Word documents—
together into a collection. Users can organize their documents in a more logical
and meaningful way, as document organization is abstracted from the applica-
tions that produce the documents.

4.3 Time-Based Approaches

Time-based approaches provide an alternative to the desktop metaphor for man-
aging information. These approaches are based on the fact that time is an im-
portant retrieval cue in information management [8, 17, 37]. Examples of such
approaches include Lifestreams [38] and Time-Machine Computing [39].

Lifestreams [38] stores a user’s personal information chronologically as a
lifestream. A lifestream contains old documents, working documents, and possi-
bly, future documents, such as appointments and reminders. A document’s name
is not mandatory because the system is responsible for identifying and placing
the document in the lifestream. To facilitate information organization and re-
trieval, the user can create substreams to display only subsets of documents in
the lifestream. Within a substream, the user can refine the query further by
creating other substreams. Finally, Lifestreams is also capable of summarizing
information in a substream and presenting the result to the user.

Time-Machine Computing (TMC) [39] extends the idea of Lifestreams [38]
by capturing both temporal and spatial information of a document. To do so,
TMC provides a special desktop that allows users to keep and organize their
documents spatially on this desktop. Users may remove documents from their
desktop. However, these documents are not deleted permanently because TMC
keeps track of any state changes on the desktop. Thus, users can access their
removed document by setting their desktop’s time back to a point before they
remove the desired document, and TMC will restore the state of the users’
desktop at the specified time.

4.4 The Semantic Desktop

The core technology of the Semantic Desktop is the Semantic Web [4]: an ex-
tension of the current World Wide Web that enables machines to “understand”
and process information intelligently. As discussed in [4], the main components
of the Semantic Web consist of the Extensible Markup Language (XML), the
Resource Description Framework (RDF), and ontologies. XML enables users to
create arbitrary tags for describing the structure of documents. RDF provides a

56

framework to express the meaning of information using XML. And an ontology—
“an explicit specification of conceptualization” [40]—makes information sharing
meaningful by providing a set of vocabulary to discuss a particular domain.

The main idea of the Semantic Desktop [3, 5, 6] is to apply principles of the
Semantic Web [4] to personal information management. This approach allows
the creation of semantically rich PIM tools. Semantic Desktop systems can use
RDF to express both the structure and semantics of webs of information on a
user’s personal computer as metadata. Because this metadata can be “under-
stood” by machines, this approach has potential for improving current practices
in PIM: information overload can be reduced by delegating well-defined tasks to
agents; information sharing can be more meaningful and contextually rich, as the
corresponding metadata is also shared and described using common ontologies.

Like the Semantic Web, the Semantic Desktop treats information as a Web
resource, so information is identified using a Uniform Resource Identifier [3,
6]. Some projects developing Semantic Desktop systems include Haystack [5],
Gnowsis [6], Chandler,2 and Fenfire.3

5 Design Criteria for Semantic Desktop Systems

To be adopted widely by users, Semantic Desktop systems must be designed
properly. One of the most important aspects in design is to know the users. Thus,
based on the existing user practices and limitations of approaches to personal
information management, we propose preliminary design criteria for evaluating
Semantic Desktop systems as follows:

– Flexibility: A Semantic Desktop system should support flexible informa-
tion organization. This organization should be abstracted from both the
structure of information storage (e.g., hierarchical file systems) and desktop
applications (e.g., email tools, Web browsers, and task management tools).
Grouping and regrouping information should be easy. Users should be able
to arrange information based on their logical views, intentions, or usage pat-
terns. For example, users should have options to sort information based on
its frequency of access, its level of importance, or its level of urgency. Flex-
ibility is important because users have different needs and preferences in
organizing information (see section 2.2).

– Retrievability: Users should be able to find desired information easily. Just
like other Web resources, users’ personal information should be accessible vir-
tually from anywhere. Users do not need to know where their data actually
resides on. And since users like browsing their personal workspace [9, 11, 12],
a Semantic Desktop system should provide a good browser, which supports
multiple information visualizations and allows users to see cues and contex-
tual information of their documents to facilitate retrieval. In other words,
the search mechanism should favour recognition over recall.

2 http://www.osafoundation.org/Chandler Compelling Vision.htm
3 http://fenfire.org/vision.html

57

– Security: While easy access to information is desirable, security must not be
compromised. Every access to the user’s data must be authorized. Sensitive
information should be transferred through a secure channel and encrypted.
A Semantic Desktop system should authenticate shared data and metadata.
Also, it should allow users to control access privileges of their information
(e.g., public, group, or private data).

– Context maintenance: Contextual information of documents is usually
stored as metadata. Creating metadata sometimes requires manual input
from users. Unfortunately, users are generally reluctant to do more work,
such as typing additional information about a document. Thus, a Semantic
Desktop system should be able to capture or create metadata automatically,
for example, by using context analysis [41] or data-mining techniques. If
user input is unavoidable, then the system should provide a mechanism that
allows easy annotation (e.g., [42]). Presenting summaries of interactions [43]
can also help users recall the context of interactions while communicating
with other people.

– Proactiveness: A Semantic Desktop system should be proactive in pro-
moting awareness to the user. Examples include notifying users when they
receive emails from their important contacts, highlighting important or re-
lated documents, and reminding users of their appointments and tasks.

– Cognitive load: A Semantic Desktop system should minimize the user’s
cognitive effort necessary to use the system. Reducing cognitive load can
be achieved using various ways, such as encapsulating technical details from
users, enabling users to delegate well-defined tasks to agents, presenting sum-
maries of information, and filtering in/out incoming information.

– Interoperability: Interoperability can be examined from different perspec-
tives. At a system level, a Semantic Desktop system should promote inter-
operability both among desktop applications on a single computer and with
other Semantic Desktop systems. At a user level, the system should resolve
inconsistencies among different ontologies used by users.

– Performance: A system performance should be reasonable and acceptable
to users. Responses to user queries should be timely. Resource consumption
and allocation should be well managed.

Evaluating a PIM tool rigorously requires a well-designed user study and
in-depth analysis. While such rigorous analysis is out of scope of this paper, we
present simple analyses to illustrate trade-offs of existing approaches to PIM.

Most operating systems and desktop applications currently offer hierarchical
structures for information organization. Such structures are not flexible enough
to meet the user requirements (see section 3.1). Consequently, users feel that
organizing information is a heavyweight cognitive activity. This inflexibility also
complicates information retrieval, as the context of documents can only be main-
tained in a limited way. Despite their disadvantages, hierarchical tree structures
are computationally efficient and hence deliver good performance.

The Semantic Desktop views information, regardless of its type, as a Web
resource. This view allows flexible information organization and easy retrieval.

58

This approach promotes a contextually rich PIM environment where metadata
is described using RDF and ontologies, which support interoperability4 among
applications and with other systems. Proactive agents can be used to deal with
information overload. The Semantic Desktop, however, is complex, and therefore
should minimize the user’s cognitive load so that it is usable by average users.

6 Social Aspects of Knowledge Communities

We have reviewed practices, problems, and approaches in information manage-
ment from individual users’ point of view. While this review is useful for devel-
oping a PIM tool, to build successful knowledge communities, we should also
consider social aspects of communities. What is the role of social networks in
information and knowledge management? How can we use social networks to
develop a better infrastructure for knowledge management? How can users be
motivated to participate and contribute to their communities? These issues are
discussed in this section.

6.1 The Role of Social Networks

Social networks [44] study relationships and information flows among people,
and play an important role in information and knowledge management. People
set a high priority to messages that they receive from families, bosses, or closed
friends. They prefer to collaborate with their trusted friends. And they are more
willing to share their knowledge in an environment where they feel accepted and
secured—safe to speak up their minds, safe to make mistakes, and so on. In other
words, trust and interpersonal relationships are important. It is not surprising
that people make considerable efforts in maintaining and expanding their social
networks [22].

Informal conversations, which usually happen in office lounges or other recre-
ational places, have potential for building trust and relationships [45]. In such
relaxing places, people can talk informally about work or personal things while
developing relationships with other co-workers. In computer systems, such infor-
mal conversations can be supported by chat applications [45, 46].

The main activities in maintaining social networks include remembering and
communicating [22]. Remembering people’s expertise is necessary for locating the
right resources. Remembering personal details enables people to give a personal
touch to their relationships, for example, by sending birthday or anniversary
cards. To facilitate remembering, people maintain intermittent communications,
especially with members of their social networks who are currently inactive, such
as with collaborators from past projects. Communication is helpful to refresh
memories of both parties and to maintain connections between them.

4 Achieving large scale interoperability, however, is a non-trivial task.

59

6.2 User Motivation

Communities need a critical mass of users. Not only the number of users is
crucial, but also their participation in the communities. Without a critical mass,
the systems underlying communities will be abandoned by the users [47, 48].

Every person has a personal goal and motivation to join and participate in a
knowledge sharing community. Some may want to meet new people with similar
interests while others want to learn and follow the development of a research
area. Although individual goals may vary, members of a community usually
share a common interest to some degree. In general, people will stay active in
a community if by doing so they can achieve their goals. Despite the variety
of individual goals and motivation, how can we motivate users to participate
actively in their communities?

Giving rewards to active users is a common approach to increasing user
participation in online communities. Rewards can be in various forms, including
getting better services, more privileges, or a higher status or visibility in the
community [48].

Because one’s behaviour is usually influenced by others, another approach
to motivating users is by promoting social awareness within a community [47,
49]. The basic idea is to give information about the structure and activities in a
community. Examples include displaying a list of online users, giving notifications
about some events, and visualizing the users’ reputation and social networks. By
knowing that there are activities in their community, users are expected to stay
active in it (i.e., to keep using the system). Furthermore, knowing the “presence”
of others can give a good feeling to users [46]. Social awareness can also serve
as social control [50] because when users realize that others know about their
activities or behaviour, they will likely behave according to social norms.

6.3 Communities of Practice

In practice, the most effective ways of creating and communicating knowledge
are not through written documents, but through personal interactions, including
informal conversation, storytelling, and dialogue [45, 51]. Personal interactions
are important because knowledge is not an isolated entity: knowledge is a con-
crete form of what is in a person’s mind, and how others perceive it [51]. Thus,
knowledge exchange processes involve both knowledge creators and users. When
reading a document, readers can only rely on their perception. They cannot val-
idate whether they have understood the document correctly. Interactions with
the author can reduce this problem, as readers can argue, ask questions, or val-
idate their understanding with the author. At the same time, the author can
assess readers’ interest and understanding by looking at their gestures or asking
for feedback.

Because of the nature of knowledge exchange processes, people use knowledge
databases not only to find specific information, but also to interact with people
who produce or use the information [50]. For example, to increase the chance
of getting a project proposal approved, it is very helpful to read examples of

60

successful proposals and to talk with the authors. The authors can give many
insights that are not available in the proposals, or help introduce key persons as
potential referees. Thus, in addition to storing information, knowledge databases
should help users maintain and expand their social networks [49].

7 Concluding Remarks

To design a collaboration infrastructure, we should consider both its technical
and social aspects. Technologies are a prerequisite for implementing such infras-
tructures. However, whether users will adopt and use an infrastructure often
depends on design subtleties, such as how well the design fits the existing user
practices. While we cannot control the dynamics of communities, we can sup-
port them by designing an infrastructure that fosters characteristics of successful
communities.

In this paper, we focused mainly on personal information management and
proposed design criteria for Semantic Desktop systems. However, we also brought
social issues in knowledge management to the discussion, as these factors are cru-
cial in the success of communities.

Acknowledgments. We thank Joyce Boedianto, Jeff Smith, and Yao Wang for
giving comments and suggestions on drafts of this paper. The development of
design criteria for Semantic Desktop systems is based on a suggestion from an
anonymous reviewer.

References

1. Kollock, P.: Design principles for online communities. In: Harvard conf. on the
Internet and society. (1996)

2. Davies, J.: Supporting virtual communities of practice. Industrial Knowledge
Management (2001)

3. Decker, S., Frank, M.: The networked semantic desktop. In: Workshop on applica-
tion design, development and implementation issues in the semantic web. (2004)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

5. Huynh, D., Karger, D.R., Quan, D.: Haystack: a platform for creating, organizing
and visualizing information using RDF. In: Semantic Web Workshop. (2002)

6. Sauermann, L.: The gnowsis semantic desktop for information integration. In: 1st
Workshop on Intelligent office appliances. (2005)

7. Schmitz, C.: Towards self-organizing communities in peer-to-peer knowledge man-
agement. In: Workshop on Ontologies in peer-to-peer communities. (2005)

8. Malone, T.W.: How do people organize their desks? Implications for the design of
office information systems. ACM Trans. Inf. Syst. 1 (1983) 99–112

9. Barreau, D., Nardi, B.A.: Finding and reminding: file organization from the desk-
top. SIGCHI Bull. 27 (1995) 39–43

10. Mander, R., Salomon, G., Wong, Y.Y.: A ‘pile’ metaphor for supporting casual
organization of information. In: Proc. conf. on Hum. factors in comp. sys. (1992)
627–634

61

11. Ravasio, P., Schär, S.G., Krueger, H.: In pursuit of desktop evolution: user problems
and practices with modern desktop systems. ACM Trans. Comput.-Hum. Interact.
11 (2004) 156–180

12. Boardman, R., Sasse, M.A.: “Stuff goes into the computer and doesn’t come out”:
a cross-tool study of personal information management. In: Proc. conf. on Hum.
factors in comp. sys. (2004) 583–590

13. Abrams, D., Baecker, R., Chignell, M.: Information archiving with bookmarks:
personal web space construction and organization. In: Proc. conf. on Hum. factors
in comp. sys. (1998) 41–48

14. Whittaker, S., Sidner, C.: Email overload: exploring personal information manage-
ment of email. In: Proc. conf. on Hum. factors in comp. sys. (1996) 276–283

15. Kidd, A.: The marks are on the knowledge worker. In: Proc. conf. on Hum. factors
in comp. sys. (1994) 186–191

16. Kwasnik, B.: How a personal document’s intended use or purpose affects its classi-
fication in an office. In: Proc. 12th ACM SIGIR conf. on Research and development
in information retrieval. (1989) 207–210

17. Rodden, K., Wood, K.R.: How do people manage their digital photographs? In:
Proc. conf. on Hum. factors in comp. sys. (2003) 409–416

18. Lansdale, M.: The psychology of personal information management. Applied
Ergonomics 19 (1988) 55–66

19. Chase, W.G., Simon, H.A.: Perception in chess. Cognitive Psychology (1973) 55–81
20. Bondarenko, O., Janssen, R.: Documents at hand: learning from paper to improve

digital technologies. In: Proc. conf. on Hum. factors in comp. sys. (2005) 121–130
21. Whittaker, S., Hirschberg, J.: The character, value, and management of personal

paper archives. ACM Trans. Comput.-Hum. Interact. 8 (2001) 150–170
22. Nardi, B.A., Whittaker, S., Schwarz, H.: Networkers and their activity in inten-

sional networks. Computer Supported Cooperative Work 11 (2002) 205–242
23. Whittaker, S., Jones, Q., Nardi, B., Creech, M., Terveen, L., Isaacs, E., Hainsworth,

J.: ContactMap: organizing communication in a social desktop. ACM Trans.
Comput.-Hum. Interact. 11 (2004) 445–471

24. Bellotti, V., Ducheneaut, N., Howard, M., Smith, I.: Taking email to task: the
design and evaluation of a task management centered email tool. In: Proc. conf.
on Hum. factors in comp. sys. (2003) 345–352

25. Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary prob-
lem in human-system communication. Commun. ACM 30 (1987) 964–971

26. Simone, C., Mark, G., Giubbilei, D.: Interoperability as a means of articulation
work. In: Proc. conf. on Work activities coord. and collaboration. (1999) 39–48

27. Dourish, P., Lamping, J., Rodden, T.: Building bridges: customisation and mutual
intelligibility in shared category management. In: Proc. intl. ACM SIGGROUP
conf. on Supporting group work. (1999) 11–20

28. Berlin, L.M., Jeffries, R., O’Day, V.L., Paepcke, A., Wharton, C.: Where did you
put it? Issues in the design and use of a group memory. In: Proc. conf. on Hum.
factors in comp. sys. (1993) 23–30

29. Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole, J.W.: Semantic file systems.
In: Proc. 13th ACM symp. on Operating systems principles. (1991) 16–25

30. Gopal, B., Manber, U.: Integrating content-based access mechanisms with hi-
erarchical file systems. In: Proc. 3rd symp. on Operating systems design and
implementation. (1999) 265–278

31. Dourish, P., Edwards, W.K., LaMarca, A., Salisbury, M.: Presto: an experimental
architecture for fluid interactive document spaces. ACM Trans. Comput.-Hum.
Interact. 6 (1999) 133–161

62

32. Bowman, C.M., Dharap, C., Baruah, M., Camargo, B., Potti, S.: A file system
for information management. In: Proc. ISMM intl. conf. on Intelligent information
management systems. (1994)

33. Adar, E., Kargar, D., Stein, L.A.: Haystack: per-user information environments. In:
Proc. 8th intl. conf. on Information and knowledge management. (1999) 413–422

34. Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen, K., Salisbury,
M., Terry, D.B., Thornton, J.: Extending document management systems with
user-specific active properties. ACM Trans. Inf. Syst. 18 (2000) 140–170

35. Hopkins, I., Vassileva, J.: Beyond keywords and hierarchies. Journal of Digital
Information Management 3 (2005) 139–145

36. Karger, D.R., Quan, D.: Collections: flexible, essential tools for information man-
agement. In: CHI ’04 extended abstracts. (2004) 1159–1162

37. Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff I’ve
seen: a system for personal information retrieval and re-use. In: Proc. 26th ACM
SIGIR conf. on Research and development in information retrieval. (2003) 72–79

38. Freeman, E., Gelernter, D.: Lifestreams: a storage model for personal data. SIG-
MOD Rec. 25 (1996) 80–86

39. Rekimoto, J.: Time-machine computing: a time-centric approach for the informa-
tion environment. In: Proc. 12th annual ACM symp. on User interface software
and technology. (1999) 45–54

40. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43 (1995) 907–928

41. Soules, C.A.N., Ganger, G.R.: Why can’t I find my files? New methods for au-
tomating attribute assignment. In: Proc. 9th Workshop on Hot topics in operating
systems. (2003)

42. Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: MyLifeBits: fulfilling
the memex vision. In: Proc. 10th ACM intl. conf. on Multimedia, New York, NY,
USA, ACM Press (2002) 235–238

43. Fisher, D., Dourish, P.: Social and temporal structures in everyday collaboration.
In: Proc. conf. on Hum. factors in comp. sys. (2004) 551–558

44. Garton, L., Haythornthwaite, C., Wellman, B.: Studying online social networks.
Doing Internet Research (1999) 75–105

45. Thomas, J.C., Kellogg, W.A., Erickson, T.: The knowledge management puzzle:
human and social factors in knowledge management. IBM Systems Journal 40
(2001) 863–884

46. Nardi, B.A., Whittaker, S., Bradner, E.: Interaction and outeraction: instant mes-
saging in action. In: Proc. ACM conf. on CSCW. (2000) 79–88

47. Ackerman, M.S., Starr, B.: Social activity indicators: interface components for
cscw systems. In: Proc. 8th annual ACM symp. on User interface and software
technology. (1995) 159–168

48. Cheng, R., Vassileva, J.: User motivation and persuasion strategy for peer-to-peer
communities. In: Proc. 38th Hawaii intl. conf. on System sciences. (2005)

49. Bush, A.A., Tiwana, A.: Designing sticky knowledge networks. Commun. ACM
48 (2005) 66–71

50. Erickson, T., Kellogg, W.A.: Social translucence: an approach to designing systems
that support social processes. ACM Trans. Comput.-Hum. Interact. 7 (2000) 59–83

51. Walsham, G.: Knowledge management: The benefits and limitations of computer
systems. European Management Journal 19 (2001) 599–608

63

IRIS: Integrate. Relate. Infer. Share.

Adam Cheyer, Jack Park, Richard Giuli

SRI International
333 Ravenswood Ave

Menlo Park, CA 94025
<FirstName>.<LastName>@sri.com

Abstract. In this paper we introduce a new semantic desktop system called
IRIS, an application framework for enabling users to create a “personal map”
across their office-related information objects. Built as part of the CALO Cog-
nitive Assistant project, IRIS represents a step in our quest to construct the
kinds of tools that will significantly augment the user’s ability to perform
knowledge work. This paper explains our design decisions, progress, and short-
comings. The IRIS project has grown from the past work of others and offers
opportunities to augment and otherwise collaborate with other current and fu-
ture semantic desktop projects. This paper marks our entry into the ongoing
conversation about semantic desktops, intelligent knowledge management, and
systems for augmenting the performance of human teams.

1 Introduction

Charles Bourne and Douglas Engelbart open their 1958 paper, “Facets of the Tech-
nical Information Problem,” [1] with:

RECENT world events have catapulted the problem of the presently unman-
ageable mass of technical information from one that should be solved to one
that must be solved. The question is receiving serious and thoughtful consid-
eration in many places in government, industry, and in the scientific and
technical community.

If networked computers will be the “printing presses of the twenty-first century”

and beyond, then networked semantic desktop applications will be the workstations of
many of those knowledge workers mentioned by Stefan Decker and Martin Frank in
their 2004 paper, “The Social Semantic Desktop” [6]. Today, knowledge workers are
accustomed to the use of applications such as email, calendar, word processing,
spreadsheets, and more. Each of those applications can be viewed as stand-alone
entities, each facilitating the accomplishment of some particular task, but in no par-
ticular sense integrated in ways we shall call semantic with each other. An appropri-
ate interpretation of John Stuart Mill’s 1873 [14] call for fundamental changes in our
modes of thought would suggest that we look at semantic integration of the tools with
which we perform knowledge work.

64

In this paper, we will introduce a new semantic desktop system called IRIS (for In-
tegrate-Relate-Infer-Share) and explain the context in which it was built, as part of
the CALO Cognitive Assistant project. As we describe our quest to construct the
kinds of tools that will significantly enhance the desktop user’s experience and aug-
ment the user’s ability to perform knowledge work, we will explain our design deci-
sions, progress, and shortcomings.

2 Background and Requirements

I believe that at the end of the century the use of words and general educated opinion
will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted.
 –Alan Turing, Computing Machinery and Intelligence 1950

Before discussing the IRIS project, we will briefly describe CALO1, an artificial
intelligence application for which IRIS serves as the semantic desktop user interface.
Requirements from the CALO program have greatly influenced our design for IRIS.

IRIS has been developed as part of SRI’s CALO2 project, one of two projects
funded under DARPA’s “Perceptive Assistant that Learns” (PAL) program3. The goal
of the PAL program is to develop an enduring personal assistant that “learns in the
wild,” evolving its abilities more and more through automated machine learning tech-
niques rather than through code changes. DARPA expects the program to generate
innovative ideas that result in new science, new and fundamental approaches to cur-
rent problems, and new algorithms and tools, and to yield new technology of signifi-
cant value to the military and commercial sectors. Led by SRI International, 250
researchers and developers from 25 universities and companies are working on
CALO.

CALO is a cognitive software system that can reason, learn from experience, be

told what to do, explain what it is doing, reflect on its experience, and respond robus-
tly to surprise. CALO’s mission is to serve its user as a personal assistant, collaborat-
ing in all aspects of work life: organizing information; preparing information arti-
facts; mediating person-person interactions; organizing and scheduling in time; moni-
toring and managing tasks; and acquiring and allocating resources.

To understand and reason about the dynamics of the user’s work life, CALO re-

quires a semantically coherent view into the user’s life and a mechanism for interact-
ing with the user in a natural work setting. Our solution was to outfit CALO research-
ers with a semantic desktop, called IRIS, that enables them to outline the key ele-

1 CALO: http://www.ai.sri.com/software/CALO
2 CALO is an acronym for “Cognitive Assistant that Learns and Organizes.” CALO’s name

was also inspired by the Latin word calonis, which means "soldier’s servant" and conjures an
image of Radar O’Reilly from the M*A*S*H TV series.

3 DARPA’s PAL program: http://www.darpa.mil/ipto/programs/pal/

65

http://www.ai.sri.com/software/CALO
http://www.darpa.mil/ipto/programs/pal/

ments in their environment, specifically: the projects the user works on; the key par-
ticipants in various roles for these projects; the way in which accessed information
relate to people, projects, and tasks in the user’s life; and the priorities of tasks, mes-
sages, documents, and meetings. CALO plays the role of a collaborative teammate
participating in this exercise, learning how to populate much of the semantic content
and relationships on behalf of the user and the rest of his team.

In approaching the design and development of IRIS, we took much inspiration

from the work of Douglas Engelbart. While Ted Nelson’s Xanadu4 [15] was arguably
the first project to set the stage for modern hyperdocument processors, Engelbart’s
Augment5 was the first system to actually find engagement in group document proc-
essing and sharing. In 1968, at the Fall Joint Computer Conference in San Francisco,
Engelbart demonstrated Augment before a live audience.6 Augment displayed many
of the capabilities we now want to build into modern semantic desktop applications.
Augment, the program, saw commercial application, and is still used today by Dr.
Engelbart in his day-to-day activities. Efforts are under way to create open source
variants of the Augment system [19]. At the same time, work continues on the devel-
opment of an Open Hyperdocument System [9] guided by Dr. Engelbart.

CALO, Engelbart’s work, the paper by Decker and Frank [6], and an earlier paper

by Gradman [10] combine to provoke background thoughts that drive the evolution of
our requirements. Here are several that animate the IRIS project:

1. “Real” enough to do daily work. As dictated by Engelbart’s notion of boot-

strapping,7 we should develop using that which we are developing. To con-
vince people to give up their current mail program, web browser, or calendar
in favor of IRIS, we will need to offer a full-featured experience that supports
all of their specific needs: mail encryption, spam filters, calendar servers, syn-
chronization with PIMs8, embedded flash, etc. Rather than implement these
features ourselves, we opt to find and integrate the most mature third-party
applications available into our developments.

2. Implemented in, or able to easily integrate with, Java. This requirement comes
from the fact that many of the machine learning components we will include
from CALO researchers are implemented in Java.

3. Ontology-based knowledge store. We require the ability to model rich seman-
tic structures that can capture every aspect of a user’s work environment.

4. Capable of supporting organization of personal knowledge assets. This im-
plies providing for the ability of users to organize their information resources

4 Xanadu: http://xanadu.com/
5 NLS/Augment at the Computer History Museum:

http://community.computerhistory.org/scc/projects/nlsproject/
6 Videos of the first online document editing project. Found on the web at

http://sloan.stanford.edu/MouseSite/1968Demo.html
7 Engelbart’s work on bootstrapping productivity: http://www.bootstrap.org
8 Personal information managers

66

in ways that suit individual needs (“just for me” [4]) while maintaining seman-
tic interoperability with other CALO installations.

5. Cross-platform. IRIS should be able to run on Windows, Macintosh, and
Linux platforms, to support as widely as possible the diverse CALO commu-
nity.

3 Related Work

With these requirements in mind, we set about looking at candidate solutions that
could meet our needs. We started by looking at Mitch Kapor’s Chandler9 project,
which certainly belongs in the semantic desktop category. The Chandler web site says
this:

With Chandler, users will be able to organize diverse kinds of information
for their own convenience -- not the computer's convenience. Chandler will
have a rich ability not only to associate and interconnect items, but also to
gather and collect related items in a single place creating a context sensitive
"view" of many types of data, mixing-and-matching email, mailing lists, in-
stant messages, appointments, contacts, tasks, free-form notes, blogs, web
pages, documents, spreadsheets, slide shows, bookmarks, photos, MP3's,
and so on.

While Chandler’s vision resonated with what we wanted for IRIS, its early stage of
development and long product roadmap made Chandler an unsuitable starting point.

We next explored Haystack10 from MIT. When we discovered this project [12], we
were amazed how well it fit our initial designs for IRIS, in terms of both architecture
and user interface design, with the added benefit of being Java-based and open
source. We invited Dennis Quan to visit SRI to discuss the internals of Haystack in
relation to our perceived needs. We learned much from the visit and did, indeed,
begin the task of adapting Haystack’s significant code base to our framework. Hay-
stack’s approach to ontology-driven architectures was to create a language, Adenine
[3]. With Adenine, all user interface objects, the overall system architecture, and
information assets are defined in an ontology. IRIS took a slightly different approach;
an OWL ontology defines information assets. Instead of an API based on a language
like Adenine, IRIS implements specialized APIs for each OWL class. This provides
programmers with a convenient, object oriented access to the knowledgebase. The
user interface layout for Haystack and IRIS are greatly similar; both rely on a three-
column view structure, where the three concerns of navigation, focus of attention, and
context are each presented in their own view. For a variety of reasons, we ended up
moving in a different direction, but Haystack and Dr. Quan’s deep knowledge of the
subject gave us a solid start.

9 Chandler: http://www.osafoundation.org/
10 Haystack: http://haystack.lcs.mit.edu/

67

The next system we evaluated was the Radar Networks11 Personal Radar, a very
impressive semantic desktop that turned out to share many of the goals and require-
ments for IRIS: Java-based, ontology-driven, user centric. We negotiated, and CEO
Nova Spivack agreed to join the CALO project to help combine elements of Personal
Radar into the IRIS code-base. In particular, we adopted their Semantic Object
framework, a very fast triple-store implementation, and certain elements from their
SWING-based user interface. These are described in more detail in Section 4.

Well down the path of implementing IRIS, we came across Gnowsis12. Gnowsis
[18] appears to offer integration with many of the same third-party applications as
IRIS, and to share many similar philosophies regarding application and data integra-
tion. Where IRIS and Gnowsis currently diverge may lie in the way in which those
applications are integrated. Whereas Gnowsis appears to have fairly loose integration
with standalone applications, using adapters to copy references from applications into
a local server and a separate browser for navigating and searching the data, IRIS has
chosen to be more tightly integrated at the user interface level, providing an “embed-
ded suite” of applications. Each plug-in application is instrumented such that IRIS
captures semantic events as they occur. For example, IRIS “knows” which web page
is being browsed, or which email has been opened for reading. Tight integration of
applications is particularly useful to IRIS’s learning framework and components,
which can offer real-time suggestions as the user works with information. Having
said that, it is worth noting that, as work on IRIS progresses, we are beginning to
relax the tight integration between the presentation layer and the backside. Indeed,
notions of external presentation elements are now under consideration.

Most recently, we discovered MindRaider13, a project arguably close to IRIS, Hay-
stack, and Gnowsis in spirit and intent. MindRaider’s open source license precludes
us from looking closely at the source code, but we observe, while running the pro-
gram, that there are profound similarities between its ontology-driven architecture
and that of IRIS. Without examining implementation, we suspect that a central ontol-
ogy is at work determining classes of information assets and constraining relation-
ships between those classes. We also note the same interesting parallels in user inter-
face design as mentioned with Haystack. We suspect that HCI (user interface design)
will eventually rise to be at least as important to the success of semantic desktops as
is semantic interoperability among platforms.

Topic Maps [17] is another research area we are tracking, as we consider IRIS a

kind of topic map for personal information assets. A topic map14 provides a container
for proxies for subjects, called topics. Each subject, which is anything that can be the
focus of thought or discussion, is represented by one topic. Each topic is a kind of
container for links to all known information about the subject. Topics have properties
that provide subject identity and other properties of the subject. Topics can play roles

11 RadarNetworks: http://www.radarnetworks.com/
12 Gnowsis: http://www.gnowsis.org/
13 MindRaider: http://mindraider.sourceforge.net/
14 Topic maps: http://www.topicmaps.org/

68

in association with other topics. For instance, a topic, which is a proxy for the IRIS
user, can play roles such as member in a meeting, speaker at a conference, parent or
spouse, and more. Topics are associated with occurrences. For instance, the topic for
a particular personal computer can be linked with occurrences such as web pages
where that computer can be purchased, or where an online help system is found. Top-
ics are also repositories for all possible ways to name the topic. With this, individuals
can assign names for things in their personal space; that personal space thus gains the
“just for me” [4] flavor. Since IRIS is an “ontology-driven” platform, the addition of
a topic map structure to the IRIS knowledgebase facilitates this “just for me” charac-
teristic. User assigned names and relationships can be added without affecting the
IRIS ontology.

4 The IRIS Semantic Desktop

IRIS is an application framework for enabling users to create a “personal map”
across their office-related information objects. IRIS is an acronym for “Integrate.
Relate. Infer. Share.” In the following text, we will adopt these four terms as organiz-
ing subsections, as we describe IRIS’s design, architecture, implementation, and use-
cases.

4.1 IRIS – Integrate

Hypertext is a form of storage, a new form of literature, and a network that
just might revitalize human life.
 –Ted Nelson 1965

IRIS is first and foremost an integration framework. Whereas in today’s packaged
applications suites, where only loose data integration exists15 (usually limited to the
clipboard and common look-and-feel for menus and dialog boxes), IRIS strives to
integrate data from disparate applications using reified semantic classes and typed
relations. For instance, it should be possible to express that “File F was presented at
Meeting M by Tom Jones, who is the Project Manager of Project X,” even if the file
manager, calendar program, contact database, and project management software are
separately-developed third-party applications. In a Topic Maps fashion, there should
be a single instance that represents each concept, and all that is knowable about that
concept should be directly accessible from that instance [17].

The IRIS framework offers integration services at three levels (Figure 1):

1. Information resources (e.g., an email message, a calendar appointment) and
the applications that create and manipulate them must be made accessible to

15 Even within a single application, deep data integration is usually pretty threadbare. Consider

Microsoft Outlook: the email addresses displayed in a message are not linkable (or deeply
related) to the people records in your contacts folder.

69

IRIS for instrumentation, automation, and query. IRIS offers a plug-in
framework in the style of the Eclipse16 architecture or the JPF framework17,
where “applications” (components with a graphical user interface) and “ser-
vices” (processing components with no GUI of their own) can be defined and
integrated within IRIS. Apart from a very small, lightweight kernel, all func-
tionality within IRIS is defined using the plug-in framework, including user
interface, applications, back-end persistence store, learning modules, har-
vesters, and so forth.

2. A knowledge base (KB) provides the unified data model, persistence store,

and query mechanisms across the information resources and semantic rela-
tions among them. Ontology services are described in more detail in Section
4.2, Relate.

3. The IRIS user interface framework allows plug-in applications to embed

their own interfaces within IRIS, and to interoperate with global UI services
such as the notification pane, menu and toolbar management, query inter-
faces, the link manager, and suggestion pane.

Figure 1: The three-layer IRIS integration framework.

IRIS comes “out of the box” with several integrated office applications:

• Email: After initially integrating Java-based Columba,18 we moved to
Mozilla19 for email, as it is one of the most popular, full-featured,
cross-platform applications available. To integrate Mozilla with Java,
we adopted and made significant extensions to the JREX20 package,
and then ran Email as an embedded XUL21 application.

16 Eclipse: http://www.eclipse.org/
17 Java Plugin Framework (JPF) Project: http://jpf.sourceforge.net/
18 Columba Mail: http://columba.sourceforge.net/
19 Mozilla Application Suite: http://www.mozilla.org
20 JREX – Mozilla through Java: http://jrex.mozdev.org/
21 XUL – http://www.xulplanet.com/

70

• Web browser: Mozilla provides an much better web browsing experi-
ence than our initial integration effort, Java-based CALPA.22

• Calendar: We selected OpenOffice GLOW23 because it is Java-based
and iCAL compliant, interoperates with the Sun/Netscape calendar
server used by SRI, and has a very nice user interface. We believe
there remains room for improvement in our calendar application.

• Chat: We implemented our own interface to the Jabber24 instant mes-
saging backend.

• File explorer: We wrote our own in Java.
• Data editor/viewer: To view and edit data records such as people,

projects, tasks, and any other ontology-based object in the KB, we
used a forms package from Radar Networks’ Personal Radar soft-
ware.

Figure 2: The IRIS user interface.

The IRIS user interface provides the “shell” for hosting each of these embedded
applications (figure 2). Two collapsible side panels frame the main application win-
dow, one for selecting among available applications, the other for displaying and
editing semantic links for the selected application object and presenting contextual
suggestions from the learning framework. Applications can add toolbars to the IRIS
frame, and when selected, an application’s menu items are “merged” with IRIS menu
functionality present for all applications. IRIS provides an extensible context-

22 CALPA: http://htmlbrowser.sourceforge.net/
23 OpenOffice GLOW calendar: http://groupware.openoffice.org/glow/
24 Jabber Instant Messaging: http://www.jabber.org/

71

sensitive online help system and several methods for querying information resources
within and across applications. An example of a natural language query supported by
iAnywhere’s Answers Anywhere25 IRIS plugin is “find email from Vinay last week
related to the CALO project.”

4.2 IRIS – Relate

Information is both more and less real than the material universe. It’s more
real because it will survive any physical change; it will outlast any physical
manifestation of itself. It’s less real because it’s ineffable. For example, you
can touch a shoe, but you can’t touch the notion of “shoe-ness” (that is,
what it means to be a shoe). The notion of shoe-ness is probably eternal, but
every shoe is ephemeral.

 – Steven R. Newcomb [17, page 32]
IRIS is used to semantically integrate the tools of knowledge work. What do we

mean by this? We use the term “semantic” in the sense used by the Semantic Web
community, where markup technologies are being wedded to the tools of semantic
representation (e.g., ontologies, OWL, RDF). This facilitates putting data on the web
in such a way that machines can access it, make meaningful references to it, and per-
form manipulations on it, including reasoning and inference. In that sense, IRIS pro-
vides a knowledge representation by which the artifacts of a user’s experience such as
email messages, calendar events, files on the disk or found on the web, can be stored
and related to each other across applications and across users.

When defining the ontology to be used for IRIS, a design choice had to be made:

Do we use a small, simple ontology or a complex, more-expressive ontology? We
first implemented a fairly large, yet straightforward, ontology. However, the require-
ment that IRIS interoperate with CALO’s reasoning and learning capabilities drove us
to adopt CALO’s pre-existing ontology, which supports roles, events, and complex
data structures.

CALO's ontology is called CLib,26 the Component Library Specification, which

consists of definitions for everyday objects and events, as well as axioms to support
the beginnings of common-sense reasoning. For IRIS, we translate CLib, imple-
mented in a knowledge language called KM, to OWL. We chose OWL27 as the data
representation in IRIS because it is a W3C-approved standard that allows for a flexi-
ble data schema and query that supports inheritance. Currently IRIS supports the
OWL Lite subset, with future plans to support OWL DL.

25 Answers Anywhere NL query:

“http://www.ianywhere.com/products/answers_anywhere.html
26 KM Component Library: http://www.cs.utexas.edu/users/mfkb/RKF/tree/ then select

“Core+Office” to browse the CALO subset.
27 Web Ontology Language: http://www.w3.org/TR/owl-features/

72

http://www.cs.utexas.edu/users/mfkb/RKF/tree/

IRIS provides a framework for harvesting application data and instrumenting user
actions in IRIS applications. The harvesting of data refers to importing external data
into semantic (ontology-based) structures. For example, if given the specification of
an email instance, harvesting APIs exist to create ontology structures for the email,
addresses, and people associated with those addresses. These ontology structures are
available in the instrumentation API for application events. This data is then trans-
lated once again to an external event publish/subscribe model that allows other IRIS
plug-ins or external applications to access the data.

4.3 IRIS – Infer

If you invent a breakthrough in artificial intelligence, so machines can learn,
that is worth 10 Microsofts.
 –Bill Gates, quoted by NY Times28

One of the key differentiators of IRIS, compared to many semantic desktop sys-

tems, is the emphasis on machine learning and the implementation of a plug-and-play
learning framework. We see machine learning as one of the solutions around a key
issue limiting the semantic web’s growth and mass adoption: Who is going to enter
all of the required links and knowledge?

Here we present a typical use case of how learning components integrated within

the IRIS framework combine to progressively construct a semantic representation of
the user’s work life.

Step 1: Email Harvesting: As the user receives email in Mozilla, IRIS auto-
matically harvests messages, adding them as semantic instances in the knowl-
edge base. As part of this process, names in the address fields are normalized
(e.g., “Rich Giuli” will match “Richard Giuli”), links are created to existing
contact records in the KB, and new records are added for people not in the
KB. Events indicating new email messages and people records are published
to the Instrumentation Bus for other learning components to consume.

Step 2: Contact/Expertise Discovery: When contact records containing a name
and email address are added to the KB, the DEX service (from UMass), a
CALO component, wakes up and tries to discover additional information for
that person. Contact information is discovered, as well as a “gist” representing
a person’s expertise, composed of keywords and noun phrases that are signifi-
cant for the person.

Step 3: Learn from Files: In a similar fashion to email, IRIS harvests informa-
tion from files on the user’s desk. Currently, SEMEX [7] (from UWashington)

28 Gates speech: http://www.nytimes.com/2004/03/01/technology/01bill.html

73

opens LaTeX, BiB, and Microsoft Office files (Word, Excel, PowerPoint) to
add content (e.g., publication references) to people in the contact KB.

Step 4: Project Creation: Clustering algorithms in IRIS are applied to the
user’s email to propose new projects to be added to the KB. For each project
instance, a label for the project is proposed using the most salient phrase in the
email cluster, keywords are added that provide a “gist” of the project, and
links are added to project participants using the people in the from/to fields for
the email cluster. IRIS provides a user interface where the differences between
multiple clustering algorithms can be explored. Currently, three algorithms
have been integrated into the framework: Carrot2/Lingo, based on singular
value decomposition [16]; an algorithm based on agglomerative clustering and
social network analysis [11]; and an algorithm based on linear optimization
with user-specified centroids.

Step 5: Classification According to Project: Leveraging the textual content
and relations extracted for projects, people, and files, a Bayesian classifier is
applied to hypothesize relationships between projects and objects such as
emails, files, web pages, and calendar appointments. IRIS’s suggestions are
displayed to the user, who can optionally provide feedback to the algorithm by
indicating the correct values (Figure 3).

Figure 3: In the “CALO Suggests” pane, learned hypotheses about an email are presented,
including reply urgency, meeting detection, project association, and others. The user can pro-
vide feedback about the system’s choices, and the system will adapt accordingly.

Step 6: Higher-level Reasoning: A number of specialized reasoners within
CALO continually examine events in the user’s activity stream and attempt to
make useful inferences. For instance, when the user clicks on an email, IRIS

74

attempts to predict whether the user will/should reply to the message (Figure
3). Another plug-in applies text summarization techniques to produce a gist
that will be faster for the user to read. In several use cases, multiple reasoners
are combined to produce a single prediction. If the user provides negative
feedback to a resulting hypothesis, each individual reasoner will adapt itself
accordingly, and a meta-learner will use the intermediate results from each
predictor to improve its own logic about how their results are combined. Im-
plemented examples of this approach include the “Meeting PrepPack” rea-
soner and the “Meeting Request” detector.

This use case gives readers a flavor of the types of learning components that have

been integrated within IRIS to help construct and then leverage a semantic model
representing the user’s work life. We feel that we have just scratched the surface of
the types of useful learning-based functionality that can be integrated into the IRIS
semantic desktop, and we are eagerly anticipating continued development, working
with members of the CALO and open source communities.

4.4 IRIS – Share

Prior to the Internet, the last technology that had any real effect on the way
people sat down and talked together was the table.
 –Clay Shirky, at Emerging Technology Conference 200329

Sharing information is one of the four key concepts that make up the IRIS vision.
We feel that the ability to learn and leverage semantic structure in organizing one’s
work life will be greatly enhanced in a collaborative setting. Shared structures are
essential for both end-user applications, such as team decision making and project
management, and for infrastructural components such as machine learning algo-
rithms, which improve when given larger data sets to work on.

In the first version of IRIS, we experimented with a simple collaborative function-

ality using a Jabber-based transport mechanism. Changes to shared data were written
to a “chat room” space representing an ACL group; each IRIS client would remember
what changes it had seen previously, and upon startup, initialize its KB by applying
all recently recorded change actions. This approach had the benefit that it supported
real-time collaborative work between online participants as well as enabling “late-
comers” to join and be initialized to the common state. However, with no locking
mechanisms, users were plagued by inconsistencies, and we temporarily removed the
collaboration feature.

In the coming year, the CALO project has planned functionality and applications

that will require infrastructure to support collaborative team decision making, as well
as reasoning over a shared document space. We are therefore currently revisiting
what approaches to take regarding a collaboration infrastructure for IRIS.

29 Clay Shirky: http://shirky.com/writings/group_enemy.html

75

5 Evaluations & Conclusions

IRIS is now in daily operation as the primary office environment used by the au-
thors and several other members of the CALO community. In addition, as part of the
formal evaluations of the CALO project, IRIS and its learning components were used
extensively by 15 users during a few weeks of testing, giving CALO an opportunity
to learn “in the wild” through observation and interaction with its user. After this
experimentation period, we interviewed the users to understand what they liked, what
features were missing, and how IRIS generally should be improved.

We were encouraged that most of the feedback was quite positive, with many of

the users stating that they were generally pleased with the robustness of the system
and impressed with the capabilities of IRIS to learn and provide useful data to them.
In particular, the capability to automatically discover contact and “gist” information
for people from whom they receive email was much appreciated. Several reports of
events where IRIS made a significant positive contribution were noted. For instance,
one user, after skimming a long email from his boss, wondered why IRIS was flag-
ging the message as a meeting request. Upon closer reading, he discovered that to-
wards the end of the message, his boss was actually requesting a meeting with him
later that afternoon, with an expected deliverable.

Despite the positive feedback, a number of issues still need to be addressed before

most users will be willing to adopt IRIS as their primary work environment:

1. Performance was the Number 1 issue. Many noted that the startup time for
IRIS was quite slow, and actual use was sluggish, particularly during email
use, where many research-quality components would process each selected
message. Subsequent analysis revealed that 68% of the startup time and 72%
of memory use could be attributed to three learning components; these will be
candidates for optimization in the future.

2. Many user interface issues were noted, in particular regarding real-estate
management for smaller screens, several inconsistencies in UI design, and the
desire to use drag-and-drop. Also, several minor user interface bugs were
mentioned, the most annoying being a proclivity for IRIS to pop up or become
the selected window in an unsolicited way when activity (such as the arrival of
an important email message) occurs. Improvements to the user interface ex-
perience will become a significant priority for the near-term roadmap.

3. Finally, many users, excited by the glimmer of intelligence that IRIS (and
the cognitive assistant CALO) at times seemed to exhibit, made numerous
suggestions about use cases they thought the pair would be able to help them
with in the future to aid their productivity.

In the coming months, we will aggressively pursue these and other roadmap items,

with a particular emphasis on making IRIS usable and useful for collaborative teams.

76

We remain enthusiastic about the potential for coupling semantic representations,
machine learning, user interface design, and real-world office systems.

6 Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHD030010. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA or the Department of Interior-National
Business Center (DOI-NBC).

We would like to thank Nova Spivack and Jim Wissner at Radar Networks for

their tremendous contributions to the code base, ontologies, and vision for IRIS.
Many members of the CALO LSI team worked hard to make IRIS what it is: Colin
Evans, Steve Hardt, Jim Carpenter, Ken Nitz, Ayse Onalan, Leslie Pound, Girish
Acharya, Mark Gondek, Talia Shaham, Julie Wong, Ken Doran, David Dunkley,
Chris Brigham, and Jason Rickwald. Thanks to the CALO management team for
supporting the concept: Bill Mark, Ray Perrault, David Israel, Jim Arnold, and Jef-
frey Davitz. Final thanks to those non-SRI CALO members, too many to name, who
are working with us to integrate their cutting-edge technologies into the IRIS learning
framework.

References

1. Bourne, Charles P., and Douglas C. Engelbart, “Facets of the Technical Information Prob-
lem,” SRI Journal, Vol. 2, No. 1, 1958. On the web at
http://bootstrap.org/augdocs/friedewald030402/facets1958/Facets1958.html

2. Bush, Vannevar, “As We May Think,” The Atlantic Monthly, July, 1945. On the web at
http://www.theatlantic.com/doc/194507/bush

3. Quan, Dennis, “Metadata Programming in Adenine”. February 2003. On the web at
http://haystack.csail.mit.edu/documentation/adenine.pdf

4. Park, Jack and Adam Cheyer. “Just For Me: Topic Maps and Ontologies”, submitted TMRA
’05 Topic Maps Research and Applications Workshop, Leipzig, Germany, October 6, 2005.

5. Culotta, Aron; Bekkerman, Ron; McCallum, Andrew. “Extracting Social Networks and
Contact Information from Email and the Web.” In Proceedings of CEAS, First Conference
on Email and Anti-Spam (CEAS). July 2004. On the web at
http://www.cs.umass.edu/~culotta/pubs/ceas04.pdf

6. Decker, Stefan; and Martin Frank, “The Social Semantic Desktop,” 2004. On the web at
http://www.deri.at/publications/techpapers/documents/DERI-TR-2004-05-02.pdf

7. Dong, Xin; Halevy, Alon; Nemes, Ema; Sigurdsson, Stephan. “SEMEX: Toward On-the-fly
Personal Information Integration.” Workshop on Information Integration on the Web
(IIWEB). Toronto, CA. August 2004. On the web at
http://data.cs.washington.edu/papers/semex_iiweb.pdf

77

http://bootstrap.org/augdocs/friedewald030402/facets1958/Facets1958.html
http://www.theatlantic.com/doc/194507/bush
http://www.cs.umass.edu/~culotta/pubs/ceas04.pdf
http://www.deri.at/publications/techpapers/documents/DERI-TR-2004-05-02.pdf
http://data.cs.washington.edu/papers/semex_iiweb.pdf

8. Engelbart, Douglas, “Augmenting Human Intellect,” October, 1962. On the web at
http://www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index
.html

9. Engelbart, Douglas, “Draft OHS-Project Plan,” October 23, 2000. On the web at
http://www.bootstrap.org/augdocs/bi-2120.html

10. Gradman, Eric, “Distributed Social Software,” December 2003. On the web at
http://www.gradman.com/projects/dss/final/final.pdf

11. Huang, Yifen; Govindaraju, Dinesh; Mitchell, Tom; Rocha de Carvalho, Vitor; Cohen,
William.. “Inferring Ongoing Activities of Workstation Users by Clustering Email.” In Pro-
ceedings of CEAS, First Conference on Email and Anti-Spam (CEAS). July 2004. On the
web at http://www.ceas.cc/papers-2004/149.pdf

12. Karger, David R., Karun Bakshi, David Huynh, Dennis Quan, and Vineet Sinha, “Hay-
stack: A Customizable General-Purpose Information Management Tool for End Users of
Semistructured Data,” in CIDR 2005, Asilomar, California. On the web at http://www-
db.cs.wisc.edu/cidr/cidr2005/papers/P02.pdf

13. McCluhan, Marshal, The Medium is the Message, Wired Books, 1996.
14. Mill, John Stuart, Autobiography, 1873. On the web at

http://www.utilitarianism.com/millauto/seven.html
15. Nelson, Theodor von Holm. “Xanalogical Structure, Needed Now More than Ever: Parallel

Documents, Deep Links to Content, Deep Versioning, and Deep Re-Use.” ACM Computing
Surveys 31(4), December 1999. On the web at
http://www.cs.brown.edu/memex/ACM_HypertextTestbed/papers/60.html

16. Osinski, Stanislaw; Stefanowski, Jerzy; Weiss, Dawid. “Lingo: Search Results Clustering
Algorithm Based on Singular Value Decomposition.” Intelligent Information Systems 2004:
359-368. On the web at
http://www.cs.put.poznan.pl/dweiss/site/publications/download/iipwm-osinski-weiss-
stefanowski-2004-lingo.pdf

17. Park, Jack, Editor, and Sam Hunting, Technical Editor, XML Topic Maps: Creating and
Using Topic Maps for the Web, Boston, MA. Addison-Wesley, 2003

18. Sauermann, Leo, “The Gnowsis Semantic Desktop for Information Integration,” in IOA
2005, Kaiserlauten, Germany. On the web at http://www.dfki.uni-
kl.de/~sauermann/papers/Sauermann2005a.pdf

19. Thomas, Dave, “Open Augment – Back To The Future Preserving the Augment Legacy
With XML,” XML 2003 Conference. Philadelphia, PA. December 2003. On the web at
http://www.idealliance.org/papers/dx_xml03/papers/05-00-00/05-00-00.pdf

78

http://www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html
http://www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html
http://www.bootstrap.org/augdocs/bi-2120.html
http://www.gradman.com/projects/dss/final/final.pdf
http://www.ceas.cc/papers-2004/149.pdf
http://www-db.cs.wisc.edu/cidr/cidr2005/papers/P02.pdf
http://www-db.cs.wisc.edu/cidr/cidr2005/papers/P02.pdf
http://www.utilitarianism.com/millauto/seven.html
http://www.cs.brown.edu/memex/ACM_HypertextTestbed/papers/60.html
http://www.cs.put.poznan.pl/dweiss/site/publications/download/iipwm-osinski-weiss-stefanowski-2004-lingo.pdf
http://www.cs.put.poznan.pl/dweiss/site/publications/download/iipwm-osinski-weiss-stefanowski-2004-lingo.pdf
http://www.dfki.uni-kl.de/~sauermann/papers/Sauermann2005a.pdf
http://www.dfki.uni-kl.de/~sauermann/papers/Sauermann2005a.pdf
http://www.idealliance.org/papers/dx_xml03/papers/05-00-00/05-00-00.pdf

Harvesting Desktop Data for Semantic Blogging

Knud Möller and Stefan Decker

DERI, National University of Ireland, Galway
{knud.moeller, stefan.decker}@deri.org

Abstract. A typical computer user’s desktop contains large amount of for-
mal data, such as addresses, events or bibliopraphies. Especially within a
corporate or organizational environment, it is often important to exchange
this data between employees. However, state-of-the-art communication tech-
nologies such as email or bulletin boards don’t allow to easily integrate desk-
top data in the communication process, with the effect that the data remains
locked within a user’s computer. In this paper, we propose that the recent
phenomenon of blogging, combined with a tool to easily generate Semantic
Web (SW) data from existing formal desktop data, can result in a form of
semantic blogging which would help to overcome the aforementioned prob-
lem. We discuss a number of preconditions which must be met in order to
allow semantic blogging and encourage users to author a semantic blog, and
we present a prototype of the semiBlog editor, which was created with the
purpose of user-friendly semantic blogging in mind. We argue that such a
semantic blog editor should integrate tightly with a user’s desktop environ-
ment, as this would make integration of existing data into the blog as easy
as possible.

1 Introduction

Computer users generate and collect a large amount of data on their desktop (we
use the term desktop as a metaphor for the entire working environment within a
computer). While the major part of this data usually consists of unstructured re-
sources such as texts and images, a substantial portion of it is also structured or
semi-structured data — users store their contacts in electronic address books, orga-
nize their appointments in a calendar application or manage bibliographic references
in a bibliography tool. Within organizations and companies, this data is often part
of the organizational knowledge, and needs to be distributed within and in between
project groups and employees. The process of distribution is often complicated and
cumbersome, as the data tends to be locked within each individual user’s desktop.
Communication channels such as email or bulletin boards exist, but they do not
normally offer ways to integrate existing formal data. Applications like MS Outlook1

or MeetingMaker2 offer data exchange for specific kinds of data, but they cannot
be used as a general means for data exchange. Also, the exchange is restricted to
users of these applications.

The recent phenomenon of weblogging (or “blogging”) [13] has been suggested as
a light-weight, general purpose tool for data exchange and knowledge management
within organizations [10]. With blogging moving more and more into the mainstream
of web technologies, analysts such as Forrester have now taken up the topic. A report
by Forrester [6] suggests blogging as a valuable publicity tool for companies and a
means to keep in touch with their customer base. Furthermore, the report stresses
that blogging can also serve as an inter-company communication channel, in the
sense that employees could provide each other with important data about the work
1 Microsoft Outlook: http://www.microsoft.com/outlook/
2 MeetingMaker: http://www.meetingmaker.com

79

http://www.microsoft.com/outlook/
http://www.meetingmaker.com

they are doing (either through their own personal blog, or through a group blog),
such as project details, etc. In a similar line of thought, [12] suggests that blogging
can be used as a way to perform Knowledge Management within an organization
or company. While these observations show an interesting use case for blogging,
the data that is being exchanged in this way is currently locked within the blog
(or blogosphere), and disconnected from other resources a user might have on their
desktop. An employee can blog about an upcoming meeting, but there is no simple
way he or she could reuse existing data from their electronic calendar, addressbook,
etc. In the same way, another employee can read the entry and manually add the
relevant information to the various desktop applications — e.g. when and where the
meeting takes place or details about people attending it — but again there is no
simple way to automatically import this data.

1.1 Contributions of this Paper

In this paper, we suggest a form of semantic blogging to overcome the limitations
posed by both the ordinary blogging approach and standard applications such as
Outlook or MeetingMaker, in the sense that a user can easily add metadata about
the things they blog, and other users can just as easily import this metadata and in
turn incorporate it into their desktop applications. The term semantic blogging has
largely been coined by Cayzer [2]. We argue that semantic blogging as a means of
data exchange can best be implemented as a desktop-based approach, as this allows
better access to and tight integration with the relevant data, a thing that is difficult
or impossible in web-based approaches. Desktop applications are also capable of
providing greater user-friendliness, as they (ideally) behave within parameters set by
the UI paradigm of the user’s desktop platform and commonly allow the use of visual
techniques such as drag-and-drop. As a proof-of-concept for our approach, we have
built a desktop-based blog editor called “semiBlog”, as well as an accompanying
blog reader.

1.2 Outline of the Paper

We will begin with a short introduction to semantic blogging and blogging in general
in section 2, followed by an illustration of how semantic blogging could be used as a
means for the exchange of formal desktop data in section 2.1. In section 2.2 we will
then discuss a number of preconditions which have to be met in order to allow this
kind of semantic blogging, and to make it as user-friendly as possible. Section 3 will
present our implementation of semantic blogging, the semiBlog application, starting
with a simple use case and subsequently diving deeper into the actual design of the
system. Finally, we will end the paper with a look at other approaches at semantic
blogging, as well as related technologies in section 4.

2 Semantic Blogging

Blogging has made it possible for ordinary users to publish on the Web, and thus
become content producers instead of content consumers. A number of web-based
blogging platforms such as Blogger3 or Movable Type4 allow users to publish various
kinds of data (though most blogs consist mainly of text and pictures). Blog authors
manage their own content in their own blog, structure it through time in the form
of discrete blog entries and are often able to categorise these entries. Usually, blogs

3 Blogger: http://www.blogger.com
4 Movable Type: http://www.sixapart.com/movabletype/

80

http://www.blogger.com
http://www.sixapart.com/movabletype/

also offer so-called newsfeeds, which are essentially XML-based tables of contents.
Using these newsfeeds, users can subscribe to blogs and aggregate information from
different blogs. Finally, bloggers are able to comment on posts in other people’s
blogs or refer to them through links (trackbacks5, pingbacks6), thus creating what
is called the blogosphere.

Semantic blogging extends the blogging paradigm with the possibility to add
additional metadata to a blog entry. This metadata can cover a variety of aspects,
ranging from information about the entry itself, such as the author or date of
publication (using vocabularies such as RDF Site Summary (RSS 1.0)7), information
about the structure of the blog and relations to other communication sites (e.g. by
using the SIOC [1] ontology), to metadata describing the topics mentioned in the
entry (a blog entry about a meeting would e.g. include metadata about that meeting,
such as date and location, people attending or details of project related to the
meeting, whereas an entry discussing a book would include bibliographic metadata
for that book). Moreover, this metadata is expressed in a semantic format such as
the Resource Description Framework (RDF), which allows further inferencing and
aggregation.

2.1 Semantic Blogging as Data Exchange

John

Ina's Computer

Marco

Blog Entry

Metadata

Blog Entry

Ina

writes
entry

annotates entry

Metadata

Blog Entrypublishes
entry

Internet

reads
entry

Metadata

Blog Entry

John's Computer

Meeting
Event

Marco

imports
metadata

1

2

3

4

5

Meeting
Event

Fig. 1: Exchanging data through a blog

A specific application of semantic blogging is its use as a means of data exchange
between users, e.g. employees in a company. A user would enrich a blog entry with
metadata originating from some existing desktop data. Readers of the blog could
then import this metadata into the appropriate applications on their desktop. Figure
1 illustrates this idea. A user named Ina wants to inform her colleagues about an
upcoming project meeting. Instead of writing an email, and sending it to a specific
set of people, she creates a blog entry announcing the meeting. Because she already
5 Trackbacks: http://www.movabletype.org/trackback/
6 Pingbacks: http://www.hixie.ch/specs/pingback/pingback/
7 RSS 1.0: http://web.resource.org/rss/1.0/

81

http://www.movabletype.org/trackback/
http://www.hixie.ch/specs/pingback/pingback/
http://web.resource.org/rss/1.0/

has the relevant data (when and where) in her calendar application, she can reuse
this data and attach it as metadata to the blog entry. Similarly, she might want to
tell her colleagues that a visitor from another company (Marco) is going to join the
meeting, and adds Marco’s address book entry to the blog. In this way, semantic
metadata can be made available with little or no overhead. Among other people
interested in this project, an employee namend John has earlier subscribed to the
blog. He reads the entry and decides to go to the meeting. Instead of scribbling down
the relevant data, he just imports it into his calendar and address book applications,
where it is now ready to be used.

2.2 Preconditions for Semantic Blogging

A semantic blogging system in general, and more specifically a system that wants to
offer the kind of semantic blogging functionality outlined in section 2.1, would have
to meet certain preconditions, which will be discussed in the following sections.

– Reference Mechanism In order to reference and access desktop objects, a
suitable reference mechanism has to be devised.

– Metadata Representation Format A suitable format has to be chosen to
represent semantic metadata within the blog.

– Usability Since authoring a semantic blog should be just as easy as authoring
an ordinary blog, a blogging platform has to be designed to maximize ease of
use and user-friendliness.

Referencing Objects on the Desktop If we want to be able to integrate data
objects from a user’s desktop into a blog, we have to able to somehow reference and
access these objects. While it would be possible to import the complete metadata for
some desktop object (e.g. someone’s addressbook entry) once during the creation of
a new blog entry, this would mean that the blog entry would only reflect the desktop
object at that particular point in time. Subsequent changes to the desktop object
(e.g. changing a person’s phone number) would be invisible to the blog. Therefore,
a simple referencing mechanism is needed, so that the blog reflects the current
state of a desktop object every time it gets published. One possible solution is a
URL-based reference mechanism, as URLs are well understood and supported. In
principle, however, any other kind of reference mechanism can be imagined as well.
It should be noted that references to desktop objects are only relevant internally as
locators within the blog-authoring platform — blog consumers would not see these
references, but instead see a formal representation of the thing that is described
by the desktop object. I.e. the metadata attached to a blog entry is not about the
desktop object from which it was generated, but about the thing that this desktop
object describes.

Technically, the reference mechanism could be implemented in a variety of ways.
Ideally, the desktop environment would already provide this. However, while re-
search and development in the area of semantic desktops (which would provide
each object on the desktop with a URL) such as the “Gnowsis” platform [11] has
already come a long way, semantic desktops are still far from being mainstream,
and can therefore not be assumed to be accessible to a user wishing to author a
semantic blog. Another possibility are metadata-enabled file systems, such as the
one that Mac OS X 10.4 (“Tiger”)8 offers. Here, every file object (and, by means of
a work-around, even non-file objects) can have arbitrary metadata attached, which
effectively means a semantic desktop “light”. Finally, a solution that doesn’t impose
any requirements on the underlying desktop system is the definition of interfaces
8 Tiger: http://www.apple.com/macosx/

82

http://www.apple.com/macosx/

for different kinds of data within the blogging platform itself. We have chosen this
solution for our semiBlog application, but will look into support for Gnowsis-type
systems in the future.

Metadata Representation Format While software like MS Outlook or Meet-
ingMaker already allow the exchange of specific kinds of data, they use static, pro-
prietary formats and bind a user to a specific piece of software. Within our vision
of semantic blogging, however, we want to allow the user to exchange any kind of
data, regardless of the software they use. To represent metadata in a blog, we would
therefore need an open, application independent format. To accomodate any kind
of data, we also need a format that allows to represent arbitrarily complex objects.
Finally, the format should have a means to reference and link to other objects.
Considering this list of requirements, we believe that RDF would be a good choice
for a representation format. Generally, the graph structure of RDF (as opposed to
the tree structure of simpler formats like XML) makes it more adept at expressing
semantic relations and metadata.

<rdf:RDF
<!-- ... namespace declarations,

metadata about the blog in general, etc. ... --> >
<rss:item rdf:about=

"http://www.example.org/blog#YARSMeeting">
<rss:title>YARS and Space Travel</rss:title>
<rss:link>

http://www.example.org/blog#YARSMeeting
</rss:link>
<rss:description>

Today I had a meeting with Andreas. We went over
his paper and talked about possibilities of using
his YARS RDF store for a manned mission to Alpha
Centauri. ...

</rss:description>
<dc:date>2005-04-06</dc:date>
<dc:subject>

<foaf:Person rdf:ID="andreas">
<foaf:homepage>http://sw.bla.org/~aharth/</foaf:homepage>
<foaf:surname>Harth</foaf:surname>
<foaf:firstName>Andreas</foaf:firstName>
<!-- ... more properties ... -->
<rdf:value>Andreas Harth</rdf:value>

</foaf:Person>
</dc:subject>
<dc:subject>

<bibtex:InProceedings>
<bibtex:title>Yet Another RDF Store: Perfect Index
Structures for Storing Semantic Web Data With
Contexts</bibtex:title>
<bibtex:author rdf:resource="#andreas" />
<!-- ... more properties ... -->
<rdf:value>YARS Paper</rdf:value>

</bibtex:InProceedings>
</dc:subject>

</rss:item>
<!-- ... more entries ... -->

</rdf:RDF>

Fig. 2: Example of an RSS 1.0 feed, enriched with additional metadata

Using RDF also makes the technical side of adding metadata to the blog easier.
Blogs usually provide a table of contents in the form of a newsfeed. These feeds
come in a variety of formats, one of which is RSS 1.0. Due to the open nature of
RDF, it is possible to add arbitrary additional RDF triples to such a feed, with-
out breaking its validity. Figure 2 shows an excerpt from a newsfeed in RSS 1.0,

83

using RDF/XML syntax9. Each entry in the feed (here only one) is represented by
an object of type rss:item. Using the dc:subject property, additional metadata
has been added (the example shows metadata about a person using the Friend of
a Friend (FOAF)10 vocabulary, and about a publication using a vocabulary which
implements the BibTEX format).

Usability Authoring a semantic blog should be made just as easy as authoring
an ordinary blog. While the metadata added to a blog entry could in principle be
hand coded or added through specific form fields in a web-based blog editor, we
believe that this would be far too complicated to appeal to a non-technical user,
like the average employee we are aiming at. As noted in the article by Hendler
[4], semantic metadata should be produced as a by-product of tasks that a user
is already used to perform on a day-to-day basis, such as entering people in an
address book application, organizing events in a calendar or managing publications
in a bibliographic database. We believe that the easiest way to allow access to this
data from a blogging platform is to implement it as a desktop application. Since a
(good) desktop application also integrates nicely into the UI paradigms of its specific
platform, this will guarantee that the user feels at home in the application. While a
platform-independent solution would certainly be desirable, we believe that it will
always be necessary to implement parts or the whole application in a platform-
specific way, as this would allow the blog editor to interact with platform-specific
data sources.

Annotating a blog entry should be as easy as dragging an address book or calen-
dar entry onto the blog editor. To further support the user in authoring a semantic
blog, a visual history of the most recently and most frequently used annotations
should be kept. In this way, it will not even be necessary to open the address book
or other external applications in order to annotate blog entries with frequently oc-
curing objects. Also, if an index of all desktop objects exist (as it would be in the
case of a semantic desktop like Gnowsis or a metadata-enabled file system), the
user could be supported with a type-ahead functionality, which suggests matching
desktop objects even while the user still types an entry. Taking the example in
figure 2, the system could suggest to annotate the entry with matching metadata
from the address book (or simply go ahead and do it), as soon as the user types the
string “Andreas”. Effectively, this would allow a simple kind of (semi-)automatic
annotation.

3 The semiBlog Editor

The main focus in the development of semiBlog was to make the authoring of a
semantic blog as easy as possible. In particular, we wanted to allow the user to
easily add semantic metadata to the blog about entities that already exist on their
desktop. This led to the early design decision to make semiBlog a desktop-based
application, rather than web-based. As discussed in section 2.2, access to other
desktop applications and their data (e.g. through their public APIs), control of the
clipboard, and techniques like drag-and-drop are difficult or impossible to implement
in a web-based environment. Another design decision was to make the first prototype
a native, platform-dependent application — this was done for similar reasons (access
to application APIs, etc.), but also because it allowed for a much easier and quicker
development process. As a result, semiBlog is currently only available for the Mac
OS X operating system. Future versions of semiBlog will possibly be more platform

9 RDF/XML: http://www.w3.org/TR/rdf-syntax-grammar/
10 FOAF: http://xmlns.com/foaf/0.1/

84

http://www.w3.org/TR/rdf-syntax-grammar/
http://xmlns.com/foaf/0.1/

independent, particularly the components comprising the semiBlog Core block and
the exporter plugins in figure 4. However, we believe that for an application that
wants to interface directly to existing desktop data, a certain degree of platform
dependence is always necessary.

3.1 Example Scenario

A screenshot of an example session in semiBlog is shown in figure 3. The user has
just had a meeting with his colleague Andreas, where they discussed an academic
paper about one of Andreas’ projects, named “YARS”. He creates a new entry for
this in his blog, adds some text and a picture. Then he decides to annotate the
entry with some semantic metadata. To do so, he simply selects the name of his
colleague, drags the corresponding card from his address book and drops it onto
the text area. The entry (or rather a part of it) is now linked to a piece of data on
the user’s desktop. In a similar fashion he drags and drops the URL of the YARS
project page from his web browser, as well as the BibTEX entry for the paper from
his bibliography tool. Once a piece of text has been annotated, it is highlighted in
the editor, so that each type of data is represented by a different colour. After the
blog has been published, other users can read it, and — given their browser supports
this — drag the annotations from the blog onto their desktop applications, and thus
gain access to the enclosed metadata.

Fig. 3: Annotating a blog with semiBlog

Internally, semiBlog tracks annotations for each individual string within an en-
try. However, how an annotation is handled once the blog is published on the web,

85

depends on the publication channel. In the HTML rendering of the entry, the an-
notation will manifest itself as a simple HTML link to a web page (if such a page
can be extracted from the desktop object). In the RDF metadata contained in the
newsfeed, the annotation will apply to the entry as a whole, as there is no obvious
means to make assertions about specific pieces of text in RDF.

3.2 Architecture and Flow of Data

Figure 4 gives an abstract overview of the architecture and flow of data in semi-
Blog. The left-hand side of the figure shows some examples of desktop data that a
user might have. We show address book entries, bibliographical metadata and web
pages, but any other kind of data is conceivable as well. semiBlog’s architecture
allows custom wrapper plug-ins for each data source, which take the object infor-
mation from the various desktop applications and transform it into RDF metadata
form. Together with the textual entry provided by the user, this metadata is then
combined in an intermediate XML representation. To generate the actual blog, the
XML is transformed into the various publication channels (currently a non-semantic
HTML rendering and the semantic RSS 1.0 feed, which links to the HTML). For
the actual publication process, a number of exporter plugins for various kinds of
blogging platforms (e.g. Blogger, MovableType, Wordpress, etc) can be chosen. The
blog is now ready for publication on the web.

semiBlog ApplicationExternal Applications Web

HTML

RSS 1.0

Wrapper 1: AddressBook
(People)

Wrapper 2: BibTeX
(Publications)

AddressBook

BibTex Tool

Web Browser Wrapper 3: URL
(Web Pages)

Other
Application

Wrapper n: Other Data

AP
I

Pa
rs

er
/

Tr
an

sla
to

r
Si

m
pl

e
Va

lu
e

?

User

semiBlog Core

XSLT
Processing

XML/
RDF

(Entitiy Creation and
Metadata Association)

Text Entry

LinksM
et

ad
at

a

Exporter 1:
StaticForm

at

Exporter 2:
M

ovableType

Exporter n:
O

ther Form
at

Fig. 4: semiBlog architecture and flow of data

Wrappers For each individual wrapper, access to the data can be handled in a
different way: if the data is tied to a specific application (e.g. the AddressBook appli-
cation for Mac OS X), then access via an application API might be possible. Other,
more generic data (e.g. BibTEX) will be handled by appropriate parsers/translators.
Wrappers are implemented as plug-ins to the platform, which makes it easy to add
new functionality and cover more data sources as the need arises. Plug-ins are basi-
cally implementations of an abstract AnnotationType class, which defines the basic
API each plug-in has to provide. Parts of this API are getter and setter methods for

86

the supported data types (objects in a drag-and-drop operation provide their data
in various types or data flavors); colours for highlighting in the editor; a method
annotationFromData to generate RDF; and a method mainAnchorFromData to
generate a hyperlink reference for the HTML rendering of the blog. Instead of gen-
erating a static version of the desktop object in RDF during the annotation process,
semiBlog simply stores a URL reference to the object. Each wrapper plugin defines
a custom URL scheme for the kind of data it supports. Only when the blog is pub-
lished at a later stage, will the URL be resolved and an RDF graph be built. This
ensures that the metadata contained in the blog is always up-to-date.

Intermediate XML During the publication process, semiBlog uses XML as an
intermediate data format, as shown in figure 5, regardless of the exporter plugin
chosen. Each entry is represented by an entry element, the textual content is con-
tained in a text element. This element allows mixed content of text and annotation
elements, which provides the possibility to add metadata to individual substrings
of an entry. We chose this inline annotation technique over external annotation by
reference, because it makes the XSLT transformations in the next step easier to
accomplish. Each annotation contains a mainAnchor to be used in the HTML ren-
dering of the blog (or in any other non-semantic representation), the RDF metadata
and the actual substring of the entry to be annotated.

<!-- ... -->
<text>

Today I had a meeting with
<annotation>

<mainAnchor>http://sw.deri.org/~aharth</mainAnchor>
<metadata>

<foaf:Person>
<foaf:name>Andreas Harth</foaf:name>
<!-- ... other properties -->

</foaf:Person>
</metadata>
<content>Andreas</content>

</annotation>.
We went over his
<annotation>

<mainAnchor>
http://sw.deri.org/2004/06/yars/doc/summary

</mainAnchor>
<metadata>

<bibtex:InProceedings>
<bibtex:title>

Yet Another RDF Store:...
</bibtex:title>
<!-- ... other properties -->

</bibtex:InProceedings>
</metadata>
<content>paper</content>

</annotation>
and talked about possibilities of using his YARS RDF
store for a manned mission to Alpha Centauri. ...

</text>
<!-- ... -->

Fig. 5: Intermediate XML

XSLT Transformation Once the user’s textual entry and the semantic meta-
data have been combined into the intermediate XML format, we can use XSLT to
transform it into arbitrary publication channels. This is a rather straight-forward
process: for each exporter module, there is one XSLT stylesheet per channel, and

87

each one picks those elements out of the XML which are appropriate for the cor-
responding publication channel. For example, the XML ->HTML stylesheet will
ignore the metadata element and instead pick the content and mainAnchor tags to
produce a hyperlink for specific substrings of the entry. The XML ->RSS stylesheet
will only look at the metadata element and annotate the entry as a whole. Once
this is done, the blog can be uploaded to a server (again depending on the current
exporter module).

Extracting Metadata While the functionality to extract metadata from the blog
could in principal be added as a plugin to existing blog readers, we chose to build
a stand-alone application for demonstration purposes. A user can load a blog’s
newsfeed an browse its entries. For each entry, the user is presented with a list of
annotations, from which he can chose to drag individual items onto his own address
book, calendar or other application (see Fig. 6). Technically, the blog reader uses
the same plugins as the semiBlog editor, which contain functionality to transform
data into both directions (i.e. from the source format into RDF and back). Each
plugin defines a pair consisting of an rdf:type and a target application, so that
the right plugin can be chosen depending on the data dragged and the target of the
drag operation.

Fig. 6: A metadata-aware blog reader

4 Related Work

The concept of Semantic Blogging is not our invention; a number of recent papers
have investigated the topic from different angles. [5] discusses a semantic blogging
prototype built on top of the SW browser Haystack [9]. They interpret blog en-
tries mainly as annotations of other blog entries and web resources in general, and
devise a platform to realise this in terms of the SW. We extend the scope of this

88

interpretation and include the possibility of annotating resources that originally do
not exist on the Web, but only on a user’s desktop. The paper also underlines the
inherent semantic structure of blogs and their entries as such, and presents a way
of formalising these semantics in a SW fashion. This point is also made (on a more
general level, encompassing various kinds of web based information exchange such
as e-mail, bulletin boards, etc.) by [1] and [8]. [3] puts a strong emphasis on the
use of semantic technologies to enhance the possibilities of blog consumption, by
allowing viewing, navigation and querying with respect to semantics. The paper
describes a prototype for both creation and browsing of semantic blogs, which was
developed as part of the SWAD-E project . While the prototype only deals with
bibliographic metadata as annotations to blog entries, the authors point out that
the same technologies can be used for any kind of metadata. [7] describes a platform
called Semblog, which uses the FOAF ontology as an integral part. FOAF descrip-
tions of blog authors are linked to their blogs. In this way, the blog as a whole is
annotated with metadata about its author. On a more fine-grained level individual
blog entries are classified by linking them to a personalised ontology. To implement
their platform, the authors provide both a Perl CGI-based tool called RNA and a
standalone Windows-based tool called Glucose.

As already mentioned, software like MS Outlook and MeetingMaker allow the
transfer of formal data over the web. However, these applications are restricted to
specific kinds of data, while our semantic blogging approach aims at covering all
kinds of data. Also, the systems typically use proprietary, closed formats, which are
aimed specifically at the kind of data they support, while an approach that tries
to cover a very broad range of possible kinds of data would have to be open and
domain-independent.

Semantic desktop efforts such as Gnowsis [11] assign URLs to every object on
a user’s desktop, thus allowing to treat them as nodes in an RDF graph and make
assertions about them. Also, Gnowsis contains interfaces to extract RDF from var-
ious kinds of desktop objects. This approach would offer the perfect infrastructural
basis for our semantic blogging efforts, as it would allow us to make our application
slimmer and focus on usability ascpects, instead of having to provide functionality
for referencing and accessing desktop objects ourselves.

Finally, meta-data enabled file systems like the one implemented in Mac OS X
10.4 (“Tiger”), BeFS or WinFS11 could be viewed as a lighter version of semantic
desktops and could play a similar role as an infrastructural basis. Arbitrary meta-
data can be added to each file object. By providing a hidden file representation for
non-file objects such as entries in the AddressBook application, also non-file objects
can benefit from the same functionality. Moreover, since all metadata events are
handled at kernel level, changes get noted instantly, and there is little to no chance
that changes remain unnoticed, thus compromising the semantic stability of the
metadata system.

5 Future Work

Although the full chain of steps involved in publishing a semantic blog writing a
textual entry, adding pictures, annotating the entry with semantic metadata and
transforming the internal data format into the actual components of the blog is
implemented and can be performed within semiBlog, the software is still very much
a prototype and can be improved in many areas. Since the main focus was on
the interaction between semiBlog and other desktop applications, we have so far
neglected aspects such as layout capabilities. As a result, the user is currently bound
to a static layout scheme for the blog. In future versions, we will have to address
11 WinFS: http://msdn.microsoft.com/data/WinFS/

89

http://msdn.microsoft.com/data/WinFS/

this and allow a freer layout, perhaps also offering to the user to choose between
different Cascading Style Sheets (CSS) templates. Also, it is currently not possible
to add metadata other than that provided by the wrapper plug-ins. Users should
have the option to manually annotate entries with arbitrary metadata, if they wish
to do so (however, since we were interested in easy drag-and-drop based annotation,
this was of no concern to us for the prototype). Also, by using an ontology like SIOC
[1], more semantic metadata could be generated easily by making use of the internal
and external semantic structure of the blog.

We will also look into adding functionality for automatic or semi-automatic
annotation, since even simple and easy manual annotation techniques like drag-
and-drop might still be a barrier for many users.

Future versions of the editor will allow integration with generic Semantic Desk-
top solutions like Gnowsis, or perhaps with metadata-enabled file systems. This
would eliminate the need for application specific data wrappers as they are cur-
rently used in semiBlog.

6 Conclusion

In this paper, we have argued that semantic blogging can be used as a universal
means to perform data exchange, e.g. in companies and organizations (but in no way
restricted to these environments). This kind of communication helps to keep up the
flow of information in an organization, and can make the work of individual members
easier. We have shown that other technologies fail to perform this task. There are
certain preconditions that must be met in order to enable semantic blogging in the
sense discussed in this paper: we have highlighted the need for a suitable referencing
and access mechanism, as well as a suitable metadata exchange format and stressed
the importance of usability aspects, such as tight desktop integration and visual
UI techniques such as drag-and-drop, to make semantic blogging appealing to non-
technical users. Finally, we have presented our semiBlog application, which tries to
implement these requirements.

7 Acknowledgement

This material is based upon works supported by the Science Foundation Ireland
under Grant No. SFI/02/CE1/I131.

90

Bibliography

[1] J. G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards Semantically-
Interlinked Online Communities. In The 2nd European Semantic Web Confer-
ence (ESWC ’05), Heraklion, Greece, Proceedings, LNCS 3532, pages 500–514,
May 2005.

[2] S. Cayzer. Semantic Blogging and Decentralized Knowledge Management.
Communications of the ACM, 47(12):47–52, December 2004.

[3] S. Cayzer. Semantic Blogging: Spreading the Semantic Web Meme. In XML
Europe 2004, Amsterdam, Netherlands, Proceedings, April 2004.

[4] J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–
37, March/April 2001.

[5] D. R. Karger and D. Quan. What Would It Mean to Blog on the Seman-
tic Web? In Third International Semantic Web Conference (ISWC2004), Hi-
roshima, Japan, Proceedings, pages 214–228. Springer, November 2004.

[6] C. Li. Blogging: Bubble Or Big Deal? Forrester Research, Inc., November 5
2004.

[7] I. Ohmukai and H. Takeda. Semblog: Personal Publishing Platform with RSS
and FOAF. In 1st Workshop on Friend of a Friend, Social Networking and the
(Semantic) Web, Proceedings, pages 217–221, Galway, September 2004.

[8] D. Quan, K. Bakshi, and D. R. Karger. A Unified Abstraction for Messaging on
the Semantic Web. In The Twelfth International World Wide Web Conference
(WWW2003), Budapest, Hungary, Proceedings, May 2003.

[9] D. Quan, D. Huynh, and D. R. Karger. Haystack: a Platform for Authoring
End User Semantic Web Applications. In Second International Semantic Web
Conference (ISWC2003), Proceedings, 2003.

[10] M. Röll. Business Weblogs — A Pragmatic Approach to Introducing Weblogs
in Medium and Large Enterprises. In BlogTalk - A Eurpean Conference on
Weblogs, Vienna, Austria, May 2003.

[11] L. Sauermann. The Gnowsis — Using Semantic Web Technologies to build a
Semantic Desktop. Master’s thesis, Technische Universität Wien, December
2003.

[12] B. Stone. Blogging - Genius Strategies for Instant Web Content. New Riders,
2002.

[13] J. Walker. Weblog. In D. Herman, M. Jahn, and M.-L. Ryan, editors, Routledge
Encyclopedia of Narrative Theory, page 45. Routledge, London and New York,
2005.

91

Semantically Enhanced Searching and Ranking
on the Desktop

Paul - Alexandru Chirita, Stefania Ghita, Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{chirita,ghita,nejdl,paiu}@l3s.de

Abstract. Existing desktop search applications, trying to keep up with
the rapidly increasing storage capacities of our hard disks, offer an incom-
plete solution for the information retrieval. In this paper we describe our
desktop search prototype, which enhances conventional full-text search
with semantics and ranking modules. In this prototype we extract and
store activity-based metadata explicitly as RDF annotations. Our main
contributions are represented by the extensions we integrate into the
Beagle desktop search infrastructure to exploit this additional contex-
tual information for searching and ranking the resources on the desktop.
Contextual information plus ranking brings desktop search much closer
to the performance of web search engines. The initially disconnected sets
of resources on the desktop are connected by our contextual metadata,
and then a PageRank derived algorithm allows us to rank these resources
appropriately. Finally, we use a detailed working scenario to discuss the
advantages of this approach, as well as the user interfaces of our search
prototype.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past
decade, and so has the number of files we usually store on our computer. It is
no wonder that sometimes we cannot find a document any more, even when we
know we saved it somewhere. Ironically, in quite a few of these cases nowadays,
the document we are looking for can be found faster on the World Wide Web
than on our personal computer.

Web search has become more efficient than PC search due to the boom of
web search engines and due to powerful ranking algorithms like the PageRank
algorithm introduced by Google [10]. The recent arrival of desktop search appli-
cations, which index all data on a PC, promises to increase search efficiency on
the desktop. However, even with these tools, searching through our (relatively
small set of) personal documents is currently inferior to searching the (rather
vast set of) documents on the web. This happens because these desktop search
applications cannot rely on PageRank-like ranking mechanisms, and they also
fall short of utilizing desktop specific characteristics, especially context informa-
tion.

92

2

It is thus obvious that simple indexing of the data on the desktop has to be
enhanced by ranking techniques, otherwise the user has no other choice but to
look at the entire result sets for her queries – usually a tedious task. The main
problem with ranking on the desktop comes from the lack of links between doc-
uments, the foundation of current ranking algorithms (in addition to TF/IDF
numbers). A semantic desktop offers the missing ingredients: By gathering se-
mantic information from user activities, from the contexts the user works in1,
we build the necessary links between documents.

In this paper we enhance and contextualize desktop search based on both
resource specific metadata and semantic metadata collected from different avail-
able contexts and activities performed on a personal computer. We first describe
the semantics of these different contexts by appropriate ontologies in Section
3.3, and then propose a ranking algorithm for desktop documents in Section 3.4.
For this latter aspect, we focus on recent advances of PageRank-based ranking,
showing how local (i.e., context-based) and global ranking measures can be in-
tegrated in such an environment. We are currently implementing our prototype
on top of the open source Beagle project [8], which aims to provide sophisticated
desktop search in Linux. Section 4 gives a detailed description of our prototype,
and shows how we extended Beagle with additional modules for annotating and
ranking resources. In Section 5 we use one typical search scenario in order to il-
lustrate how our extended Beagle search infrastructure can improve the retrieval
of search results in terms of number and order of results, using contextual infor-
mation and ranking based on this information.

2 Previous Work

The difficulty of accessing information on our computers has prompted several
first releases of desktop search applications during the last months. The most
prominent examples include Google desktop search [9] (proprietary, for Win-
dows) and the Beagle open source project for Linux [8]. Yet they include no
metadata whatsoever in their system, but just a regular text-based index. Nor
does their competitor MSN Desktop Search [11]. Finally, Apple Inc. promises to
integrate an advanced desktop search application (named Spotlight Search [2])
into their upcoming operating system, Mac OS Tiger. Even though they also
intend to add semantics into their tool, only explicit information is used, such as
file size, creator, last modification date, or metadata embedded into specific files
(images taken with digital cameras for example include many additional charac-
teristics, such as exposure information or whether a flash was used). While this is
indeed an improvement over regular search, it still misses contextual information
often resulting or inferable from explicit user actions or additional background
knowledge, as discussed in the next sections.

1 Studies have shown that people tend to associate things to certain contexts [14], and
this information should be utilized during search. So far, however, neither has this
information been collected, nor have there been attempts to use it.

93

3

Swoogle [5] is a search and retrieval system for finding semantic web doc-
uments on the web. The ranking scheme used in Swoogle uses weights for the
different types of relations between Semantic Web Documents (SWD) to model
their probability to be explored. However, this mainly serves for ranking between
ontologies or instances of ontologies. In our approach we have instances of a fixed
ontology and the weights for the links model the user’s preferences.

Facilitating search for information the user has already seen before is also
the main goal of the Stuff I’ve Seen (SIS) system, presented in [6]. Based on
the fact that the user has already seen the information, contextual cues such as
time, author, thumbnails and previews can be used to search for and present in-
formation. [6] mainly focuses on experiments investigating the general usefulness
of this approach though, without presenting more technical details.

The importance of semantically capturing users’ interests is analyzed in [1].
The purpose of their research is to develop a ranking technique for the large
number of possible semantic associations between the entities of interest for a
specific query. They define an ontology for describing the user interest and use
this information to compute weights for the links among the semantic entities. In
our system, the user’s interest is a consequence of her activities, this information
is encapsulated in the properties of the entities defined, and the weights for the
links are manually defined.

An interesting technique for ranking the results for a query on the semantic
web takes into consideration the inferencing processes that led to each result
[13]. In this approach, the relevance of the returned results for a query is com-
puted based upon the specificity of the relations (links) used when extracting
information from the knowledge base. The calculation of the relevance is how-
ever a problem-sensitive decision, and therefore task oriented strategies should
be developed for this computation.

3 An Architecture for Searching the Semantic Desktop

3.1 Overview

This chapter will present our 3-layer architecture for generating and exploiting
the metadata enhancing desktop resources. At the bottom level, we have the
physical resources currently available on the PC desktop. Even though they can
all eventually be reduced to “files”, it is important to differentiate between them
based on content and usage context. Thus, we distinguish structured documents,
emails, offline web pages, general files2 and file hierarchies. Furthermore, while
all of them do provide a basis for desktop search, they also miss a lot of contex-
tual information, such as the author of an email or the browsing path followed
on a specific web site. We generate and store this additional search input using
RDF metadata, which is placed on the second conceptual layer of our archi-
tecture. Finally, the uppermost layer implements a ranking mechanism over all
resources from the previous levels. An importance score is thus computed for
2 Text files or files whose textual content can be retrieved.

94

4

each desktop item, supporting an enhanced ordering of results within desktop
search applications. The entire architecture is depicted in Figure 1. In the next
subsections we will describe each of its layers following a bottom-up approach.

Fig. 1. Desktop Ranking System Architecture

3.2 Current Desktop Infrastructure and its Limitations

Motivation and Overview. Today the number of files on our desktops can
easily reach 10,000, 100,000 or more. This large amount of data can no longer
be ordered with manual operations such as defining explicit file and directory
names. Automatic solutions are needed, preferably taking into account the ac-
tivity contexts under which each resource was stored/used. In our prototype we
focus on three main working contexts of email exchanges, file procedures (i.e.,
create, modify, store, etc.), and web surfing. Furthermore, we investigate an ad-
ditional extended context related to research and scientific publications. In the
following paragraphs, we will discuss how the resources associated to these con-
texts are currently encountered, and which (valuable) information is lost during
their utilization. Subsequent sections will then present solutions to represent this
information and exploit it for desktop search applications.

Email Context. One of the most flourishing communication mediums is
certainly email communication. For example, international scientific collabo-
ration has become almost unthinkable without electronic mail: Outcomes of
brainstorming sessions, intermediate versions of reports, or published articles
represent just a few of the items exchanged within this environment. Similarly,
Internet purchasing or reservations are usually confirmed via email. However, if
we consider the continuous increase of email exchanges, other enhanced solutions
will be necessary to sort our correspondence. More, when storing emails, a lot of
contextual information is lost. Most significant here is the semantic connection
between the attachments of an email, its sender and subject information, as well

95

5

as the valuable comments inside its body. We propose to explicitly represent this
information as RDF metadata, to enable both enhanced search capabilities for
our inbox, as well as the exploitation of the semantic link between desktop files
(e.g., PDF articles stored from attachments), the person that sent them to us
via email or the comments she added in the email body.

Files and File Hierarchy Context and Web Cache Context. Due to
space limitations, we refer the reader to [4], where we proposed several solutions
to enrich the information associated to file and directory names, as well as to
the previously visited resources on the Web.

Working with Scientific Publications. Research activities represent one
of the occupations where the need for contextual metadata is very high. The most
illustrative example is the publication itself: Where did this file come from? Did
we download it from CiteSeer or did somebody send it to us by email? Which
other papers did we download or discussed via email at that time, and how
good are they (based on a ranking measure or on their number of citations)? We
might remember the general topic of a paper and the person with whom we dis-
cussed about it, but not its title. These questions arise rather often in a research
environment and have to be answered by an appropriate search infrastructure.

3.3 RDF Semantic Information Layer

Motivation and Overview. People organize their lives according to prefer-
ences often based on their activities. Consequently, desktop resources are also
organized according to performed activities and personal profiles. Since, as de-
scribed above, most the information related to these activities is lost on our
current desktops, the goal of the RDF semantic information layer is to record
and represent this data and to store it in RDF annotations associated to each
resource. Figure 2 depicts an overview image of the ontology that defines ap-
propriate annotation metadata for the context we are focusing on in this paper.
The following paragraphs will describe these metadata in more detail.

Email Metadata. Basic properties for the email context are referring to the
date when an email was sent or accessed, as well as its subject and body text. The
status of an email can be described as seen/unseen or read/unread. A property
“reply to” represents email thread information, the “has attachment” property
describes a 1:n relation between an email and its attachments. The “sender”
property gives information about the email sender, which can be associated to a
social networking trust scheme, thus providing valuable input for assessing the
quality of the email according to the reputation of its sender.

File and Web Cache Specific Metadata. For these, we again refer the
reader to our previous work [4] describing the ontologies associated to these two
activity contexts. An overview can be found in the lower half of Figure 2.

Scientific Publications Metadata. The Publication class represents a spe-
cific type of file, with additional information associated to it. The most common
fields are “author”, “conference”, “year”, and “title”, which comprise the regu-
lar information describing a scientific article. Additionally, we store the paper’s
CiteSeer ID (if any). The publication context is connected to the email context,

96

6

Fig. 2. Contextual Ontology for the Semantic Desktop

if we communicate with an author or if we save a publication from an email at-
tachment. Of course, since each publication is stored as a file, it is also connected
to the file context, and thus to the file specific information associated to it (e.g.,
path, number of accesses, etc.).

3.4 Aggregated Ranking System

Motivation and Overview. As the amount of desktop items has been increas-
ing significantly over the past years, desktop search applications will return more
and more hits to our queries. Contextual metadata, which provide additional in-
formation about each resource, result in even more search results. A measure of
importance is therefore necessary, which enables us to rank these results. The
following paragraphs describe such a ranking mechanism, developed based on
the Google PageRank algorithm [10].

Basic Ranking. Given the fact that rank computation on the desktop would
not be possible without the contextual information, which recreates the links
among resources, annotation ontologies should describe all aspects and relation-
ships among resources influencing the ranking. The identity of the authors for
example influences our opinion of documents, and thus “author” should be rep-
resented explicitly as a class in our publication ontology.

Second, we have to specify how these aspects influence importance. Object-
Rank [3] has introduced the notion of authority transfer schema graphs, which
extend schemas similar to the ontologies previously described, by adding weights
and edges in order to express how importance propagates among the entities
and resources inside the ontology. These weights and edges represent authority
transfer annotations, which extend our context ontologies with the information

97

7

we need to compute ranks for all instances of the classes defined in the context
ontologies.

Figure 3 depicts our context ontology plus appropriate authority transfer
annotations. For example, authority of an email is split among the sender of the
email, its attachment, the number of times that email was accessed, the date
when it was sent and the email to which it was replied. If an email is important,
the sender might be an important person, the attachment an important one
and/or the number of times the email was accessed is very high. Additionally,
the date when the email was sent and the previous email in the thread hierarchy
also become important. As suggested in [3], every edge from the schema graph is
split into two edges, one for each direction. This is motivated by the observation
that authority potentially flows in both directions and not only in the direction
that appears in the schema: if we know that a particular person is important,
we also want to have all emails we receive from this person ranked higher. The
final ObjectRank value for each resource is calculated based on the PageRank
formula (presented in Section 4.3).

Fig. 3. Contextual Authority Transfer Schema

Using External Sources. For the computation of authority transfer, we
can also include additional external ranking sources to connect global ranking
computation and personalized ranking of resources on our desktop. These exter-

98

8

nal ranking sources are used to provide the seed values for the calculation of the
personal ranking. Our prototype ontology includes three global ranking services,
one returning Google ranks, the second one ranks computed from the CiteSeer
database and the last one from the social network described with FOAF.

The ObjectRank value for each resource is calculated based on the PageRank
formula and the seed values for this computation integrate information from
external ranking systems and personalized information. We use the following
external ranking systems as the most relevant for our purpose:

– Ranking for articles. Co-citation analysis is used to compute a primary rank
for the article [12]. Because of the sparse article graph on each desktop this
rank should be retrieved from a server that stores the articles (in our case
all metadata from CiteSeer and DBLP).

– Recommendations. We may receive documents from other peers together
with their recommendations. These recommendations are weighted by a local
estimate of the sender’s expertise in the topic [7].

Personalization. Different authority transfer weights express different pref-
erences of the user, translating into personalized ranking. The important re-
quirement for doing this successfully is that we include in a users ontology all
concepts, which influence her ranking function. For example, if we consider a
publication important because it was written by an author important to us, we
have to represent that in our context ontology. Another example are digital pho-
tographies, whose importance is usually heavily influenced by the event or the
location where they were taken. In this case both event and location have to
be included as classes in our context ontology. The user activities that influence
the ranking computation have also to be taken into account, which translates to
assigning different weights to different contexts.

4 Prototype

Our current prototype is being built on top of the open source Beagle desktop
search infrastructure, which we extended with additional modules: metadata
generators, which handle the creation of contextual information around the re-
sources on the desktop, and a ranking module, which computes the ratings of
resources so that search results are shown in the order of their importance. The
advantage of our system over existing desktop search applications consists in
both the ability of identifying resources based on an extended set of attributes –
more results, and of presenting the results according to their ranking – to enable
the user to quickly locate the most relevant resource.

4.1 Current Beagle Architecture

The main characteristic of our extended desktop search architecture is metadata
generation and indexing on-the-fly, triggered by modification events generated

99

9

upon occurrence of file system changes. This relies on notification functionalities
provided by the kernel. Events are generated whenever a new file is copied to
hard disk or stored by the web browser, when a file is deleted or modified, when
a new email is read, etc. Much of this basic notification functionality is provided
on Linux by an inotify-enabled Linux kernel, which is used by Beagle.

Our prototype keeps all the basic structure of Beagle and adds additional
modules that are responsible for generating and using the contextual annota-
tions enriching the resources on our desktop. The main components of the ex-
tended Beagle prototype are Beagled++ and Best++, as seen in Figure 4, ”++”
being used to denote our extensions. Beagled++ is the main module that deals
with indexing of resources on the desktop and also retrieving the results from
user queries. Best++ is responsible for the graphical interface, put on top of
Beagled++, communicating through the DBus daemon. Whenever a DBus dae-
mon launches, a new bus is initialized and to this one both Beagled++ and
Best++ connect and register. Then Beagled++ starts a global scheduler thread
and the inotify thread, which are responsible for the indexing of new resources
found on the desktop. The query driver is then started and waits for queries. The
Best++ interface is also initialized, using this module queries will be transmitted
to Beagled++ and answers visualized.

Fig. 4. Extended Beagle Desktop Search

4.2 Extending Beagle with Metadata Generators

Depending on the type and context of the file / event, metadata generation is
performed by appropriate metadata generators, as described in Figure 5. These
applications build upon an appropriate RDFS ontology as shown in [4], describ-
ing the RDF metadata to be used for that specific context. Generated metadata
are either extracted directly (e.g. email sender, subject, body) or are generated
using the appropriate association rules plus possibly some additional background
knowledge. All of these metadata are exported in RDF format, and added to a
metadata index, which is used by the search application together with the usual
full-text index.

100

10

Fig. 5. Beagle Extensions for Metadata Support

The architecture of our prototype environment includes four prototype meta-
data generators according to the types of contexts described in the previous
sections. We added a new subclass of the LuceneQueryable class, MetadataQue-
ryable, and, from this one, derived four additional subclasses, dealing with the
generation of metadata for the appropriate contexts (Files, Web Cache, Emails
and Publications). The annotations we create include the corresponding elements
depicted in the ontology graph Figure 2. They are described in detail in [4]. A
new one is the publication metadata generator, described in the next paragraph.

Publication Metadata Generator. For the experiments described in this
paper, we have implemented a metadata generator module, which deals with
publications. For each identified paper, it extracts the title and tries to match it
with an entry into the CiteSeer publications database. If it finds an entry, the
application builds up an RDF annotation file, containing information from the
database about the title of the paper, the authors, publication year, conference,
papers which cite this one and other CiteSeer references to publications. All
annotation files corresponding to papers are merged in order to construct the
RDF graph of publications existing on one’s desktop.

4.3 Extending Beagle with A Ranking Module

Each user has his own contextual network / context metadata graph and for
each node in this network the appropriate ranking as computed by the algo-
rithm described in section 3.4. The computation of rankings is based on the link
structure of the resources as specified by the defined ontologies and the corre-
sponding metadata. We base our rank computation on the PageRank formula

r = d · A · r + (1 − d) · e (1)

applying the random surfer model and including all nodes in the base set. The
random jump to an arbitrary resource from the data graph is modeled by the

101

11

vector e. A is the adjacency matrix which connects all available instances of the
existing context ontology on one’s desktop. The weights of the links between the
instances correspond to the weights specified in the authority transfer annotation
ontology. Thus, when instantiating the authority transfer annotation ontology
for the resources existing on the users desktop, the corresponding matrix A will
have elements which can be either 0, if there is no edge between the corresponding
entities in the data graph, or they have the value of the weight assigned to the
edge determined by these entities, in the authority transfer annotation ontology.
Additionally, in the case of publications, for the rank computation we also take
into account the ratings extracted from the CiteSeer database, with the aid of
our publication metadata generator. This values are used as seed values for the
calculation of the personalized rankings.

5 In-Depth Scenario and Results

We have considered a set of test scenarios for validating our assumptions about
the benefits of our metadata enhanced search engine. Let us look at one of
them in more detail. We assume that Bob and Alice are two team members
of a computer science research institute, both being interested in semantic web
technologies. Alice is currently writing a paper about searching and ranking on
the semantic desktop and she wants to find some good papers on this topic,
which she remembers she stored sometime ago on her desktop. Figure 6 depicts
a small part of the set of publications existing on Alice’s desktop, along with the
contextual metadata associated with them. Papers are connected among each
others by the ‘cites’- relationship. By dotted lines we represent the papers that
are not stored on Alice’s desktop, but are referenced by some of the saved ones.
In order to find them she makes use of the extended desktop search engine and
issues a query with the searched terms ‘semantic desktop’. Let us look at the
results she will find.

Fig. 6. Papers example

102

12

The next three subsections discuss this scenario in more detail. We describe
the type of hits our extended Beagle engine returns, show how we display these
results together with their additional metadata and how ranking information is
used to order the search results.

5.1 Direct Hits vs. Metadata Hits

The hits returned by any normal search engine (direct hits) would be the ones
that contain the searched keywords in the title or in the content of the publi-
cation, in our case publications A, B and D (“Searching and Ranking on the
Semantic Desktop”, “Using Semantic Web Technologies to Build a Seman-
tic Desktop”, “Semantically Rich Recommendations in Social Networks for
Sharing and Exchanging Semantic Context”). Traditional search engines would
not be able to retrieve the other two publications. Publication C is included as
email attachment, and not indexed by Beagle. However, the corresponding email
text contains the searched keywords, and therefore we can retrieve it as an indi-
rect hit (from the metadata as for each email we automatically store the email
text as metadata for all attachments). Publication E is not even stored on the
computer but is among the cited publications by another stored publication(A)
which contains the keywords in the title, and therefore will be returned as a
metadata hit(“The Social Semantic Desktop”).

We extend the Best interface provided by Beagle to include the metadata
hits together with the direct ones. The direct hits are shown as Beagle normally
does, with the occurrences of the searched terms emphasized. For the indirect
hits we display the resources whose associated metadata include the query terms.
Our example shows the first 5 out of a total of 20 results. As depicted in Figure
7, the first hit is an email having as attachment a publication not stored on the
computer but refers to the topic in the body of the email, which contains the
searched keywords. The last result in this picture is another indirect hit but the
resource that is displayed is neither explicitly nor implicitly (e.g. in the email
attachment) stored on the computer. This is why the user is redirected to the
results provided by Google when searching for the item that it is pointed to by
the metadata file.

5.2 Rankings

Results. As Figure 7 shows, the results are displayed according to the computed
resource rankings. The first hit has the highest rank among the resources in the
result set. The rank values are also shown so that the user has an impression
about how relevant the results are. In our case the most important result is the
email Alice received from Bob including in its attachment a publication. Alice
has exchanged her context with Bob, as well as with Caroline, Dan and Tom.
All these persons have a high level of trust for Bob and therefore, by exchanging
context information, in the resulting graph the node corresponding to Bob will
have many incoming links. This translates into a high rank value for Bob. As
we suggested in Figure 3, certain percentages of Bob’s rank will flow towards all

103

13

Fig. 7. Beagle++ Main Window

nodes that Bob’s node points to. Since Bob is the sender of the email which was
identified by Beagle as a match for the searched terms, the rank of this hit has
a very high value.

We additionally observe that the last hit from this partial set of results, in
spite of the fact that is not stored on the desktop, has also a high rank because
it is cited by the third hit of this query. Its high rank is also influenced by other
resources that the publication receives links from.

Discussion. Ranking algorithms are very much influenced by the structure
of their underlying graph. More specifically, different distributions of links yield
rather different resource orderings. Luckily, the cached web pages and the sci-
entific publications do exhibit a web-like link distribution (i.e., power-law), and
are thus suitable for such a ranking scheme as ours. However, even though in our
initial experiments from [4] and from this paper we found the desktop resource
graphs to show an encouraging structure (also when emails and regular files have
been included), we are currently validating these results on a larger scale of users
and search scenarios.

104

14

Fig. 8. Beagle++ Metadata Window

5.3 Metadata Visualization

Whenever a user clicks on the ‘Show context information’ link for a certain
result, the corresponding metadata can be visualized, both for direct or indirect
hits. A new window pops up displaying a list of details that correspond to the
ontology related to the type of resource. Alice chooses to visualize the first result
returned by Beagle, representing an email from Bob and having as attachment
a publication. Since the interesting resource for this query is the PDF file in
the attachment, the metadata window displays the annotations corresponding
to publications together with other contextual information associated with it.
The publication ”Activity Based Metadata for Semantic Desktop Search” has
5 authors and for each of the authors we can further display the next level
of metadata. For example, in Figure 8, Alice extended author S. Ghita and
she can see other publications of this author. Additionally, she can see that
the publication was presented at the ESWC conference in 2005, its referenced
publications and the ones that cited it. Information related to the provenance of
this resource is also shown, the email it was saved from and its sender.

105

15

6 Conclusions and Future Work

We presented two main contributions that enhance traditional desktop search, fo-
cusing on how regular text-based desktop search can be enhanced with semantics
/ contextual information and ranking exploiting that information. Searching for
resources then will not only retrieve explicit results but also items inferred from
the users’ existing network of resources and contextual information. Maintaining
the provenance of information can help the search engine take into account the
recommendations from other users and thus provide more retrieved results. The
ranking module, by exploiting contextual information, improves retrieval and
presentation of search results, providing more functionality to desktop search.

There are quite a few interesting additional contexts, that are worth inves-
tigating in the future: metadata embedded in multimedia files, the relations
between objects embedded within each other (a presentation including pictures,
tables, charts, etc.), or chat history. A further interesting question we want to
investigate in the future is how to learn contextual authority transfer weights
from user feedback on ranked search results.

References

1. B. Aleman-Meza, C. Halaschek, I. B. Arpinar, and A. Sheth. Context-aware se-
mantic association ranking. In Semantic Web and Databases Workshop, 2003.

2. Apple spotlight search. http://developer.apple.com/macosx/tiger/spotlight.html.
3. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based

keyword search in databases. In VLDB, Toronto, Sept. 2004.
4. P. A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based

metadata for semantic desktop search. In In Proceedings of the 2nd European
Semantic Web Conference, Heraklion, Greece, May 2005.

5. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi,
and J. Sachs. Swoogle: A search and metadata engine for the semantic web. In
in Proceedings of the Thirteenth ACM Conference on Information and Knowledge
Management, Washington, DC, Nov. 2004.

6. S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. Stuff i’ve
seen: A system for personal information retrieval and re-use. In Proc. of the 26th
Intl. ACM SIGIR Conference, Toronto, July 2003.

7. S. Ghita, W. Nejdl, and R. Paiu. Semantically rich recommendations in social
networks for sharing and exchanging semantic context. In ESWC Workshop on
Ontologies in P2P Communities, 2005.

8. Gnome beagle desktop search. http://www.gnome.org/projects/beagle/.
9. Google desktop search application. http://desktop.google.com/.

10. Google search engine. http://www.google.com.
11. Msn desktop search application. http://beta.toolbar.msn.com/.
12. A. Sidiropoulos and Y. Manolopoulos. A new perspective to automatically rank

scientific conferences using digital libraries. In Information Processing and Man-
agement 41 (2005) 289Z12, 2005.

13. N. Stojanovic, R. Studer, and L. Stojanovic. An approach for the ranking of query
results in the semantic web. In ISWC, 2003.

14. J. Teevan, C. Alvarado, M. Ackerman, and D. R. Karger. The perfect search engine
is not enough: A study of orienteering behavior in directed search. In CHI, 2004.

106

SemperWiki: a semantic personal Wiki

Eyal Oren
eyal.oren@deri.org

Digital Enterprise Research Institute
Galway, Ireland

Abstract. Wikis are collaborative authoring environments, and are very
popular. The original concept has recently been extended in two di-
rections: semantic Wikis and personal Wikis. Semantic Wikis focus on
better retrieval and querying facilities, by using semantic annotations
of pages. Personal Wikis focus on improving usability and on provid-
ing an easy-to-use personal information space. We combine these two
developments and present a semantic personal Wiki. Our application
SemperWiki offers the usability of personal Wikis and the improved re-
trieval and querying of semantic Wikis. Users can annotate pages with
RDF together with their normal text.The system is extremely easy-to-
use, provides intelligent navigation based on semantic annotations, and
responds instantly to all changes.

1 Introduction

The amount of information we process, maintain, search, and use in our daily
work is enormous. All this information is contained in our desktop, our personal
working space. Efficiently and effectively retrieving the relevant information from
our desktop is currently a problem, especially since many related pieces of infor-
mation are spread over various applications that do not communicate with each
other (e.g. some emails, documents, appointments, and websites on the same
topic).

Adding semantic annotations to desktop data could alleviate this problem
and offer better retrieval possibilities [2, 5]. By annotating data on the desktop
in a semantic language such as RDF we get (i) a uniform data format for the
separate pieces of information, (ii) integration of information pieces based on
URIs, (iii) enhancement of information with background knowledge in ontologies.

Semantic annotations add application-independent meaning and structure
to data; they allow better retrieval of our desktop data. To some extent, these
annotations can be provided by special application wrappers that know the
structure and semantics of some particular application data and can export this
in RDF. But the user will also have to make manual annotations, because the
semantics of some information chunk is not always available or derivable from
the application data.

For example, a wrapper can export meeting appointments from a calendar
application into RDF, but if the user wants to annotate the participants, topic,

107

discussion, and outcome of the meeting, he will have to add these annotations
manually because these data are not available in the calendaring application.
Also, if the user wants to relate the meeting agenda and the meeting notes to the
meeting appointment, he will have to add these annotations manually (because
again, the application wrapper cannot make these relations automatically).

But adding semantic annotations to information pieces requires effort. Users
will only make this effort if they benefit from it. Manually annotating data should
therefore be easy and rewarding, since users will otherwise not annotate their
desktop data. If we want the user to add annotations, we need to entice him to
do so.

We present a desktop application that does exactly this: it entices users to
create semantic data. This semantic personal Wiki (SemperWiki) serves as a
personal information system. It is extremely easy to use and provides instant
gratification for adding semantic annotations.

SemperWiki is a best-of-breed between semantic Wikis and personal Wikis,
two orthogonal extensions to the original Wiki concept. Personal Wikis focus on
extreme ease of use; semantic Wikis focus on improved retrieval and navigation.
Combining them offers the usability of personal Wikis and the gratification of
semantic Wikis.

SemperWiki is not limited to the annotation of desktop data; it is a general-
purpose tool for creating and using semantically annotated data that addresses
a basic prerequisite towards a better desktop: helping and enticing users to add
semantic annotations. It can be used as a stand-alone semantic information
system or as user interface of a semantic desktop system.

The paper is structured as follows: first we shortly recall the original idea of
a Wiki in section 2. Then we review the characteristics of semantic Wikis in
section 3 and personal Wikis in section 4, and we analyse the functionality of
several Wiki systems in section 5. We introduce the concept of semantic personal
Wikis and the SemperWiki application in section 6, and conclude with points
for future work.

2 Wikis

Wiki Wiki Webs were first introduced by Leuf and Cunningham [4]. Wikis are
interlinked web sites that can be collaboratively edited by anyone. Pages are
written in a simple syntax so that even novice users can easily edit pages. The
syntax consists of simple tags for creating links to other Wikipages and textual
markups such as lists and headings.

The user interface of most Wikis consists of two modes: in reading mode,
the user is presented normal webpages that can contain pictures, links, textual
markup, etc. In editing mode, the user is presented an editing box displaying the
Wiki syntax of the page (containing the text including the markup tags). During
editing, the user can request a preview of the page, which is then rendered by
the server and returned to the user.

108

Many Wiki engines exist for anyone who wants to setup a Wiki, most of these
engines are open-source. Many sites run a Wiki as a community venue, enabling
users to discuss and write on topics. For example, many open-source projects
have a documentation Wiki, where users can collaboratively add documentation
about the project. The burden of editing is thus shared over the whole commu-
nity, while still allowing anybody to quickly find relevant documentation (which
is harder in e.g. a forum or bulletin board). Popular Wikis such as Wikipedia1

can grow very fast, since interested visitors can edit and create pages at will.
Wikis are inherently server-based which has the advantage of user platform

independence (users only need a browser) but the disadvantage of requiring a
round-trip for all changes2. For example, after each edit the page is committed
back to the server, and the newly rendered page is returned to the user. Although
the usability of most Wikis is good compared to other web applications (being
simple and fast), the need for server round-trips is a disadvantage compared to
desktop applications.

A problem with large Wikis is finding relevant information. Since almost
all the information in current Wikis is textual, the only possibility to locate
relevant information is a full-text search on some keywords. The only semantics
of pages lies in the links between pages. Indeed almost all Wiki engines generate
navigational benefits from these links: one can see all pages linking to the current
one, and go to these related pages. But this navigation through related pages
is quite limited, and does not address the need for more intelligent information
retrieval.

3 Semantic Wikis

Several systems have been developed that enable users of Wikis to semantically
annotate the information they publish in the Wiki. They enable users to struc-
ture and annotate the content of pages; they reward the user for doing so by
adding navigational possibilities to these annotated pages.

3.1 Examples

We list some examples of semantic Wikis. We discuss only those systems that
are being actively developed or that have been published about.

Platypus Platypus Wiki is a Wiki that is augmented with semantic technologies
[7]. Users can annotate information about pages by constructing RDF triples of
the form (page, predicate, object). The subject of the triple is always the current
page, the predicate and object can be resources.

In Platypus the editing interface consists of three pane: one pane contains
the page text in Wiki syntax, the other two contain RDF statements about the
1 http://www.wikipedia.org
2 approaches exist to enhance user experience by communicating in the background,

but these do still not compare to the usability possibilities of a desktop application.

109

page. Writing text on a page and writing semantic annotations are therefore
distinct activities in the Wiki, and the user has to consciously switch between
editing normal text and editing semantic annotations.

Platypus offers a query interface, separated from the normal page view. The
query possibilities are rich, and the background knowledge in the ontologies is
used in retrieving all answers to the queries. This inferencing capability means
that users can retrieve information that was not added explicitly but derived by
the system.

Platypus Wiki is an initial attempt to augment Wikis with semantics, all
pages in the Wiki can be annotated in RDF, and these annotations can be
queried. But Platypus does not directly entice the user to annotate pages: first,
there is no direct added benefit from annotating (because one needs to make a
separate query to see the results of annotating), and secondly annotating requires
much user action: it is a separate activity, different from the normal writing.

Shawn Shawn [1] can be seen as semantic Wiki that addresses Platypus’ short-
comings in both writing semantic annotations and in rewarding users for these
annotations.

In Shawn authors write the normal text and the semantic annotations at the
same time, in the same input field. Semantic annotations are syntactically distin-
guished from normal text by having the following form: predicate:object. All
such statements are converted to RDF triples using the page on which they ap-
pear as subject. One can for instance have a page called Shakespeare, containing
some text about the life of Shakespeare and his work. One line in the text may
read authorOf: Hamlet, which will be interpreted as the triple (Shakespeare
authorOf Hamlet). This style of semantic authoring poses very little burden on
the writer; users are free to embed semantic annotations at will and can do so
while writing the normal text.

Annotating pages leads to instant gratification for users in two ways: navi-
gational links are generated from the annotations and all semantic annotations
can be queried.

Shawn generates sidebar links (both forwards and backwards) from the se-
mantic annotations. For example, using the triple about Shakespeare and Ham-
let, the page Shakespeare would show a sidebar link to Hamlet (authorOf),
and the page Hamlet would show a sidebar link to Shakespeare (authorOf).
If Hamlet was annotated with rdfs:type Book then the page would also show
links to other books in the system. Users thus get rewarded for adding annota-
tions: pages contain more information than explicitly written.

Shawn also allows users to query for pages containing certain statements
using predicate=object; one can omit the predicate retrieving all pages that
have some predicate with the specified object, and one can specify conjunc-
tive queries by concatenating these statements. For example, authorOf=Hamlet
would retrieve the page Shakespeare. Queries can be embedded in page text,
prompting a live query each time the page is viewed. Users can thus create a
persistent view of the data.

110

3.2 Characteristics

To summarise, semantic Wikis have Wiki syntax for page authoring and use RDF
for annotation of pages. Users can annotate subtype relationships of pages and
predicate:object statements having the page as subject. Based on the semantic
annotation intelligent navigation can be offered, such as dynamic sidebar links
to pages related via some predicate. Querying of the annotated data is possible
through a (simple or powerful) query language.

4 Personal Wikis

An orthogonal extension of the original Wiki idea is the concept of a personal
Wiki. Personal Wikis focus on providing extreme usability for personal informa-
tion management. They are desktop applications and do in general not offer col-
laboration functionality. They serve as very lightweight note-taking programs,
allowing users to related notes to each other by Wiki links. Although at first
hand it seems self-contradictory with the collaborative nature of a Wiki, several
of these applications have quickly become quite popular.

4.1 Examples

Tomboy Tomboy3 is an open-source note-taking Wiki for the Gnome desktop
(Linux) and very popular in this community. It is a very simple application:
each note can be linked to other notes, or to email addresses and URLs. As
in a normal Wiki, these links can be traversed; additionally there is a menu of
recently accessed notes. Tomboy offers a full-text search to find relevant notes.

Tomboy is globally available in the desktop: it sits on the menu bar and
one can open it with a single keystroke. Notes are automatically saved on each
change, and there is an full undo stack for each note. These usability features
explain its popularity: one can very quickly take notes in it, by just pressing the
global key, typing some text, and pressing Escape to close it. There is no need
for opening an application, opening a note, saving it, and rendering the result;
all that happens on-the-fly.

Newton Newton4 is another open-source personal Wiki for the Gnome desktop.
It supports richer Wiki syntax than Tomboy, allowing for example numbered
and bulleted lists. On the other hand, it is slower in usage: there is a editing
mode and a viewing mode. In editing mode one sees the Wiki syntax, in viewing
mode the page is rendered.

3 http://www.beatniksoftware.com/tomboy/
4 http://newton.sf.net/

111

WikidPad WikidPad5 is a personal Wiki for Windows. It has a two-pane layout,
showing a tree of all pages on the left hand side, and the current page on the right
hand side. It supports a simple Wiki syntax for links and simple page markup,
it has an auto-complete feature for Wikilinks, and supports full-text search.
Users can assign categories to pages (to organise them), and annotate pages
with arbitrary attributes (such as priority, or status of an item); these attributes
can be used for aggregate views (e.g. all pages that contain todo items) or for
changing system behaviour (e.g. export only pages marked as public).

VoodooPad VoodooPad6 is a commercial application for MacOSX. It shows re-
cently changed notes, backlinks from the current note to all that mention it,
full-text search, auto-complete for Wikilinks. Additionally one can embed sim-
ple sketches into notes, and assigning categories to notes (to retrieve them more
easily). VoodooPad also integrates with the MacOSX address-book: actions such
as sending emails can be performed on recognised email addresses.

4.2 Characteristics

We summarise the characteristics of these various systems. Personal Wikis focus
on quick note-taking like scenarios; they commit to ease-of-use by being simple
and lightweight, and offering unlimited undo and real autosave. They are simple
and have a limited functionality: users can type text, link notes, and perform
full-text searches. Personal Wikis are tightly integrated in the desktop (global
keybinding, system tray, application integration) and are thus desktop-specific.

5 Functionality analysis

We compile a list of possible functionality based on this analysis of existing
applications and ideas about Wikis and their extensions. This list will serve as
a requirements analysis for our semantic personal Wiki.

We can distinguish three main groups of functionality: functionality of au-
thoring, retrieval, and navigation.

Authoring describes the available functionality to write, edit, and remove in-
formation; we distinguish Wiki syntax (for text layout), instant save (anni-
hilating the need for explicit saving), full undo, global keybindings (making
the application instantly available throughout the desktop), and application
integration (allowing to reuse data available in other applications).

Retrieval describes the available functionality to retrieve available information;
we distinguish full-text search, simple, powerful, and embedded queries, and
logical inferencing (that returns implicit information).

5 http://www.jhorman.org/WikidPad/
6 http://flyingmeat.com/voodoopad

112

Navigation describes the available functionality to navigate through the sys-
tem; we distinguish Wikilinks, intelligent navigation (using implicit informa-
tion), keyboard navigation (enabling fast navigation), and instant update of
the navigational entities (annihilating the need for explicit saving or refresh-
ing).

Table 1 list these requirements in the above order, and indicate the level of
support in the discussed systems.

Wiki syntax instant save full undo global keys app. integration

Wikis x
Platypus x
Shawn x
Tomboy x x x x
Newton x
WikidPad x
VoodooPad x x

(a) Authoring.

full-text simple query power query embedded query inferencing

Wikis x
Platypus x x x x
Shawn x x x x
Tomboy x
Newton x
WikidPad x
VoodooPad x

(b) Retrieval

Wiki links intelligent navigation key navigation instant updates

Wikis x
Platypus x
Shawn x x
Tomboy x x x
Newton x
WikidPad x
VoodooPad x x

(c) Navigation

Table 1: Capabilities of Wiki systems

6 Semantic Personal Wikis

Both extensions of the original Wiki concept offer distinct advantages. Semantic
Wikis offer a better retrieval rate through intelligent navigation and querying,

113

but have mediocre usability. They are slow to start, since one needs to start a
browser, surf to the Wiki, and wait for the server. They are slow in usage, since
one needs to explicitly save and commit all changes, and wait for the required
server round-trip. And they cannot offer a high-level of desktop and application
integration since they are user platform independent; this enlarges the group of
possible users but decreases the user experience. Personal Wikis address all these
usability issues, and are specifically built to offer a very good user experience;
on the other hand, they do not offer collaboration functionality.

A semantic personal Wiki is a combination between the best aspects of se-
mantic Wikis and personal Wikis. It offers the usability of a personal Wiki,
allowing users to quickly and unobtrusively write and semantically annotate
pages. The semantic annotations are intermixed within the normal text, allevi-
ating the need for a conscious change of mode. The Wiki entices users to add
annotations by providing direct rewards in terms of intelligent navigation.

Such a semantic personal Wiki can be seen as a personal information system
or as a lightweight ontology editor. It is not aimed towards collaborative work,
but on providing usability and gratification: attracting people to use it and add
semantics to their information.

6.1 SemperWiki

SemperWiki7 is our implementation of a semantic personal Wiki; it is an open-
source application developed for the Gnome desktop. We will give an overview
of the system and explain its features in detail.

Overview The user interface of SemperWiki is shown in figure 1. On the left
hand side the user can edit pages, on the right hand side the user can navigate;
there is no separation between authoring mode and navigation mode. A page can
consist of normal text, links to other pages or websites, and semantic annotations.

On the right hand side of the figure we see the navigation bar. This bar con-
tains various ways to navigate through the system. First we see a “find” section,
that allows users to query the system for pages containing certain statements.
Below the “find” section links to various relevant pages are displayed. In this
screenshot it only show the section “All pages”, containing all pages currently
in the system, other screenshots show more links as more relevant information
is found by the system. Finally we see a history navigation section, that allows
users to go back and forth in their navigation history; this feature is very useful
if we “jump” into a link to edit some information, and then want to jump back
again to where we were before.

Each page represents one resource and annotations state a property about
that resource. SemperWiki stores some semantic information about the re-
sources that are described on its pages, using the ontology shown in figure 2.
Each resource is represented as a page, each page can contain some text and can
have several outgoing links. Other information about a resource is added by the
user (the standard graph is enlarged with the semantic annotations).
7 see http://semperwiki.org/.

114

http://semperwiki.org/

Fig. 1: SemperWiki user interface

Fig. 2: SemperWiki ontology

115

SemperWiki stores all information in RDF8; we do this for two reasons:
RDF is a very flexible representation and allows us to store various information
about resources, and secondly RDF statements form the building blocks of the
Semantic Web. The collection of triples that SemperWiki stores form a valid
RDF model and can directly be exchanged with others.

In the RDF model, each page is identified by a URI, which is formed by
prefixing its title with the base URI of the Wiki (defined by the user). Figure 3
shows the RDF triples that are stored about the page Start; for readability we
have left out several triples.

Fig. 3: RDF statements about the page “Start”

Syntax Figure 1 contains ordinary text, including links to other pages in this
Wiki. We also see some semantic markup, stating that the author of this page is
a resource in this Wiki (namely the page EyalOren), that the publisher is DERI,
and that the topic is “Explanation”.

For the semantic annotations we use a simple syntax. A statement is written
on a line by itself and consists of a predicate followed by an object. Such a state-
ment is expanded to a triple using the URI of the page as a subject. Predicates
are resources, objects are resources or literals. Resources can be written as their
full URIs, with prefix notation, or as Wikilinks. Wikilinks are expanded using

8 http://www.w3.org/RDF/

116

http://www.w3.org/RDF/

the Wiki base URI, prefixed URIs are expanded using namespace abbreviations;
these abbreviations are configurable through a preference dialogue.

The syntax (for respectively a full URI, a internal Wiki link, a prefix ab-
breviation, and a literal) is as follows: [fullURI], [[WikiLinks]], prefix:
localname, ‘‘literal’’.

Navigation SemperWiki offers various ways to navigate to a page. First, one
can click on any Wikilink to jump to a page. Second, if one knows the name of
the page, pressing Ctrl-G will ask for the name and jump directly to it. Third,
the history buttons can be used to go back and forth through visited pages.
Fourth, the navigation sidebar will automatically show links to various related
pages that can be visited by clicking on them; the next section explains how it
works. And finally, one can query for any page containing statements by typing
a predicate and/or object in the find section. An example query for all things
written by John Irving is shown in figure 4, where the system found two relevant
pages.

Fig. 4: Using the “find” section

SemperWiki is designed to help users navigate quickly and efficiently to
their information. Therefore all actions in SemperWiki can be triggered by key-
board commands. These shortcuts can be accessed by typing Ctrl-H, as shown
in figure 5. Also, as can be seen in figure 1, all links are assigned mnemonics
(the underlined first letter) which triggers them with a keyboard command; for
example Alt-D directly jump to the Done page.

117

Fig. 5: Getting help

Dynamic Sidebar The links on the sidebar are generated automatically based
on the available semantic information in the system. We show sets of pages that
are related to the current one, and order these relations by the size of the sets of
related pages. We show the most specific pages first (the smallest set of related
pages), and gracefully decrease the amount of correspondence until we show all
pages.

For example, the page Garp will show all books that also have John Irving
as author (see figure 6). If there are any other predicates:objects in common we
also show them, such as other books that are published by Random House.

Then we show for example all pages that are of the same rdfs:type; for
Garp we show all other books in the system. This set is shown later, because it
contains more results than those books that also have the same author as Garp.

We also display pages that have a reversed relation to the current one (but in
a different colour). For example, the sidebar of the page Book would show links
to all books.

Instant Response Everything in SemperWiki behaves instantly. All changes to
all pages are saved instantly, without any user interaction. Likewise, the current
page and location are saved instantly. Together this means the user can leave
the system at any time (by pressing Esc and return the next time exactly where
he left it.

All links are found and tagged while the user is typing them, without any need
for saving or refreshing the page. All sidebar links are updated instantly upon
any change in the page. This means that while a user is adding information to

118

Fig. 6: Pages related to Garp

the page, the sidebar link is continuously up-to-date. If a user adds to some page
the statement dc:author "John Irving", the sidebar immediately updates to
show other books by John Irving.

Having an instantly responding user interface greatly enhances the user ex-
perience. We can provide this responsiveness by caching all querying results and
by using efficient regular expressions to parse the typed text. Currently, the sys-
tem is very fast but we need to evaluate its scalability in terms of the size of the
knowledge base.

Implementation The system is targeted at the Gnome desktop. As discussed,
targeting a specific desktop is a trade-off between offering more users a lesser
experience or offering less users a better experience, in which we have chosen the
latter.

SemperWiki is implemented in Ruby9, using the GTK10 windowing toolkit
for the graphical programming. It uses Redland11 for RDF storage and retrieval.
It currently consists of around 500 lines of code, many of which are related to
programming the graphical widgets.

Redland is a mature RDF store, but it is still quite small so that it can
be easily embedded in an application. It supports language bindings for many

9 http://ruby-lang.org
10 http://www.gtk.org/
11 http://librdf.org/

119

http://ruby-lang.org
http://www.gtk.org/
http://librdf.org/

different languages, including Ruby. We have also considered YARS [3], but at
its current state it does not offer enough functionality.

The choice for the Gnome desktop was a personal one, but it is also the
default desktop of Ubuntu, currently the fastest growing Linux distribution.
The GTK toolkit is the default toolkit of the Gnome desktop, it is consistent
and easy to use. Furthermore, it has excellent Ruby bindings.

The choice for Ruby was made for development speed. As an interpreted
language it allows one to program very fast and develop prototypes very easily.

7 Evaluation

We can not evaluate SemperWiki against other semantic personal Wikis, as
we are unaware of other systems. Also, we cannot do a user-based analysis of
our tool, since the tool does not have an active user base yet. However, we can
compare our current functionality against the functionality analysis in section 5.

It is clear that SemperWiki offers very little functionality in querying. That
is actually on purpose: since we have no good solution for a simple but powerful
query interface, we currently prefer the navigation sidebar: it is much easier
to use. Furthermore, we can see that SemperWiki supports all encountered
navigational capabilities, and almost all authoring capabilities; the missing “full
undo” is actually planned for imminent implementation. Support for desktop
application integration might an interesting discussion point for this workshop.

Wiki syntax instant save full undo global keys app. integration

SemperWiki x x x

full-text simple query power query embedded query inferencing

SemperWiki x

Wiki links intelligent navigation key navigation instant updates

SemperWiki x x x x

Table 2: Capabilities of SemperWiki

8 Conclusion

Managing the amount of information in our personal desktops is a challenge.
The idea of a Semantic Desktop addresses this challenge by semantically anno-
tating information chunks on our desktop, allowing better retrieval of relevant
information. Since these semantic annotations have to be (partially) added by
users, one must entice them to do so.

120

We have presented the idea of semantic personal Wikis to allow and en-
courage users to create semantic data. We have incorporated ideas from both
semantic and personal Wikis: semantic Wikis focus on improved retrieval and
navigation, personal Wikis focus on usability.

Our application SemperWiki allows users to manage their information: they
create pages that contain both normal text and semantic annotations at the same
time. They are instantly rewarded for these annotations by improved navigation
possibilities. The system is simple, easy to use and responds instantly to all
changes.

For future work we aim to address several issues. First, currently pages and
resources have a one-to-one correspondence: each resource is represented by ex-
actly one page. This makes annotations easier: statements are made using only
a predicate and object, the subject is always the URI of the page. However, it
makes editing complex data cumbersome since one needs to edit a new page for
each resource, and it poses problems with blank nodes. Furthermore it prohibits
making statements about external resources since all subjects have to be Wiki
pages. We aim to decouple the relation between pages and resources, thereby
allowing annotations of arbitrary resources (internal and external) and more
complex statements.

Secondly, we want to improve the query and navigation interface, such that
it is still easy to use and yet allows experienced users to make more powerful
queries. For example, the list of related pages in the dynamic sidebar could be
very long and we currently do not provide means to shorten or search through
this list. For this we will look into related work such as the Longwell browser in
the Simile project [6].

Finally, we aim to investigate possibilities to share the authored RDF data
with others, either by publishing it on a persistent web location, or by sharing it
over a peer-to-peer network with other users of SemperWiki. That way, what
starts as a contradiction-in-terms for private use (a personal Wiki) returns to
the Semantic Web.

Acknowledgements: this material is based upon works supported by the Science
Foundation Ireland under Grant No. 02/CE1/I131. We thank Knud Möller and
Stefan Decker for valuable discussions, and the anonymous referees for their
suggestions of improvement.

References

[1] D. Aumueller. Semantic authoring and retrieval within a wiki. In Proceedings
of the European Semantic Web Conference (ESWC). 2005.

[2] S. Decker and M. Frank. The social semantic desktop. Tech. Rep. 2004-05-02,
DERI, 2004.

[3] A. Harth and S. Decker. Optimized index structures for querying RDF from
the web. In Proceedings of the 3rd Latin American Web Congress. 2005.

[4] B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on
the Internet. Addison-Wesley, 2001.

121

[5] L. Sauermann. The Gnowsis – Using Semantic Web Technologies to build a
Semantic Desktop. Master’s thesis, Vienna University of Technology, 2003.

[6] V. Sinha and D. Karger. Magnet: Supporting navigation in semistructured
data environments. In Proceedings of SIGMOD 2005. 2005.

[7] R. Tazzoli, P. Castagna, and S. E. Campanini. Towards a semantic wiki wiki
web. In Proceedings of the International Semantic Web Conferenc (ISWC).
2004.

122

End-User Application Development for the Semantic Web

Karun Bakshi and David R. Karger

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street

Cambridge, MA 02139 USA
kbakshi@mit.edu, karger@mit.edu

Abstract

Although a lot of information has become readily accessible and necessary for daily work, the current
infrastructure for managing information is ill-suited for information-oriented activities: information and
functionality are scattered across applications and websites, making it difficult to aggregate and reuse
just the right set of content and operations required for unique user tasks. We discuss a collection of
tools built into the Haystack platform that address many of the shortcomings of current applications,
and allow composing reusable fragments of information and associated operations and views from the
Semantic Web into a task workspace tailored to the user and the task. Users can change the workspace
to immediately meet changing requirements to easily include, remove or reuse information in multiple
tasks simultaneously. The time that a user invests for the initial setup and occasional updates to the
workspace is amortized over the numerous times he or she returns to the task, and all relevant
information resources are co-located and ready to use.

1 Introduction

Many information-based tasks require a person to assimilate and manipulate multiple pieces of information
and the same information can be visualized and used in different ways in multiple tasks. Such tasks can
range from a military commander monitoring troop movement, logistics support and weather feedback
from a battlefront to decide on the next maneuver, to a doctor viewing a patient’s past visit, prescription
and x-ray history with respect to a diagnosis in order to determine how to proceed with a particular therapy.

Currently, we often tackle these tasks using applications developed to handle a range of closely related
tasks. Each application offers users the opportunity to work with a certain pool of information by giving
them a set of information views and a pool of operations that can be invoked on the information being
viewed. But when an information management task does not exactly match one envisioned by the
application developers, users find themselves fighting with the application, struggling to simultaneously
display all the information they need, or to invoke operations that are buried deeply in the feature set of the
application. Worse, users often find that the information they need is spread out over multiple applications.
In such cases, users are forced to wade through cluttered desktops full of multiple application windows,
each holding a small piece of the needed information (and lots of other distracting information).

The Semantic Web hints at a solution to some of these problems. The Resource Description Framework,
its single, unified data model, is powerful enough to hold all of the information typically scattered across
multiple applications. But merely unifying the data is insufficient; users must manage multiple sources of
information in their tasks, and the amount that they can mentally manipulate is limited. To use the
information to solve a particular task, users still need tools that will allow selecting and aggregating the
information they need into a meaningful presentation (a task or information workspace) that lets them view
and manipulate it as needed for their unique task. Such a capability might simply increase the efficiency of
the task that would otherwise require juggling multiple applications (e.g., the doctor above). Or, it can be
critical for success in a situation where multiple streams of information cannot be individually assimilated
and their relationships deduced and acted upon under time pressure (e.g., the military commander). This
capability becomes even more important for tasks that are long-lived or recurring such that the user must
access the relevant pieces of information on multiple occasions.

123

In this paper, we argue that it is both desirable and possible to let end-users create their own information
management applications (task workspaces) over the Semantic Web, choosing precisely which information
objects they want to work with and how they want to view and manipulate those objects to complete a task.
Such “end-user application development” would let them create workspaces designed specifically to solve
their particular information management problems. We discuss a collection of tools built into the Haystack
platform that address many of the shortcomings of applications mentioned earlier and allow composing
fragments of information from the Semantic Web and operations that manipulate them into such a task
workspace tailored to the user and task. We define a task workspace as a collection of information relevant
to the task at hand that can be selected, presented and operated upon based on the user and task constraints,
and that the user can aggregate in a lightweight manner. Our approach combines three elements:

• A workspace designer that lets users lay out the sets of information objects they want to work with in

their application, specify which view to use to present each type of object and stipulate the relevant
operations that should be readily available;

• A view designer that lets users specify how each type of information object in their workspace should
be shown – what properties of those objects they want to see, how users should interact with them, and
how they should be laid out; and

• A channel manager that lets users specify queries that dynamically maintain collections of related
information that can be used to specify the relevant sets of information for one or more task workspaces.

Rather than specifying views, workspaces, and channels programmatically, users put them together

using natural visual operations that they are already familiar with as tools for managing their desktop
environments (such as clicking, dragging, dropping, and resizing). The workspaces, views, and channels
designed by these end-users are themselves represented using RDF in the Semantic Web, creating an
opportunity for users to share them with others, and for unsophisticated users to craft their “applications”
by tweaking preexisting ones instead of creating them from scratch.

We have implemented our system as part of the Haystack information management platform. Haystack
provides a set of cooperating technologies and tools supporting end-user creation, visualization and
manipulation of Semantic Web content, as well as application development for the Semantic Web [23, 24,
25, 28, 29]. Along with a blackboard-style RDF store, it hosts agents to provide automated reasoning and
supports a user interface framework that provides pervasive context menus, drag-and-drop capability, and a
view architecture that appropriately selects and presents views for different types of information entities
depending on the context of use.

1.1 Motivation

Although a lot of information has become readily accessible and necessary for daily work, the current
infrastructure for managing information is ill-suited for information-oriented activities: information and
functionality is scattered across applications and websites, making it difficult to aggregate and reuse just
the right set of content and operations required for unique user tasks.

Consider a software project manager who needs to manage the tasks her team does, as well as the budget
and schedule for the project. She might need to manage contact information for team members, to-do list
and assignment of action-items to individuals, e-mails corresponding to the project, outstanding bug
reports, a budget spreadsheet and a schedule. In order to react to a customer e-mail about a software bug,
she must switch from the e-mail client to the bug tracking software to enter a bug report. Then, she must
switch back to the e-mail client, recall which software developer would be best suited to fixing the bug,
look up his/her contact information, and send him/her a bug report number. The project manager may also
need to meet with the developer, and hence negotiate a meeting time via e-mail, and update her personal
calendar. After the meeting, the project manager will need to switch to the scheduling application to update
the project schedule to reflect the time that will be consumed in fixing the bug. Another application switch
may be needed to update the developer’s outstanding tasks if the scheduling software does not support to-
do lists for team members. Finally, she must switch to the spreadsheet software to update the project budget
to take into account the resources consumed by the bug fix. As this example demonstrates, rigid
applications restrict users to behavior patterns that force them to become passive recipients of information

124

rather than being able to actively mold it to impose their own world view. They are forced to bridge the
gaps between applications by having to:

• manually collect information by opening various applications;
• reenter the data elsewhere (e.g., retrieving information from one application using an identifying

key from another or duplicate it in order to manipulate it in another application), acting as the glue
between applications because applications do not understand each other’s native information
format;

• mentally select and associate items of interest, and reason with them, since they cannot be easily
juxtaposed; and

• dig deeply into menus and multiple dialog boxes to find just the right operation to invoke.

Although, a single application could be developed that included functionality for all project management

tasks, it would still be a rigid solution. What if the project manager also wanted to use the new application’s
functionality, such as calendar and e-mail, outside of the project management application, e.g., to see when
her dentist’s appointment is, or to receive mail from her spouse? What if she now had to also track news
about a competitor’s products? What if she wanted to define a new “task” that involved approving and
disapproving bug fix recommendations that aggregated just the bug information from the various project
workspaces into a new workspace? All such continual user requests for customizations would be difficult to
satisfy by a limited number of application developers.

Today, the World Wide Web is an indispensable information resource and the Semantic Web, with
metadata annotated information, will be even more vital for completing information-based tasks in the
future [1]. On the Semantic Web, information will be produced faster using automated means, with finer
access and semantic granularity and shared via web services than can be handled manually. Attempting to
manage this torrent using multiple applications instead will lead to a proliferation of specialized
applications that fragment information arbitrarily, making information management more complex, time-
consuming and error-prone. A more robust solution is needed that does not require significant developer
support to easily adapt to and reuse unanticipated types of information fragments for unforeseen tasks as
soon as they become available on the Semantic Web.

1.2 Organization

The remainder of this paper is organized as follows: first, we provide a detailed system description. Next,
we discuss related work in various areas that impact our current work, followed by a discussion of the high-
level approach to developing a task management infrastructure. Then, we present important design and
implementation decisions, followed by a summary of the salient benefits of our tools. We conclude with an
outline of future research goals.

2 System Walkthrough

Consider Ann, a neurologist investigating brain structures. Figure 1 shows a task workspace that she has
designed to assist in the task of writing a research paper attempting to identify the correlation between
seemingly unrelated symptoms and mental illness diagnoses, based on the volumes of various brain
structures. (The example is based on actual data from the Internet Brain Volume Database that describes
the volumes of sundry brain structures in test groups having various mental illness diagnoses, and the
research papers that report such data [31].) She has designed a workspace to help aggregate various
information resources required to support the hypothesis and the paper writing process; she has defined a
query of all Caudate instances having a volume of greater than 9 cc as potentially intriguing (top left). In
addition, she has defined a query for the groups to which this data correspond, by having the latter query
(bottom left) extract the group related to each member in the first one. Also, Ann is interested in seeing the
publications that reported the relevant data (top center), the other publications by authors of the reporting
publications (bottom right), as well as a list of collaborators for the paper writing task (top right). Ann
chooses to view the Caudate and Group data using a small view that exposes only certain relevant

125

properties so that she can easily glance at multiple items and quickly identify interesting ones. The
publication view shows the title of the paper, but also allows her to click on any of the authors to get
additional information about him or her. The view used for people who are authors of the interesting
publication reuses the publication view to show a collection of their publications, which is the only aspect
she is interested in knowing about each author in her current mind-set. On the other hand, the view she uses
for people who are her collaborators simply shows their name as she is in frequent contact with them and
does not need additional information yet. As can be seen, frequently used operations relevant to the
information in the various winlets are within easy reach. (We coin the term winlet to refer to a tile in the
workspace that captures particular content and relevant operations; e.g., the Interesting Publications
winlet.) Clicking on the operations implicitly uses the currently selected item in the winlet as a parameter if
it matches one of the required parameters for the operation.

Fig. 1. Initial Paper Writing Workspace in Usage Mode

As she comes to work this morning, Ann decides that the past publication history of her collaborators

would be useful to have close at hand. In addition, since the paper sub-tasks are getting to be numerous, she
decides that it’s time to start tracking them via a to-do list. Also, since her spouse has taken their son for a
doctor’s appointment, she wants to be kept apprised of e-mails from home. In order to handle these changes
in her task description, she switches the task workspace to design mode (Figure 2) using the “Change
View” menu, and adds a preview window to link with the Collaborators winlet in order to show the papers
published by the selected collaborator (far right, below Collaborators winlet). The various layout
manipulation operations (split horizontally, split vertically and delete) available on the toolbar to the right
of each winlet can be used to lay out the workspace as desired. Clicking on the maximize button expands a
winlet to take up all available space when configuring its details. Each winlet can be named and resized. In
addition, winlets allow one to configure the content (Content Pane), change how it is viewed (Presentation
Pane), and how it can be manipulated (Manipulation Pane). The Content Pane allows the user to specify
which particular information object(s) are to be shown in a particular winlet. They can be specified either
explicitly by identifying a particular entity, or implicitly by specifying a query (implying a collection of
information objects) or the currently selected item in another winlet. The Presentation Pane allows the user

Change
View Menu

126

to select the particular view to be used to render the information object(s). (Each type of object can have
multiple associated views, e.g., a small summary view versus a larger, more detailed one.) Finally, the user
can drag operations that are frequently used and/or applicable to the information objects being shown into a
collection in the Manipulation Pane.

Fig. 2. Paper Writing Workspace in Design Mode

Ann then uses the channel manager (Figure 3) to define a new information channel (query) for to-do
items for the paper, and adds a pane in the task workspace to track this collection (bottom right of Figure
2). A query can be defined by dragging and dropping a query primitive onto the channel. A query instance
is instantiated and the user may then specify values for its parameters. In order to simplify the query
building process and reduce usability barriers, the channel manager allows one to copy existing channels
and interactive evaluation of the query by allowing the user to tweak query parameters as necessary and
observe the updated results. Finally, in Figure 4, Ann changes her query for interesting volumes to look at
Amygdala volumes (channel viewer docked in right pane), changes to a more detailed view for the groups
reporting the data (bottom left), and docks an information channel viewer that only shows e-mails from
home outside the task workspace (right pane), but within her field of view. The left pane in Figure 4 shows
the final task workspace in Haystack. Note that users need not commit all information they wish to work
with (even if temporarily) into the workspace if it is not relevant to the task. (The right pane in Haystack
can be used as a scratchpad to temporarily place any entity within view.). The notion of channels allows
selective interruption to be made possible as Ann has allowed herself to be temporarily informed about e-
mails from home by docking a channel viewer tool in the right pane.

If a query’s parameters are changed (e.g., she decides to investigate the Amygdala brain structure rather
than the Caudate), all dependent queries will also be recomputed, causing a ripple effect in the workspace
as it updates periodically. The reader will notice that the content of the various winlets relying on dynamic
channels have changed appropriately in Figure 4. Thus, the workspace stays current with respect to the
current query definitions as well as information corpus, enforcing the relationships between the various
winlets and simplifying data exploration – a task that would otherwise require significant manual re-
querying and correlating if the corpus or the query had changed. In addition, Ann has decided to look at

Collaborators
Winlet Preview Pane

To-Do
Items Winlet

127

more detailed information about the new groups she will now be perusing, and hence has changed the view
that should be used. She has also chosen to use the author view for her collaborators in the preview pane.
Note that although no software was developed for the “paper writing application,” Ann was able to create it
with relative ease. Furthermore, the “application” is amenable to change as user needs change.

Fig. 3. Information Channel Manager

3 Related Work

In this section, we attempt to highlight some important milestones that have marked two orthogonal trends
that collectively have a significant bearing on our work: the evolution of information management
workspaces from collections of application windows managed by window managers to applications with
task focused interfaces, and the increasing sophistication and ability of end-users to move from merely
configuring their information management tools to directly specifying the content, presentation and
manipulation aspects of their information management tasks.

That users would require multiple information resources to complete a task became clear with the advent
of the earliest windowing systems and toolkits used to build applications that could be simultaneously
active on the desktop. In addition, a realization that users have different needs and preferences in how their
available UI real estate needs to be allocated to these various resources led to the development of window
managers, each providing users with assorted tiling and resizing semantics [2] (see [7] for a survey). In
addition to window managers that allow flexible control over UI real estate usage, much work has also
been done in allowing users to allocate their available space as efficiently as possible [3, 4]. QuickSpace,
for example, implements simple window management operations to allow users to quickly allocate greater
space to their primary operating window while maintaining the overall layout of the desktop.

Additional experience with ephemeral window managers that required repeated work to set up a task
workspace led to more persistent options such as virtual desktops, which realized the value of capturing
user task context in a returnable environment. The windowing systems for the Microsoft Windows and
Apple Macintosh operating systems comprise two such commercial efforts that can provide one desktop

128

per user by default. Some flavors of Linux extend this feature set by allowing multiple virtual desktops per
user that are persisted even across system reboots. A more involved research effort, Rooms, extended the
concept of a virtual desktop further by allowing users to create a separate user task workspace (a room) that
specifies which tools are open, as well as the layout and presentation of their windows [5]. These rooms
(which could be shared between users) allowed capturing settings implicitly (e.g., window locations or
sizes) as well as explicitly (e.g. connections between rooms). Rooms could share control panels of common
tools and information. However, Rooms and other window management functionality operated at a coarse
information management granularity; they allowed managing windows of entire applications as opposed to
just the subset of an application’s information and operations that were relevant to a particular task.

Fig. 4. Final Paper Writing Workspace in Usage Mode

As user tasks employing multiple applications or different parts of a single application have been
elucidated, application user interfaces have progressed from merely allowing information manipulation to
interfaces that are specifically designed to assist in a particular task; many window management ideas have
seeped into single applications for tasks that used to require multiple applications, yielding interfaces with
heterogeneous but focused subsets of information and operations juxtaposed in a single presentation and
specifically tailored to a particular task. Taskmaster is a Visual Basic add-on for the Microsoft Outlook
client that targets project management activities in mail clients [8]. It makes information resources easy to
access “at a glance, rather than scrolling around inspecting folders” by taking advantage of the heuristic
that items in the same e-mail thread generally correspond to the same task. Thus, incoming, outgoing and
draft messages are grouped into a project context based on such message data. Although the ideas
embodied by Taskmaster do increase usability of information from the perspective of content
customization, the benefits are restricted to a predetermined domain and users have little control over the
layout or other presentation or manipulation capabilities. Also, users have little queryable control over the
content; the developers have already decided on the content queries whose results will populate the project
interfaces. The Kubi Client is a commercial effort in the same vein [9].

Task workspaces can be created and maintained by users, in addition to developers. Web Montage
employs a subtle, implicit approach to creating task interfaces; it observes users and uses machine learning

Information
Channel Viewer

Channel
View in
Right Pane

129

to build a personalized user web portal for web browsing [10]. However, the aggregated content is read-
only, not manipulable. Similarly, the Microsoft Office suite of applications implicitly supports user tasks
such as reconfiguring the user interface to only show recently used menu items by default, presumably
employing the “most recently used” heuristic as a means to approximate the required task resources [11].
However, learned interfaces are error prone, and take time to adapt. Also, such interfaces do not respond
well to interleaved tasks that force them to unlearn the settings from the previous task.

User sophistication has also increased over the years; applications that only allowed configuring of
simple rendering preferences have ceded greater explicit control over the task interface creation process to
the increasingly experienced average user. E-mail clients such as Microsoft Outlook, for example, support
one aspect of task definition – content – by allowing user-defined rules that trigger based on message
arrival or message sending events to maintain dynamic collections [11]. Hunter Gatherer is a recent system
developed at the University of Toronto that simplifies capturing parts of an arbitrary web page (again, read-
only content) into a contextualized collection [13]. Similarly, Presto, an interactive document management
system, allowed defining tasks interfaces based on sets of relevant individual documents and other relevant,
document collections, where each document can appear in multiple workspaces [21]. The document
collections themselves are dynamic, and described via a query that utilizes underlying key/value attribute
pairs that facilitate organization, search and retrieval of documents in the corpus. Although they support
greater user influence, these examples are limited by the range of task workspace aspects that can be
controlled, i.e. they allow controlling just the content.

Other examples that allow control over the content, layout and manipulation capabilities exist, but are
limited by the task domain. For example, content portal (e.g., MyYahoo!) and news organization websites
nowadays provide a rich set of primitives that can be used to create personalized webpages which allow
users to filter and/or aggregate the content provided by the underlying organization(s) as well as specify its
presentation for the news reading task [12]. Relevant operations such as search or e-mail are also close at
hand. Microsoft Visual Studio, on the other hand, allows the layout of various fixed content panes to be
controlled [30].

Generic workspace building tools for arbitrary domains also exist. With the advent of the World Wide
Web and other queryable multi-media repositories that require direct user access, being able to shape the
result set of information via a good query/result interface has steadily gained more attention. DelaunayMM,
a querying framework for distributed, heterogeneous, multi-media data stores allows users to specify a
query and layout preferences for its results without a priori knowledge of the underlying schema or query
language [14]. Similarly, Snap-Together Visualization (STV) allows users to query a relational database
and link the result set visualizations in support of a complex information exploration task [15]. However,
the STV system required users to understand database concepts and directly manipulate the MS-Access
database and associated queries, making it less usable by lay people. Both DelaunayMM and the Snap-
Together Visualization system represent simple user workspaces as users can specify content of interest,
along with presentation preferences. Nevertheless, although both examples can be employed in arbitrary
domains, they are constrained by a particular database instance (or small sets thereof) and its associated
schema(s). That is, they cannot scale easily to capture multiple domains with heterogeneous or semi-
structured data models.

Recently, the notions of task workspaces and user control over their specification have merged in the
WinCuts project that allows users to aggregate only the relevant portions of source windows into a new
task context [16]. Each WinCut is a live connection to the source window and can redirect user interactions
to it. Thus it allows visualization and interaction with information fragments as in the original application,
but it does not provide direct access to the underlying semantic entity. Nevertheless, it advocates and
supports the need for users to work with subsets of information found in arbitrary applications.

With the Semantic Web in its formative stages, much attention has been paid to (ontology and content)
authoring on the Semantic Web as was paid in the original World Wide Web [17, 19, 20]. Recently
however, more attention is being devoted to using semantics to enhance the end-user browsing and
navigational experience for specific domains [18, 22]. General UIs for Semantic Web browsing have also
evolved from simple RDF graph viewers [26] to semi-structured data browsers [27]. With the content on
the Semantic Web anticipated to be annotated at a much finer granularity than documents (as in Presto) and
the ability to capture and relate arbitrary domains, we foresee an opportunity to merge task workspaces,
user control by leveraging semantics to allow creating task workspaces that allow semantic rather than
pixel-level interaction. It is this vision for information management on the Semantic Web that we hope to

130

realize with our system. In the process, we borrow from many of the ideas discussed above and learn from
their limitations to inform our approach and implementation.

4 Approach

The software project manager’s example starkly illuminates the gap between how users think about the task
and supporting information (either because of personal preferences, task needs, etc.) and how supporting
applications are designed based on a priori developer assumptions for a limited range of user, task and
domain scenarios that rigidly define the boundaries for what can be accomplished. The design and
implementation of these applications fail to take into account the fluid nature of information management
tasks; the required information, visualization and operations change as different users define a particular
task differently, tasks definitions change over time (e.g., to include information from other domains),
varying levels of expertise require either more or less information to complete the task, and users may have
different preferences for visualization and interaction. Yet, the supporting tools are static in nature, rigidly
bottling up information in application containers. Information producers have most of the control over how
information is packaged, presented and manipulated. The information consumer (whose productivity these
decisions significantly affect) has little say in these decisions.

We posit that giving users control over three primary aspects of a task definition will grant them
sufficient power to eliminate many of the shortcomings of the current information management
infrastructure. Users need to be able to define and modify the content, presentation and manipulation
capabilities of their task workspaces.

The information content that users require, devoid of its presentation, is perhaps the most critical
ingredient of the task that the user is attempting to accomplish. Yet, users often lack the ability to easily
select the subset of the information corpus to show and manipulate in a given context. On the Semantic
Web, this issue will have even greater import as the authoring ontology is not intended to necessarily match
all usage scenarios, and hence users must easily be able to extract the relevant portions of the information
efficiently; the authoring ontology should not restrict the applicability of the information.

User control over information presentation is also crucial, and a significant portion of the functionality in
many applications today is devoted to allowing users to modify the presentation of the information in a
manner consistent with how they want to manipulate it. We consider the problem of information
presentation as consisting of two parts: specification of high level layout of multiple types of information
and specification of the view used to display a particular information entity. The layout capability relates to
the ability to aggregate and co-locate arbitrary information from various sources – a capability that would
have allowed the software project manager in our earlier example to avoid “hopping” across applications as
relevant information could have been aggregated into one interface. Users should also be able to select or
create views of the underlying information that are relevant to the task at hand. Given the same
information, not everyone manipulates it or visualizes it in the same way either. For example, a person in
the accounting department may be interested in the spreadsheet view of some sales figures, whereas a
higher level executive would prefer a chart based on this data.

Finally, many decisions about operations (how the information is to be manipulated) associated with the
information are made by information producers: certain operations may only be available in certain views,
or have certain means of access (e.g., toolbar, menu item, etc.), force re-entry of the same parameters each
time they are invoked, etc., and users must thus adapt how they perform a task based on this static aspect of
applications. The user, who actually determines the frequency of the operation invocation based on his/her
task, has little say in these important decisions.

In order to provide users with the type of flexibility to create fluid task workspaces that can take
advantage of the rich semantic and application-independent information on the Semantic Web as soon as it
becomes available, what is needed are small units of user interfaces, and application logic that they can
easily combine to yield larger, more powerful task interfaces. We have developed several tools that enable
the creation and stitching together of such reusable application fragments in order to provide users with
greater control over the three high level aspects of tasks discussed above.

Our tools are situated in Haystack, a general information management platform for the Semantic Web
that provides many of the building blocks we require at the system level. We discuss the important design
and implementation details of Haystack and of our tools below.

131

5 System Design and Implementation

In this section, we discuss some of the important design decisions we made and implementation techniques
we employed in building the various tools that support end user workspace creation. The primary
components include a workspace designer that allows aggregating and laying out custom content and
operations into a workspace, an information channel manager that makes it possible to specify queries for
dynamic collections of related information, and a simple view designer that allows users to specify how to
present underlying Semantic Web entities. But first, we briefly discuss the desirable ideas embodied in the
Haystack platform and the building blocks it provides for our tools.

5.1 Haystack Platform

Haystack encompasses and makes available several key ideas and components that support creating,
visualizing and manipulating Semantic Web content. At its core, Haystack employs a single data model
consisting of a semantic network expressed using the Resource Description Framework (RDF), the
standard for knowledge representation on the Semantic Web. It provides a language (Adenine) for
simplifying expression, manipulation and querying of RDF data. Furthermore, imperative Adenine code
that manipulates the data can itself be compiled into RDF data using a target, portable, runtime ontology
akin to Java bytecodes, thereby rendering a majority of the Haystack system declaratively specified.
Adenine serves as the lingua franca of the system, enabling communication between (and implementation
of) its various components via the generic blackboard-like RDF store. Haystack can also host services that
automate various tasks, e.g., categorization, summarization, extraction, learning, recommendation.

Haystack provides a user interface framework that recursively renders views of an information entity by
rendering the views of other information entities that comprise it. It consists of the Slide Ontology, an
extensible, HTML-like ontology for content layout and rendering that is used to create views of
information entities. An information entity is accessed by browsing to it (i.e., Haystack navigates to the
underlying Uniform Resource Identifier on the Semantic Web). A view for an entity is automatically
selected from the pool of applicable views by Haystack based on the entity’s type, and the context of use
(e.g., available UI real estate). Furthermore, the UI framework supports context sensitive manipulation such
as context menus and drag-and-drop operations. Finally, imperative code in Adenine can be exposed to the
user and invoked by him/her via operations. Operations are parameterized Adenine methods that perform a
task for the user using the specified parameters. Relying on metadata annotations on the operations
themselves, Haystack employs an automated technique (UI Continuations) for instantiating instances
(closures) of the Adenine method calls and collecting the relevant parameters from users. Also, operations
may be curried, i.e., the user may customize an operation by specifying values for some, but not all,
parameters, but not all [6]. The resulting curried operation can be saved as a new operation, and used as a
template for applying the operation in new contexts, that all share the same value for the saved parameter,
but require the remaining parameters to be specified during each subsequent invocation.

5.2 Workspace Designer

The workspace designer in Haystack allows creating, copying, deleting and configuring instances of task
workspaces. A task workspace in Haystack is data. It follows a certain ontology that captures the layout of
the comprising winlets as well as their associated properties. Each winlet allows the user to specify the
content to show, how to present it, and which operations should be co-located (corresponding to the three
aspects of task spaces we sought to give users greater control over). A Boolean flag allows disambiguating
how the underlying content is to be interpreted: as itself or the entity it represents, e.g., should the
underlying query parameters be shown, or its results? The view specified by the user is then applied to the
appropriate interpretation. Finally, operations that the user specifies can also be curried versions of other
operations.

A task workspace has two primary views: a design view that lets users edit its properties, and a usage
view which interprets its properties to render a task workspace. It is rendered by recursively rendering each
of the winlets using the appropriate design and usage views. Users can iteratively prototype a workspace by

132

switching between its design and usage views. Finally, workspaces, like channels and views can be copied
to avoid having to start a new one from scratch.

Several important design decisions were made in the design of the workspace functionality. Perhaps the
most important design decision that affected the construction of workspaces by users was how to allow
users to allocate space to winlets. We chose to facilitate a tiled layout engine rather than allowing free
floating windows. Given our understanding of the portal creation task from Yahoo!, and the ideas espoused
by the QuickSpace project, it seemed that the goal of user controlled content layout was to allow users
access to a canvas that is appropriately segmented and completely devoted to showing the content of
interest, with the user being able to specify the location of items, and possibly their size. Such an approach
allowed users to allocate maximal space to the content of interest. Furthermore, it allowed the space to
adapt to a local change: if a user increases the amount of space for one item, the space for other items
automatically decreased without overlapping – an important feature desired by users, as demonstrated by
QuickSpace. The decision to only allow the user to split cells into two rows or columns was driven by the
desire to keep the operation of segmenting the usable space as simple and efficient (“one-click”) as
possible. Similarly, we chose to allow users to place operations in the right pane of a winlet rather than
place them in the context menu in order to minimize user clicks when invoking them. Arguably, the tiling
functionality could be made more sophisticated and using smaller icons for the operations would minimize
the wasted space.

We chose to allow modality in workspace interaction (design vs. usage modes) primarily because the act
of specifying underlying content for a winlet was most effectively done by using drag-and-drop, which
required modality in order to be able to disambiguate between the act of specifying the underlying content
and dragging an item onto the winlet in usage mode. Thus, we felt it would be easier for the user to have a
clear separation of modes rather than be distracted by extraneous mode specific widgets which would also
waste UI real estate.

5.3 Channel Manager

Whereas a particular entity can be specified to be shown in the workspace explicitly via a drag-and-drop
operation, and Haystack supports creation of collections by the explicit specification of its members by the
user, the channel manager allows an implicit collection specification mechanism by providing the user an
interface to query the underlying RDF store. As in Presto, collections defined by channels are self-
maintaining, organizing mechanisms for dynamic corpora of information that allow users to specify a query
that maintains an up-to-date dynamic collection of items; they allow the user to impose his/her world view
on an otherwise raw and changing set of information by defining a set of persistent indices of relevant
information that are then maintained up-to-date by the system. Thus, given a store being modified by the
user, agents and the arrival of new information, the user can create a stream of information that is important
to him/her independent of the source or creation method of the information. Channels can then be treated as
standalone units of content that can be used to specify the underlying content of a workspace winlet.

The Channel Manager allows creating, copying, deleting and configuring channel descriptions. A
channel in Haystack, like task workspaces, is also data. It follows the channel ontology, which captures
whether its title, description, whether it is enabled, its query, and the current query results. The channel
shown in the channel manager earlier showed its editing view in the bottom right of Figure 3.

The Channel Manager functionality can be fundamentally divided into the processing and user interface
components. The processing component can be further subdivided into the channel manager agent and the
set of available query primitives. Channels are computed by a channel manager agent (running as a
Haystack service) that periodically updates all channels by evaluating their queries. A query is simply an
Adenine function with various parameters. The query primitives available to the user always return a set of
URIs of matching entities. Any new Adenine method that meets the above constraints can be exposed as a
query primitive to the user and immediately interoperate with the channel manager agent using appropriate
annotations, thereby allowing the set of query primitives to be extended. Dragging a query primitive to a
channel results in a new instantiation of that Adenine method call: a new query primitive closure. The
channel then refers to this closure as its underlying query. The view for a channel consists of sub-views of
the underlying query primitive instantiation that allows the user to modify its associated parameters.

Current RDF query primitives allow using the associated metadata annotations of the underlying RDF to
“carve” the information by selecting out only the relevant portions. The simple conjunctive boolean query

133

primitive which allows the user to select entities that meet constraints on literal valued properties is perhaps
the most common query primitive. Users can specify string matching, numeric relation, or boolean typed
condition tests for the literal valued properties; items matching all the conditions (boolean conjunction)
satisfy the query definition. The conditions tests, like the query primitives, are also special types of
Adenine methods and can be similarly extended. Another useful primitive is the Map primitive that allows
mapping a property over all members of a source channel to generate a new channel of entities related to
entities in the first channel via the mapped property.

Along with other RDF query primitives that enable simple and common RDF querying use cases such as
selecting items of a particular type, etc., a set of channel operator query primitives (e.g., set union) are also
available that allow combining channels or user-specified, fixed collections to create new channels.

Finally, developers can add new primitive types that support complex domain specific queries or use
domain specific terminology simply by writing the query code, and, if the default view is deemed too
esoteric, designing a custom view to prompt for relevant parameters.

The decisions to disallow duplicate entries, ordering preferences, and projecting properties of the
returned items were made in the hopes of limiting the complexity of decisions a lay user would have to
make. Also, we felt that specifying a single view that shows a particular set of properties for an underlying
entity would be easier for the user than specifying how to view the tuples of property values resulting from
a projection of its underlying properties.

5.4 View Designer

When working with information, it is critical that users be able to customize views not just in terms of
cosmetic properties (e.g., color and font) or pre-determined/fixed, domain-specific operations (e.g., sorted
e-mails by sender) deemed to be useful by the developer, but also by controlling which set of properties are
accessible and how they can be visualized and manipulated in conformance with the semantics of the
underlying information entity.

We developed a domain-independent, baseline view designer that lets users inspect any properties of any
information entity in Haystack, by taking advantage of minimal information semantics. The view designer
allows users to create metadata lens views that select and render values of properties (metadata) of interest
from the underlying entity. The metadata lens views share the same layout engine as in the workspace
functionality and also have similar design and usage views. Thus, users can segment a rectangular area into
winlets, and instead of content, presentation and manipulation setting, specify a property to expose by
dragging it to the appropriate winlet. Thus, each winlet represents a particular property to expose. The
views created by users can be named and are then available in the workspace designer for future (re)use.
They can be copied as a starting point for a new view or used as a sub-view. The only semantics the
designer understands are that property values can be either literals or resources – the base assumption in
RDF. However, even this simple capability becomes powerful, when combined with the power to reuse
existing views in creating new views. For literal properties, the user may specify whether or not the
property is editable (i.e., an edit box is shown). Resource valued properties allow selection of an
appropriate view to use to display it. If more than one instance of the property exists for the underlying
entity, all the values are shown.

6 Discussion

Coupled with the relative simplicity and power of expressing information in arbitrary domains using RDF
and the view abstraction in Haystack, the aforementioned tools situated within Haystack make significant
gains toward our goal of empowering users to uniquely conceive an information-based task on the
Semantic Web and build a corresponding workspace.

We have argued that our tools should allow building task specific workspaces for arbitrary tasks in any
domain. A good test of their power then, would be to see how we could have used them to build
workspaces for the various tasks involved in creating channels, views and workspaces. In fact, the tools we
have discussed so far were indeed implemented as workspaces; they aggregated the necessary information
resources for building channels, views and workspaces. (Look closely again at the channel manager and

134

note that it consists of winlets showing various collections of information that are relevant to the channel
building task, e.g., query primitives, information types, etc. Fig. 5 shows the same channel manager’s
design view.)

The workspaces that users can design feature several desirable properties. For example, the navigate
operation in Haystack can be curried with a destination workspace as a parameter, and added to a
workspace to allow users to navigate between related tasks, much as in the Rooms project. More generally,
the default Haystack single click behavior of navigating to the underlying entity when it is rendered using a
particular type of view can be used to easily switch to a different workspace or information entity by
simply adding a collection of such items to any workspace, and clicking on them as necessary. Also, the
workspaces are not static, requiring developers to provide the functionality users need; users can change the
workspace to meet changing requirements to include, remove or reuse information in multiple tasks
immediately. Nevertheless, the various tools support significant extensibility by developers to either
provide new query primitives, condition tests, layout engines, views or view designers. The initial setup
time that the user invests is amortized over the numerous times he or she returns to the task, and all
resources are readily available in order to immediately be productive. Thus, users can capture and
transform what used to be a process of using multiple applications, into a single workspace application.
Finally, since the workspaces themselves constitute information entities captured in RDF, they can easily
be serialized and shared with others, thereby further amortizing the initial time investment.

Haystack also provides a number of benefits which we discuss below. The RDF data model immediately
enables it to model information in multiple domains as well as interoperate with the Semantic Web by
default. Additionally, since all system components are written in Adenine which itself can be compiled
down to RDF, the system implementation itself is simply data that can be manipulated by the user. Thus,
when users are changing the data in a workspace, they are reconfiguring Haystack’s programming, in effect
(re)programming it. By default, Haystack employs a single blackboard style store that allows content
shared across multiple workspaces to remain consistent. Pervasive support for context menus and drag-and-
drop facilitate a uniform interaction modality to all task workspaces.

We feel that the notion of channels as persistent queries whose result set is always current will be an
important one as users are forced to deal with more information on the Semantic Web. The modularity of
channels lets users define information properties in a virtual manner ahead of time, without knowing what
they will apply to. This is possible, because the nature of the channel’s content is known a priori based on
the channel’s query description. Thus, each individual item need not be annotated with certain properties;
the fact that an item has certain properties that allows it to be a member of a channel, also allows it to
(virtually) “inherit” the properties of the channel dynamically. Modularity also allows information channels
to be reused in different contexts and redirected to different portions of the UI (within, or outside a task
workspace) where the corresponding subset of information is useful. Or, the information corresponding to a
channel may be redirected to a different device altogether, e.g. if an employee becomes sick or seeks to
work from home, the channels appropriate to the work project can be subscribed to from the home
computer. Channels as an abstraction are also useful in hiding the distributed and segmented nature of
information by allowing aggregation of information from multiple stores. For example, the notion of
viewing e-mails related to a particular topic regardless of which e-mail account it may have arrived in is a
powerful one. As an indicator of the current user task focus, channels allow an information management
platform a simple but useful technique to perform gate-keeping actions by minimizing users’ interruption
with events or information unrelated to the current task. For example, a user working on a task requiring
information from a set of channels need not be interrupted by newly arrived (or created) information that
does not fall into any of the channels.

Having implemented the simple view designer, we recognized that more powerful views can be
designed by view designers that better understand the domain specific semantics of the underlying
information that the views they generate will be manipulating. We advocate giving users the power to
create their own views using appropriate view designers that interpret the underlying information using
various semantics and can expose appropriate primitives for creating corresponding views. Semantics can
be leveraged in various ways by view designers, while preserving valid data. For example, semantics used
to interpret information can be used to allow users to choose between styles of views, e.g., a list of genetic
bases (Adenine, Guanine, Thymine, Cytosine) can be interpreted appropriately by a view designer to allow
the user to specify a preference of whether just the genetic sequence, or its complement is also to be
rendered. Unlike the metadata lens view designer which uses a tiled layout and simply exposes property
values for literal properties, such a view designer could allow users to select domain-specific preferences

135

such as laying out the genetic bases simply in a horizontal line as opposed to a helix, the colors to use for
the genetic bases, etc.

Fig. 5. Design View for the Information Channel Manager workspace

7 Conclusion & Future Work

In this paper, we have proposed an approach to information management that avoids the rigidity of domain
specific applications and empowers the users to create flexible task workspaces that can take advantage of
information on the Semantic Web immediately, without having to wait for a corresponding application to
be developed. We have identified task workspaces as simultaneously an application of the Semantic Web,
as well as a solution to information management problems it will complicate. In addition, we have
attempted to identify three ingredients of workspaces that, given sufficient customization control over,
users can employ effectively in building these workspaces to increase their productivity and minimize
information overload. Furthermore, we recognize that these aspects of workspaces can be captured in
reusable fragments: channels as units of content, views as units of presentation, and operations as units of
manipulation. Whereas many of their constituent ideas and implementation techniques are not new, we
believe that the tools discussed above are unique in that they embody all of them simultaneously. We
believe that such tools that help people use the information available on the Semantic Web will be an
enabling technology critical to its widespread adoption.

Our future work will concentrate on evaluating the utility of our tools via user studies, further
investigating and refining the customizing capabilities that users need in building their workspaces, as well
determining the best techniques to make such capabilities available (e.g., better UIs for querying RDF,
other usability improvements, etc.). In addition, we hope to investigate other enabling infrastructure
technologies that we anticipate will be required to make the Semantic Web a success and support task
workspaces, including ontology translation servers that can translate between competing ontologies and
prevent ontological “islands,” as well as view servers that can be used to share views that users have built
for manipulating various information types.

136

8 Acknowledgements

This study was supported, in part, by the Biomedical Informatics Research Network (www.nbirn.net),
Morphometry BIRN Testbed: 5U24RR021382.

References

1. Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web. Scientific American, May 2001.
2. http://xwinman.org/
3. Kandogan, E., Schneiderman, B. Elastic windows: Evaluation of multi-window operations. CHI 1997, pp. 250-257.
4. Hutchings, D. and Stasko, J. QuickSpace: New Operations for the Desktop Metaphor. Extended Abstracts of the

Conference on Human Factors in Computing Systems 2002.
5. Card, S. and Henderson, D. Rooms: The Use of Multiple Virtual Workspaces to Reduce Space Contention in a

Window-Based Graphical User Interface. ACM Transactions on Graphics 5(3), July 1986, pp. 211-243.
6. Quan, D., Huynh, D., Karger, D. and Miller, R. User Interface Continuations. Proceedings of User Interface

Software and Technology (UIST) 2003.
7. Myers, B. A. A Taxonomy of Window Manager User Interfaces. IEEE Computer Graphics and Applications, 8(5),

September 1988, pp. 65-84.
8. Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I. Taking Email to Task: The Design and Evaluation of a Task

Management Centered Email Tool. Proceedings of the Conference on Human Factors in Computing Systems 2003.
9. Kubi Software. www.kubisoftware.com
10. Anderson, C. and Horvitz, E. Web Montage: A Dynamic Personalized Start Page. Proceedings of the Eleventh

International Conference on the World Wide Web, 2002.
11. Microsoft Office Online. http://office.microsoft.com.
12. MyYahoo! http://my.yahoo.com.
13. Schraefel, M., and Zhu, Y. Hunter Gatherer: A Collection Making Tool for the Web. Extended Abstracts of the

Conference on Human Factors in Computing Systems 2002.
14. Cruz, I., and Lucas, W. A Visual Approach to Multimedia Querying and Presentation. Proceedings of the fifth ACM

International Conference on Multimedia, 1997.
15. North, C. and Shneiderman, B. Snap-together visualization: A User Interface for Coordinating Visualizations via

Relational Schemata. Proceedings of the Working Conference on Advanced Visual Interfaces, 2000, p.128-135.
16. Tan, D.S., Meyers, B. and Czerwinski, M. WinCuts: Manipulating Arbitrary Window Regions for More Effective

Use of Screen Space. Extended Abstracts on Human Factors in Computing Systems, CHI 2004.
17. Hogue, A. and Karger, D. Wrapper Induction for End-User Semantic Content Development. Proceedings of First

International Workshop on Interaction Design and the Semantic Web, ISWC 2004.
18. Rutledge, L., Houben, G. and Frasincar, F. Combining Generality and Specificity in Generating Hypermedia

Interfaces for Semantically Annotated Repositories. Proceedings of First International Workshop on Interaction
Design and the Semantic Web, ISWC 2004.

19. Missikoff, M., Navigli, R. and Velardi, P. The Usable Ontology: An Environment for Building and Assessing a
Domain Ontology. Proceedings of ISWC 2002, p. 39.

20. Sure, Y., Erdmann, M., Angele, J., et al. OntoEdit: Collaborative Ontology Development for the Semantic Web.
Proceedings of ISWC 2002, p. 221.

21. Dourish, P., Edwards, W. K., LaMarca, A., Salisbury, M. Presto: An Experimental Architecture for Fluid Interactive
Document Spaces. ACM Transactions on Computer-Human Interaction (TOCHI), v.6 n.2, June 1999, pp.133-161.

22. Sicilia, M. and Garcia, E. Interaction Design of Ontology-Based Adaptive Resource Browsers Based on Selection.
Proceedings of First International Workshop on Interaction Design and the Semantic Web, ISWC 2004.

23. Quan, D. and Karger, D. How to Make a Semantic Web Browser. Proceedings of WWW 2004.
24. Quan D., Karger, D. and Huynh, D. RDF Authoring Environments for End Users. Proceedings of the International

Workshop on Semantic Web Foundation and Application Technologies, 2003.
25. Huynh, D., Karger, D. and Quan, D. Haystack: A Platform for Creating, Organizing, and Visualizing Information

Using RDF. The Eighteenth National Conference on Artificial Intelligence, Workshop on Ontologies and the
Semantic Web.

26. http://simile.mit.edu/welkin/
27. http://simile.mit.edu/longwell/
28. Quan, D., Huynh, D. and Karger, D. Haystack: A Platform for Authoring End User Semantic Web Applications.

International Semantic Web Conference, 2003.
29. Quan, D. and Karger, D. Haystack: Metadata-Enabled Information Management. UIST, 2003.
30. Microsoft Visual Studio. http://msdn.microsoft.com/vstudio/
31. The Internet Brain Volume Database. http://www.cma.mgh.harvard.edu/ibvd/

137

Engineering a Semantic Desktop for
Building Historians and Architects

René Witte1, Petra Gerlach2, Markus Joachim3,
Thomas Kappler1, Ralf Krestel1, and Praharshana Perera1

1 Institut für Programmstrukturen und Datenorganisation (IPD)
Universität Karlsruhe (TH), Germany

Email witte@ipd.uka.de
2 Institut für Industrielle Bauproduktion (IFIB)

Universität Karlsruhe (TH), Germany
3 Lehrstuhl für Denkmalpflege und Bauforschung

Universität Dortmund, Germany

Abstract. We analyse the requirements for an advanced semantic sup-
port of users—building historians and architects—of a multi-volume en-
cyclopedia of architecture from the late 19th century. Novel requirements
include the integration of content retrieval, content development, and au-
tomated content analysis based on natural language processing.
We present a system architecture for the detected requirements and its
current implementation. A complex scenario demonstrates how a desktop
supporting semantic analysis can contribute to specific, relevant user
tasks.

1 Introduction

Nowadays, information system users can access more content than ever before,
faster than ever before. However, unlike the technology, the users themselves
have not scaled up well. The challenge has shifted from finding information in
the first place to actually locating useful knowledge within the retrieved content.

Consequently, research increasingly addresses questions of knowledge man-
agement and automated semantic analysis through a multitude of technologies
[12], including ontologies and the semantic web, text mining and natural lan-
guage analysis. Language technologies in particular promise to support users
by automatically scanning, extracting, and transforming information from vast
amounts of documents written in natural languages.

Even so, the question exactly how text mining tools can be incorporated into
today’s desktop environments, how the many individual analysis algorithms can
contribute to a semantically richer understanding within a complex user scenario,
has so far not been sufficiently addressed.

In this paper, we present a case study from a project delivering semantic
analysis tools to end users, building historians and architects, for the analysis of
a historic encyclopedia of architecture. A system architecture is developed upon
a detailed analysis of the users’ requirements. We discuss the current implemen-
tation and state first results from an ongoing evaluation.

138

2

2 Analyzing a Historical Encyclopedia of Architecture

Our ideas are perhaps best illustrated within the context of two related projects
analysing a comprehensive multi-volume encyclopedia of architecture written in
German in the late 19th and early 20th century.4 In the following, we briefly
outline the parties involved and motivate the requirements for an advanced se-
mantic support of knowledge-intensive tasks, which are then presented in the
next subsection.

The Encyclopedia. In the 19th century the “Handbuch der Architektur” (Hand-
book on Architecture) was probably not the only but certainly the most compre-
hensive attempt to represent the entire, including present and past, building
knowledge [6]. It is divided into four parts: Part I: Allgemeine Hochbaukunde
(general building knowledge), Part II: Baustile (architectural styles), Part III:
Hochbau-Konstruktionen (building construction), and Part IV: Entwerfen, An-
lage und Einrichtung der Gebäude (design, conception, and interior of buildings).

Overall, it gives a detailed and comprehensive view within the fields of archi-
tectural history, architectural styles, construction, statics, building equipment,
physics, design, building conception, and town planning.

But it is neither easy to get a general idea of the encyclopedia nor to find
information on a certain topic. The encyclopedia has a complex and confusing
structure: For each of its parts a different number of volumes—sometimes even
split into several books—were published, all of them written by different au-
thors. Some contain more than four hundred pages, others are much smaller,
very few have an index. Furthermore, many volumes were reworked after a time
and reprinted and an extensive supplement part was added. So referring to the
complete work we are dealing with more than 140 individual publications and
approximately at least 25 000 pages.

It is out of this complexity that the idea was born to support users—building
historians and architects—in their work through state-of-the-art semantic analy-
sis tools on top of classical database and information retrieval systems. However,
in order to be able to offer the right tools we first needed to obtain an under-
standing on precisely what questions concern our users and how they carry out
their related research.

User Groups: Building Historians and Architects. Two user groups are
involved in the analysis within our projects: Building historians and architects.
Those two parties have totally different perceptions of the “Handbuch der Ar-
chitektur” and different expectations of its analysis. The handbook has got a
kind of hybrid significance between its function as a research object and as a
resource for practical use, between research and user knowledge.

An architect is planning, designing, and overseeing a building’s construction.
Although he is first of all associated with the construction of new buildings, more
than 60% of building projects are related to the existing building stock, which
4 Edited by Joseph Durm (b14.2.1837 Karlsruhe, Germany, d3.4.1919 ibidem) and

three other architects since 1881.

139

3

means renovation, restoration, conversion, or extension of an existing building.
For those projects he requires detailed knowledge about historic building con-
struction and building materials or links to specialists skilled in this field. For
him the gained information is not of scientific but of practical interest.

One of the specialists dealing with architecture from scientific motives is
the building historian. All architecture is both the consequence of a cultural
necessity and a document that keeps historical information over centuries. It is
the task of architectural historians, building archaeologists, and art historians to
decipher that information. Architectural history researches all historical aspects
of design and construction regarding function, type, shape, material, design, and
building processes. It is also considering the political, social, and economical
aspects, the design process, the developments of different regions and times, the
meaning of shape and its change throughout history. In order to “understand” an
ancient building’s construction and development, the building historian requires
information about historical building techniques and materials. But he is also
interested in the information sources themselves, in their history of origin, their
development, and their time of writing. Literature research is one of his classical
tools.

2.1 Requirements Analysis

We now examine the requirements for a semantic desktop support; first, from a
user’s perspective, and second, their technical consequents.

User Requirements. For the building historian the handbook itself is object
and basis of his research. He puts a high value on a comprehensible documen-
tation of information development, since the analysis and interpretation of the
documentation process itself is also an important part of his scientific work. The
original text, the original object is the most significant source of cognition for
him. All amendments and notes added by different users have to be managed on
separate annotation or discussion levels—this would be the forum for scientific
controversy, which may result in new interpretations and cognition.

For the architect the computer-aided analysis and accessibility of the ency-
clopedia is a means to an end. It becomes a guideline offering basic knowledge of
former building techniques and construction. The architect is interested in tech-
nical information, not in the process of cognition. He requires a clearly structured
presentation of all available information on one concept. Besides refined queries
(“semantic queries”) he requires further linked information, for example web
sites, thesauruses, DIN and EU standards, or planning tools.

Both user groups are primarily interested in the content of the encyclopedia,
but also in the possibility of finding “unexpected information,”5 as this would
afford a new quality of reception. So far it is not possible to conceive this complex
and multi-volume opus with thousands of pages at large: The partition of the
handbook in topics, volumes, and books is making the retrieval of a particular
5 Information delivered through a user’s desktop is termed unexpected when it is rele-

vant to the task at hand yet not explicitly requested.

140

4

concept quite complicated. Only the table of contents is available to give a rough
orientation. But it’s impossible to get any information about single concepts or
terms. You can neither find an overall index nor—apart from a few exceptions—
an index of single volumes. Because each of them comprises a huge amount of text,
charts, and illustrations, it is unlikely to find the sought-for term coincidentally
by running over the pages. Thus, this project’s aim is to enable new possibilities
of access by the integration of “semantic search engines” and automated analyses.
An automated index generation alone would mean a substantial progress for
further research work.

System Requirements. In [10] we previously examined the requirements for
a system architecture supporting knowledge-intensive tasks, like the ones stated
in our case study. Its most important conclusion is that such a system needs to
integrate the classically separated areas of information retrieval, content devel-
opment, and semantic analysis.

Information Retrieval. The typical workflow of a knowledge worker starts by
retrieving relevant information. IR systems support the retrieval of documents
from a collection based on a number of keywords through various search and
ranking algorithms [1,5]. However, with a large number of relevant documents
(or search terms that are too broad) this so-called “bag of words approach”
easily results in too many potentially relevant documents, leading to a feeling of
“information overload” by the user. Furthermore, the retrieval of documents is
no end in itself: Users are concerned with the development of new content (like
reports or research papers) and only perform a manual search because current
systems are not intelligent enough to sense a user’s need for information and
proactively deliver relevant information based on his current context.

Thus, while also offering our users the classical full-text search and document
retrieval functions, we must additionally examine a tighter integration with con-
tent development and analysis tools.

Content Development. New content is developed by our users through a number
of tasks as outlined above: from questions and notes arising from the examination
of a specific building through interdisciplinary discussions to formal research
papers. At the same time, access to existing information, like the handbook, and
previous results is needed, preferably within a unified interface.

As a model for this mostly interactive and iterative process we propose to
employ a Wiki system [7], as they have proven to work surprisingly well for co-
operative, decentralized content creation and editing. Traditionally, Wikis have
been used to develop new material, but our approach here is to combine both
existing and new content within the same architecture by integrating (and en-
hancing) one of the freely available Wiki engines.

Wiki systems allow us to satisfy another requirement, namely the users’ need
to be able to add their own information to a knowledge source; for example, a
building historian might want to add a detailed analysis to a chapter of the ency-
clopedia, while an architect might want to annotate a section with experiences

141

5

O
ntology

B
row

ser
O

penO
ffice

W
riter

W
eb−

C
lient

Tier 1: Clients Tier 2: Presentation and Interaction Tier 3: Analysis and Retrieval Tier 4: Resources

W
eb Server

WikiWikiWeb

O
O

.org
A

dapter

GATE back−end handlers

Wiki Bot

GATE−Framework

Databases

Navigation

Annotation

Presentation

Coreference Resolution

Full−Text Index Generation

Named Entitiy Recognition

Natural Language Analysis Components

Automatic Summarization

NLP
Annotations

Content
(Wiki−)

Fig. 1. Architecture integrating content development, retrieval, and analysis

gathered from the restoration of a specific building. Wiki systems typically offer
built-in discussion and versioning facilities matching these requirements.

Semantic Analysis. Automated semantic analysis will be provided through tools
from the area of natural language processing (NLP), like text mining and infor-
mation extraction. Typical NLP tasks, which we will discuss in more detail below,
are document classification and clustering, automatic summarization, named en-
tity recognition and tracking, and co-reference resolution.

The aforementioned integration of information retrieval, content develop-
ment, and analysis allows for new synergies between these technologies: content
in the Wiki can be continually scanned by NLP pipelines, which add their find-
ings as annotations to the documents for user inspection and internal databases
for later cross-reference. When a user now starts to work on a new topic, e.g.,
by means of creating a new Wiki page, the system can analyse the topic and
pro-actively search and propose relevant entities from the database to the user.

3 System Architecture

We now present the architecture we developed to support the detected require-
ments, as it is currently being implemented. It is based on the standard multi-tier
information system design (Fig. 1). Its primary goal is to integrate document re-
trieval, automated semantic analysis, and content annotation as outlined above.
We now discuss each of the four tiers in detail.

Tier 1: Clients. The first tier provides access to the system, typically for hu-
mans, but potentially also for other automated clients. A web browser is the
standard tool for accessing the Wiki system. Additional “fat” clients, like an on-
tology browser, are also supported. The integration of the OpenOffice.org word
processor is planned for a future version.

Tier 2: Presentation and Interaction. Tier 2 is responsible for information presen-
tation and user interaction. In our architecture it has to deal with both content

142

6

development and visualization. In the implementation, most of the functionality
here is provided through standard open source components, like the Apache web
server and the MediaWiki6 content management system.
Tier 3: Retrieval and Analysis. Tier 3 provides all the document analysis and
retrieval functionalities outlined above. In addition to the search facilities offered
by the Wiki system, a database of NLP annotations (e.g, named entities) can
be searched through the Lucene7 search engine.

Semantic analysis of texts through natural language processing (NLP) is
based on the GATE framework, which we will discuss in Section 4.3.

The results of the automatic analyses are made visible in an asynchronous
fashion through the Wiki system, either as individual pages, or as annotations to
existing pages. Thus, automatically created analysis results become first-class cit-
izens: Original content, human, and machine annotations constitute a combined
view of the available knowledge, which forms the basis for the cyclic, iterative
create-retrieve-analyse process outlined above.
Tier 4: Resources. Resources (documents) either come directly from the Web (or
some other networked source, like emails), or a full-text database holding the
Wiki content. The GATE framework provides the necessary resource handlers
for accessing texts transparently across different (network) protocols.

4 Implementation

In this section we highlight some of the challenges we encountered when imple-
menting the architecture discussed above, as well as their solutions.

4.1 Digitizing History

For our project most of the source material, especially the historical encyclope-
dia, arrived in non-digital form. As a first step, the documents had to be digi-
tized using specialized book scanners, which were available through Universität
Karlsruhe’s main library. For automatic document processing, however, scanned
page images are unusable. Unfortunately, due to the complexity of the encyclo-
pedia’s layout (including diagrams, formulas, tables, sketches, photos, and other
formats) and the inconsistent quality of the 100-year old source material, auto-
matic conversion via OCR tools proved to be too unreliable. As we did not want
to engage in OCR research, a manual conversion of the scanned material into an
electronic document was the fastest and most reliable option that preserved the
original layout information, such as footnotes, chapter titles, figure captions, and
margin notes. This task was outsourced to a Chinese company for cost reasons.

4.2 Information Storage and Retrieval Subsystem

The encyclopedia is made accessible via MediaWiki [9], which is a popular open
source Wiki system best known for its use within the Wikipedia8 projects. Media-
6 http://www.mediawiki.org
7 http://lucene.apache.org
8 http://www.wikipedia.org

143

http://www.mediawiki.org
http://lucene.apache.org
http://www.wikipedia.org

7

4) display content

5) add/edit content

6) read content

7) add annotations

9) add/edit content

8) read NLP results

Wiki database

1) convert original content

2) feed bot with content

3) insert content into

Original
content

Wiki
Content

NLP
Annotations

Wiki

GATE

BotBot

Database

XML

Fig. 2. Workflow between document storage, retrieval, and NLP analysis

Wiki stores the textual content in a MySQL database, the image files are stored
as plain files on the server. It provides a PHP-based dynamic web interface for
browsing, searching, and manual editing of the content.

The workflow between the Wiki and the NLP subsystems is shown in Fig. 2.
The individual sub-components are loosely coupled through XML-based data
exchange. Basically, three steps are necessary to populate the Wiki with both
the encyclopedia text and the additional data generated by the NLP subsystem.
These steps are performed by a custom software system written in Python.

Firstly (step (1) in Fig. 2), the original Tustep9 markup of the digitized ver-
sion of the encyclopedia is converted to XML. The resulting XML intends to
be as semantically close to the original markup as possible; as such, it contains
mostly layout information. It is then possible to use XSLT transformations to cre-
ate XML that is suitable for being processed in the natural language processing
(NLP) subsystem described below.

Secondly (2), the XML data is converted to the text markup used by Media-
Wiki. The data is parsed using the Python xml.dom library, creating a document
tree according to the W3C DOM specification.10 This allows for easy and flexible
data transformation, e.g., changing an element node of the document tree such
as <page no="12"> to a text node containing the appropriate Wiki markup.

And thirdly (3), the created Wiki markup is added to the MediaWiki system
using parts of the Python Wikipedia Robot Framework,11 a library offering
routines for tasks such as adding, deleting, and modifying pages of a Wiki or
changing the time stamps of pages. Fig. 3 shows an example of the converted
end result, as it can be accessed by a user.

While users can (4) view, (5) add, or modify content directly through the
Wiki system, an interesting question was how to integrate the NLP subsystem,
so that it can read information (like the encyclopedia, user notes, or other pages)
from the Wiki as well and deliver newly discovered information back to the users.

9 http://www.zdv.uni-tuebingen.de/tustep/tustep_eng.html
10 http://www.w3.org/DOM/
11 http://pywikipediabot.sf.net

144

http://www.zdv.uni-tuebingen.de/tustep/tustep_eng.html
http://www.w3.org/DOM/
http://pywikipediabot.sf.net

8

Fig. 3. Content from the encyclopedia accessible through MediaWiki

Our solution for this is twofold: for the automated analysis, we asynchronously
run all NLP pipelines (described in Section 4.3) on new or changed content (6).
The results are then (7) stored as annotations in a database.

The Wiki bot described above is also responsible for adding results from the
natural language analysis to the Wiki. It asynchronously (8) reads new NLP
annotations and (9) adds or edits content in the Wiki database, based on tem-
plates and namespaces. NLP results can appear in the Wiki in two forms: as
new individual pages, or within the “discussion section” connected to each page
through a special namespace convention within the MediaWiki system. Discus-
sion pages were originally introduced to hold meta-information, like comments,
additions, or questions, but we also use them for certain kinds of NLP results,
like storing automatically created summaries for the corresponding main page.
Other information generated by the NLP subsystem, such as the automatic index
generation detailed in Section 4.3, are added to the Wiki as separate pages.

4.3 NLP Subsystem

The natural language analysis part is based on the GATE (General Architecture
for Text Engineering) framework [4], one of the most widely used NLP tools.
Since it has been designed as a component-based architecture, individual analysis
components can be easily added, modified, or removed from the system.

A document is processed by a sequential pipeline of processing components.
These pipelines typically start with basic preprocessing components, like tok-
enization, and build up to more complex analysis tasks. Each component can
add (and read previous) results to the text in form of annotations, which form
a graph over the document, comparable to the TIPSTER annotation model.

145

9

....für eine äußere Abfasung
der Kanten ...

für/APPR eine/ART äußere/ADJA
 Abfasung/NN der/ART Kanten/NN

NP:[DET:eine MOD:äußere
HEAD:Abfasung]

 NP:[DET:der HEAD:Kanten]

Abfasung [Lemma: Abfasung]

Abfasung: Page 182
 −äußere: Page 182
Kante: Page 182XML output

Index Generation

Lemmatizer

NP Chunker

POS Tagger

XML input

Kanten [Lemma: Kante]

Fig. 4. NLP pipeline for the generation of a full-text index (left side) and its
integration into the Wiki system (right side)

We now discuss some the NLP pipelines currently in use; however, it is im-
portant to note that new applications can easily be assembled from components
and deployed within our architecture.

Automatic Index Generation. Many documents do not come with a classical
full-text index, which significantly hinders access to the contained information.
Examples include collections of scientific papers, emails, and within our project
especially the historical encyclopedia.

In order to allow easier access to the contained information, we use our lan-
guage tools to automatically create a full-text index from the source documents.
This kind of index is targeted at human users and differs from classical indexing
for information retrieval in that it is more linguistically motivated: only so-called
noun phrases (NPs) are permitted within the index, as they form the grammat-
ical base for named entities (NEs) identifying important concepts.

Index generation is implemented as a processing component in the NLP
pipeline, which builds upon the information generated by other language compo-
nents, particularly a part-of-speech (POS) tagger, an NP chunker, and a context-
aware lemmatizer (see [8] for details on these steps).

For each noun phrase, we track its lemma (uninflected form), modifiers, and
page number. Nouns that have the same lemma are merged together with all
their information. Then, we create an inverted index with the lemma as the main
column and their modifiers as sub-indexes (Fig. 4, left side).

The result of the index generation component is another XML file that can
be inserted into the Wiki system through the Framework described above. Fig. 4
(right side) shows an excerpt of the generated index page for the encyclopedia.

Automatic Context-Based Summarization. Automatically generated sum-
maries are condensed derivatives of a single or a collection of source text(s),

146

10

reducing content by selection and/or generalisation on what is important. Sum-
maries serve an indicative purpose: they aim to help a time-constrained human
reader with the decision whether he wants to read a certain document or not.

The state of the art in automatic summarization is exemplified by the yearly
system competition organized by NIST within the Document Understanding
Conference (DUC) [3]. Our summarization pipeline is based on the ERSS sys-
tem that participated in the DUC competitions from 2003–2005, with some
modifications for the German language. One of its main features is the use of
fuzzy set theory to build coreference chains and create summaries [11], which
enables the user to set thresholds that directly influence the granularity of the
results. For more details on the system and its evaluation, we refer the reader to
[2]. Summaries can take various forms:
Single-Document Summaries. A single-document summary can range from a
short, headline-like 10-word keyword list to multiple sentences or paragraphs.
We create these summaries for individual Wiki pages (e.g., holding a chapter of
the handbook) and attach the result to its corresponding discussion page.
Multi-Document Summaries. For longer documents, made up of various sections
or chapters, or whole document sets, we perform multi-document summarization.
The results are stored as new Wiki pages and are typically used for content-based
navigation through a document collection.
Focused and Context-Based Summaries. This most advanced form of multi-docu-
ment summarization does not create summaries in a generic way but rather based
on an explicit question or user context. This allows for the pro-active content
generation outlined above: a user working on a set of questions, stated in a
Wiki page (or, in future versions, simple by typing them into a word processor),
implicitly creates a context that can be detected by the NLP subsystem and
fed into the context-based summarization pipeline, delivering content from the
database to the user that contains potentially relevant information. We show an
example in Section 5.2.

Ontology-based Navigation and Named Entity Detection. Ontologies
are a more recent addition to our system. We aim to evaluate their impact
on the performance of the named entity (NE) recognition, as well as semantic
navigation through a browser.

Named entities are instances of concepts. They are particular to an appli-
cation domain, like person and location in the newspaper domain, protein and
organism in the biology domain, or building material and wall type in the archi-
tecture domain.

The detection of named entities is important both for users searching for
particular occurrences of a concept and higher-level NLP processing tasks. One
way of detecting these NEs, supported by the GATE framework, is a markup of
specific words, defined in Gazetteer lists, which can then be used together with
other grammatical analysis results in so-called finite-state transducers defined
through regular-expression-based grammars in the JAPE language.12

12 For more details, please refer to the GATE user’s guide: http://gate.ac.uk/ .

147

http://gate.ac.uk/

11

OWL

XML

Named EntitiesGATE

JAPE grammars

Ontogazetteer

Ontology

Text

Named Entity
Transducer

Gazetteer lists

GrOWL

Wiki

Fig. 5. Ontology-aware named entity detection through gazetteers and finite-
state transducers delivering results in various output formats

The addition of ontologies (in DAML format) allows to locate entities within
an ontology (currently, GATE only supports taxonomic relationships) through
ontology extensions of the Gazetteer and JAPE components. The detected enti-
ties are then exported in an XML format for insertion into the Wiki and as an
OWL RDF file (Fig. 5).

NE results are integrated into the Wiki similarly to the index system de-
scribed above, linking entities to content pages. The additional OWL export al-
lows for a graphical navigation of the content through an ontology browser like
GrOWL.13 The ontologies exported by the NLP subsystem contain sentences as
another top-level concept, which allows to navigate from domain-specific terms
directly to positions in the document mentioning a concept, as shown in Fig. 6.

5 Evaluation

We illustrate a complex example scenario where a building historian or architect
would ask for support from the integrated system.

5.1 Scenario

The iterative analysis process oriented on the different requirements of the two
user groups is currently being tested on the volume “Wände und Wandöffnungen”14

(walls and wall openings). It describes the construction of walls, windows, and
doors according to the type of building material. The volume has 506 pages with
956 figures; it contains a total of 341 021 tokens including 81 741 noun phrases.

Both user groups are involved in a common scenario: The building historian
is analysing a 19th century building with regard to its worth of preservation in
order to be able to identify and classify its historical, cultural, and technical
13 http://seek.ecoinformatics.org/Wiki.jsp?page=Growl
14 E. Marx: Wände und Wandöffnungen. Aus der Reihe: Handbuch der Architektur.

Dritter Teil, 2. Band, Heft I, 2. Auflage, Stuttgart 1900.

148

http://seek.ecoinformatics.org/Wiki.jsp?page=Growl

12

Fig. 6. Ontology excerpt on building materials visualized using GrOWL showing
NLP-detected instances linked to concepts, anchored within the text

value. The quoins, the window lintels, jambs, and sills as well as door lintels and
reveals are made of fine wrought parallelepipedal cut sandstones. The walls are
laid of inferior and partly defective brickwork. Vestiges of clay can be found on
the joint and corner zones of the brickwork. Therefore, a building historian could
make the educated guess that the bricks had been rendered with at least one
layer of external plaster. Following an inspection of the building together with
a restorer, the historian is searching in building documents and other historical
sources for references to the different construction phases. In order to analyse
the findings it is necessary to become acquainted with plaster techniques and
building materials. Appropriate definitions and linked information can be found
in the encyclopedia and other sources. For example, he would like to determine
the date of origin of each constructional element and whether it is original or has
been replaced by other components. Was it built according to the state-of-the-art,
does it feature particular details?

In addition, he would like to learn about the different techniques of plastering
and the resulting surfaces as well as the necessary tools. To discuss his findings
and exchange experiences he may need to communicate with other colleagues.

Even though he is dealing with the same building, the architect’s aim is an-
other. His job is to restore the building as carefully as possible. Consequently, he
needs to become acquainted with suitable building techniques and materials, for
example, information about the restoration of the brick bond. A comprehensive
literature search may offer some valuable references to complement the conclu-
sion resulting from the first building inspection and the documentation of the
construction phases.

149

13

“Welche Art von Putz bietet Schutz vor Witterung?”

Ist das Dichten der Fugen für die Erhaltung der Mauerwerke, namentlich an den der Witterung
ausgesetzten Stellen, von Wichtigkeit, so ist es nicht minder die Beschaffenheit der Steine selbst.
Bei der früher allgemein üblichen Art der gleichzeitigen Ausführung von Verblendung und Hin-
termauerung war allerdings mannigfach Gelegenheit zur Beschmutzung und Beschädigung der
Verblendsteine geboten. . . .

Fig. 7. Excerpt from a focused summary generated based on a question (shown
on top), generated by the NLP subsystem through automatic summarization

5.2 Desktop Support

So far, we have been testing the desktop with the Wiki system and three inte-
grated NLP tools within the project. We illustrate how our users ask for semantic
support from the system within the stated scenario.

NLP Index. As the tested volume offers just a table of contents but no index
itself, an automatically generated index is a very helpful and timesaving tool
for further research: Now it is possible to get a detailed record on which pages
contain relevant information about a certain term. And because the adjectives
of the terms are indicated as well, information can be found and retrieved very
quickly, e.g., the architect analysing the plain brickwork will search for all pages
referring to the term “Wand” (wall) and in particular to “unverputzte Wand”
(unplastered wall).

Summaries. Interesting information about a certain topic is often distributed
across the different chapters of a volume. In this case the possibility to generate
an automatic summary based on a context is another timesaving advantage. The
summary provides a series of relevant sentences, e.g., to the question (Fig. 7):
“Welche Art von Putz bietet Schutz vor Witterung?” (Which kind of plaster
would be suitable to protect brickwork against weather influences?). An inter-
esting properties of these context-based summaries is that they often provide
“unexpected information,” relevant content that a user most likely would not
have found directly.

The first sentence of the automatic summarization means: The joint filling is
important for the resistance of the brickwork, especially for those parts exposed
to the weather, as well as the quality of the bricks. This is interesting for our
example because the architect can find in the handbook—following the link—
some information about the quality of bricks. Now he may be able to realize that
those bricks used for the walls of our 19th century building are not intended for
fare-faced masonry. After that he can examine the brickwork and will find the
mentioned vestiges of clay.

The architect can now communicate his findings via the Wiki discussion page.
After studying the same text passage the building historian identifies the kind
of brickwork, possibly finding a parallel to another building in the neighborhood,
researched one year ago. So far, he was not able to date the former building
precisely because all building records have been lost during the war. But our

150

14

example building has a building date above the entrance door and therefore he
is now able to date both of them.
Named Entity Recognition and Ontology-based Navigation. Browsing the content,
either graphically or textually, through ontological concepts is another helpful
tool for the users, especially if they are not familiar in detail with the subject field
of the search, as it now becomes possible to approach it by switching to super-
or subordinate concepts or instances in order to get an overview. For example,
restoration of the windows requires information of their iron construction. Thus,
a user can start his search with the concept “Eisen” (iron) in the ontology (see
Fig. 6). He can now navigate to instances in the handbook that have been linked
to “iron” through the NLP subsystem, finding content that mentions window and
wall constructions using iron. Then he can switch directly to the indicated parts
of the original text, or start a more precise query with the gained information.

5.3 Summary

The offered semantic desktop tools, tested so far on a single complete volume of
the encyclopedia, turned out to be a real support for both our building historians
and architects: Automatic indices, summaries, and ontology-based navigation
can help them to find relevant, precisely structured and cross-linked information
to certain, even complex topics in a quick and convenient fashion. The system’s
ability to cross-link, network, and combine content across the whole collection
have the potential to guide the user to unexpected information, which he might
not have realized even when completely reading the sources themselves.

In doing so the tools’ time saving effects seems to be the biggest advantage:
Both user groups can now concentrate on their research or building tasks—they
do not need to deal with the time-consuming and difficult process of finding
interesting and relevant information.

6 Conclusions and Future Work

In this paper, we showed how a user’s desktop can integrate content retrieval,
development, and NLP-based semantic analysis. The architecture is based on
actual users’ requirements and preliminary evaluations show the feasibility and
usefulness of our approach. We believe our system also applies to other domains.

From a technical perspective, the biggest challenge is the lack of hooks
in standard desktop components designed for use by humans enabling read-,
write-, and navigate operations from automated components, requiring expen-
sive workarounds. In our system, automated access to the Wiki system by the
NLP subsystem requires the use of a bot, which was not originally designed for
that purpose. We currently face similar problems integrating the OpenOffice.org
word processor into the system. There is currently no way several desktop compo-
nents can share a common semantic resource, like an ontology, or even delegate
analysis tasks on behalf of a user. On a smaller scale, we are currently working on
integrating a description logic (DL) reasoning system to allow semantic queries
based on the automatically extracted entities.

151

15

However, one of the most interesting questions, from an information system
engineer’s standpoint, is a concern raised by our building historians: the apparent
loss of knowledge throughout the years, which occurs when users of automated
systems narrowly apply retrieved information without regard for its background,
connections, or implications; or when they simply do not even find all available
information because concepts and techniques have been lost over the years: As
a result, a user might no longer be aware of existing knowledge because he lacks
the proper terminology to actually retrieve it. While an analysis of this effect is
still an ongoing consideration, we hope that the multitude of access paths offered
by our integrated approach at least alleviates this problem.

Acknowledgments. The work presented here is funded by the German research
foundation (DFG) through two related projects: “Josef Durm” (HA 3239/4-1,
building history, Uta Hassler and KO 1488/7-1, architecture, Niklaus Kohler)
and “Entstehungswissen” (LO296/18-1, informatics, Peter C. Lockemann).

References

1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

2. Sabine Bergler, René Witte, Zhuoyan Li, Michelle Khalifé, Yunyu Chen, Monia
Doandes, and Alina Andreevskaia. Multi-ERSS and ERSS 2004. In Workshop on
Text Summarization, Document Understanding Conference (DUC), Boston Park
Plaza Hotel and Towers, Boston, USA, May 6–7 2004. NIST.

3. Document Understanding Conference. http://duc.nist.gov/ .
4. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework

and graphical development environment for robust NLP tools and applications. In
Proc. of the 40th Anniversary Meeting of the ACL, 2002. http://gate.ac.uk .

5. Reginald Ferber. Information Retrieval. dpunkt.verlag, 2003.
6. Ulrike Grammbitter. Josef Durm (1837–1919). Eine Einführung in das ar-

chitektonische Werk, volume 9 of tuduv-Studien: Reihe Kunstgeschichte. tuduv-
Verlagsgesellschaft, München, 1984. ISBN 3-88073-148-9.

7. Bo Leuf and Ward Cunningham. The Wiki Way, Quick Collaboration on the Web.
Addison-Wesley, 2001.

8. Praharshana Perera and René Witte. A Self-Learning Context-Aware Lemmatizer
for German. In Human Language Technology Conference/Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP 2005), Vancouver, B.C.,
Canada, October 6–8 2005.

9. Wikipedia, the free encyclopedia. Mediawiki. http://en.wikipedia.org/
wiki/MediaWiki ; accessed July 26, 2005.

10. René Witte. An Integration Architecture for User-Centric Document Creation,
Retrieval, and Analysis. In Proceedings of the VLDB Workshop on Information
Integration on the Web (IIWeb), pages 141–144, Toronto, Canada, August 30 2004.

11. René Witte and Sabine Bergler. Fuzzy Coreference Resolution for Summarization.
In Proc. of 2003 Int. Symposium on Reference Resolution and Its Applications
to Question Answering and Summarization (ARQAS), pages 43–50, Venice, Italy,
June 23–24 2003. Università Ca’ Foscari. http://rene-witte.net .

12. Ning Zhong, Jiming Liu, and Yiyu Yao, editors. Web Intelligence. Springer, 2003.

152

http://duc.nist.gov/
http://gate.ac.uk
http://en.wikipedia.org/wiki/MediaWiki
http://en.wikipedia.org/wiki/MediaWiki
http://rene-witte.net

Lessons for the future of Semantic Desktops learnt from 10 years
of experience with the IDELIANCE Semantic Networks Manager

Jean Rohmer

CENTAI (Centre of Excellence For Information Analysis)
Thales Communications

146 Avenue de Valmy BP 82 92704 Colombes Cedex France
jean.rohmer@fr.thalesgroup.com

ABSTRACT

In 1993, we started to develop a tool to help people manage structured personal and business information.
Initially named ORCCA (Online Resources for Corporate Citizens Action), it was fully implemented as a
Semantic Networks Editor and Manager. Initially designed as a personal desktop tool, it evolved towards a
collaborative server allowing small groups to share Semantic Networks. It has been marketed under the name of
IDELIANCE, and has been used in significant business applications by a variety of users. During all these
pioneer phases of design, implementation and usage of Ideliance, we learnt a lot of lessons which could be of
interest for the success of the emerging Semantic Desktop domain. Not only did we implement practical tools for
semantic networks management, but we also closely observed hundreds of people using Semantic Networks as a
new way of writing and reading information. In this position paper, we propose a survey of the key points we
encountered. For each of these points, we describe our experience, and we propose some guidelines for future
Semantic Desktops design and usage.

Note : this paper is not a technical paper about Ideliance, or about its evolution towards the Semantic Web. It is
a position paper which aims at expressing the general lessons we learned for the benefit of future designers and
users.

HISTORY

History is important to position our work in its context so as to better reuse it in the current Semantic Web
landscape.

In 1993, the so-called AI (Artificial Intellingence) winter was starting. In the 80’s we had been deeply involved
in the AI experience, as manager of a large products and services team (Groupe Bull Cediag), which achieved
significant expert systems (like the SACHEM blast furnaces monitoring for ARCELOR) and innovative tools,
like the first commercial implementation of constraint logical programming (CLP), CHARME. But a serious
economical crisis made clear that these times were gone, and teams and projects disbanded. In the meantime, a
new concept was emerging : « Knowledge Management » (KM), mainly boosted by new collaborative tools like
Lotus Notes. Remember that, at this time the WEB simply did not exist in the Business and Industry world, even
if the essential work had already been done by Tim Berners-Lee, and if Gopher and Mosaïc were close to a
reality.
Thus we decided to design a KM tool by recycling the simplest and most universal part of AI –its representation
features- as opposed to its automatic reasoning features. And, for the sake of generality and simplicity, the
Semantic Networks paradigm was chosen. This led us to develop a first version of a personal semantic network
editor during the extended week-end of november 11, 1993. We then created a small company to develop this
idea. We were involved in two important projects which influenced strongly the evolution of IDELIANCE : (1)
The Mnemos project – an european EUREKA project with, among others, Aerospatiale (now EADS), Matra,
French Atomic Energy Commission and NFT-Raufoss from Norway. In this « Corporate Memory » project we
were in charge of developping a « Personal Memory Assistant », (2) the OCTO project , for the French Ministry
of Defence, whose acronym meant « Conceptual Objects of the Battlefield ». Its aim was to develop a tool to
help headquarters officers represent complex situations and take decisions.
By 1998, we started to market a personal version of Ideliance to large companies, like L’Oreal, Air Liquide,
France Telecom, and to the French Army. Following pressure from customers, we developped a client-server
version of Ideliance, allowing small communities of persons to share semantic networks.
In 2002, lacking financial resources for its development, the Ideliance company had to stop, and the product was
underpinned by Thales, a very large Defence and Electronics company, where it is mainly used for Security and
Military Intelligence applications.
Main contributors of Ideliance were Sylvie Le Bars (www.arkandis.com) and myself for the design, and
Stéphane Jean and Denis Poisson for the implementation.

153

http://www.arkandis.com/

There are few available academic references about Ideliance, because it was first developped in a SME, then its
main applications were in the Defence domain. Some references are given at the end of this paper.

In some sense, Ideliance was a fruit of the AI winter, and made a bridge between the AI times and the current
Semantic Web era. A deep knowledge in AI, Logic Programming, Knowledge Engineering is useful for the
design of future desktop systems.

MAIN DESIGN PRINCIPLES

Principle 1) : Simplicity. The main idea is to let users write semantic networks for themselves, to express any
information of interest in their activity. The tool must be simple enough to allow any person capable of
structuring its thoughts to translate it into a semantic network. We call « collection » a given semantic network,
following the rule that concepts and vocabulary to describe and use Ideliance should absolutely not refer to
technical or theoretical terms of computer science. With the Ideliance editor, users can create Subjects, assign
them to Categories, and link them through Relations to constitute Statements like « Jim / works for / W3C ». All
relations have a reverse relation, so that the reverse Statement « W3C / employs / Jim » is built automatically.
Subjects in statements can also be dates, files, URLs or mail addresses. Text notes can be attached to a subject.
There are no type or cardinality constraints.

N.B. An intermediate name for Ideliance was Idécriture.

Principle 2) : Emergence. There is no a priori declaration of structures, models, templates, classes … All these
notions emerge automatically from the reality of the semantic network : if you want to describe a new Person,
Ideliance makes you suggestions computed from the current set of information : relations most frequently used
to describe a person, and most frequently used subjects used to complement them are proposed as a first choice
to the user. This principle of emergence, learning, discovery is used thoroughly in all aspects of the user
interface.

Principle 3) : Powerful Query and Reporting tools : There is in Ideliance a plethora –although of various levels
of interest and usage- of tools to ask queries, draw relations graphs, build dynamic OLAP reporting arrays, from
the semantic network, and to publish it in various document formats.

Principle 4) : Gateways with usual data formats : Structured information from tables of spreadsheets and
relational databases is easily translated into the semantic network format, and the other way round.

Principle of (Simplicity + Emergence) is a nice compromise. It lets novice user start with simple things, without
the burden of a-priori modelling. It allows also to start with simple Semantic Desktop engines, which can be later
improved by adding more sophisticated learning and discovery algorithms, in a smooth transition mode for the
user.
Gateways with other formats is key to have users accept putting critical information in the Semantic Desktop.
And Query and Reporting tools should compare with what they can get from tools like Access, Excel, Crystal
Report. We experienced repeatedly that the main competitor for a Semantic Desktops is … MS Excel ! We will
address the role of a Semantic Desktop vis à vis the Semantic Web in another point.

A key –yet difficult- point for the success of Semantic Desktops is to persuade users that it isn’t more
demanding in terms of effort and intelligence than using Excel, and that the benefits will increase tenfold.

APPLICATIONS / MARKET SEGMENTS

We found the following types of applications, which can be considered as market segments for Semantic
Desktops in general :

--general purpose permanent personal information mamagement
Individuals decide by themselves to store and retrieve information strictly under the form of semantic networks.
For instance, a business developer maintains a track of all his contacts, meetings, bids, competitors. He currenlty
has a collection of more than ten thousand subjects, split into a dozen categories. He also maintains collections
about his roadrunner activity, and on building his new home.

154

--specialised temporary personal information management
Consultants have used Ideliance to perform missions (like assistance to tenders, audit) and to deliver their results
to their customers. Instead of receiving classical static Word + Excel + Powerpoint documents, their customers
can dynamically browse, query and draw graphs of the current state of the consultant work.

--knowledge management in small groups
Merck Europe Phamaceutical Labs have used Ideliance to formalize and develop a multidomain encyclopaedia
on their technical, research, marketing and industrial property . They designed themselves the underlying
ontology, using the semantic editor. It really changed their way of interworking among departments.

--online critical information sharing
L’Oreal, Air Liquide,Thales used Ideliance to formalize and collect information on competition. The design,
formalization and collection of such information is mainly an individual task, while consultation is collective.
This is a dramatic change as compared to trimestrial static documents about competition.

-- publishing the contents of classical databases in Semantic Networks
At l’Oreal, classical patents databases are translated nightly into semantic networks. The Semantic Networks
facilities for browsing and querying offer, at zero development cost, a much more sophisticated interface than
the original database.

-- Intelligence Applications
Ideliance is currently in operational use by French Army in France and abroad.
Since 2004, we chair the the NATO IST-38 Research Task Group on Information Fusion Demonstration, where
Ideliance is one of the instrumental tools. This group is conducting an extensive study of the interest of semantic
representation for Intelligence Analysts.

All these applications share the following property : users are pleased to develop critical, high value
information systems themselves without the cost and lack of flexibility of traditional IT applications.

USERS ACCEPTANCE

One of our first discoveries was that users were very sensitive to the vocabulary brought by the tool. In the first
versions, inspired by computer science and philosophy terminology, we used terms like « entities »
« characteristics » « models ». This was strongly rejected by the targeted customers (chemist engineers,
biologists, officers, medicine doctors, sales persons …). We made many evolutions, and the current vocabulary
uses : Subject, Relation, Category, Statement, Collection. Yet we may have to go some steps further, down to
Subject, Verb, Object, Sentence …. Needless to say, the term « ontology » is a repellent !

In the Business and Industry world, « going semantic » would be a revolution. People use the web, email and
MS Office tools, and they are lightyears from the idea of leaving their daily universe of documents.
The good news is that there is a small proportion of individuals who immediately adhere to this « new way of
writing ». Such people, as individual or small groups, can switch very rapidly -within days- to it, and they very
seldom abandon it. Any marketing policy should leverage on these early adopters (and often true addicts !).

But the huge majority of people first rejects this new approach. To tackle the challenge of users acceptance, we
propose to consider two « extremist » and opposed strategies : « Extreme Explicit Semantics » and « Extreme
Implicit Semantics ».

The « Extreme Explicit Semantics » puts forward the idea that people should write information directly in
semantic networks, as a substitute to producing Word, Powerpoint, Excel documents, even emails ….
The advantage of this radical approach is to set very high constraints and challenges for the design of extremely
user-friendly editors. A strong consequence is also that this new kind of writing should probably be considered
as a new cultural asset. The usual idea that « computerized tools should need no training, be understood and used
within 5 minutes, unless they are rejected » is here completely out of the scope. People spend months and years
to learn arithmetics, grammar, foreign languages, so will be the case for the semantic writing.
We experienced that a minimal course for Ideliance users lasts two days. And an ideal semantic project building
session for a group lasts one full week. (of course Masters students need only 15 minutes to get fully acquainted
with the tool, but have no idea or motivation for its usage).

155

We also felt the need to develop a methodology to teach people what semantic networks are, with a one day
session without computers but with post-it, blackboard , games of language, and hand-written exercices. We
experienced that the time lost in this day was rapidly saved later.
Indeed, in this domain, a special attention must be given to the relationship between Semantic Desktops and all
the accumulated folklore, experience and tools in the domain of MindMapping.

The «Extreme Implicit Semantics » approach takes the opposite direction : we leave users to their favourite
Office tools, and smart programs analyse the content of these documents, understand them, and implicitly,
automatically build the corresponding semantic network …Whereas the Explicit Utopia puts all the effort on the
user, the Implicit Utopia challenges computer scientists with the Natural Language Understanding problem.
With more realism, this challenge is today approached by some text mining and automatic tagging tools.

Not surprisingly, we consider that, for future Semantic Desktops, these two approaches, Explicit and Implicit,
should be accomodated. We have good reasons to hope that they will cross-fertilize : text understanding will be
much easier in presence of pertinent contextual semantic resources, and the production of semantic networks will
be quite accelerated by linguistic tools capable of finding or suggesting subjects and relations from texts.

Inside Thales, we have started to experiment several prototypes of bidirectional tight or loose connexion
between text mining and semantic networks.

We consider that this cooperation of explicit and implicit semantic approaches is a key technology for the
future Semantic Desktops.

Note : during the years of development of Ideliance, we implemented a lot of advanced buit-in features (logic
programming, constraints programming, sophisticated graphs analysis algorithms). Although these features were
very exciting to develop, we experienced that it was difficult for normal users to adopt them.

The first challenge Semantic Desktops will have to face is to make « semantic writing and reading » popular,
before starting to complexify it. And the first step is education. Is is not a « Click and Forget » application.

IMPLEMENTATION

Since 1993, we had the opportunity to experiment several alternatives for the implementation of a Semantic
Network Manager. The corresponding engine has to support strong constraints : the structure of information is
more dynamic than for relational databases, algorithms –on graphs for instance- are more demanding than just
sorting, joins and set theory ones. Other features like renaming subjects, fusion of collections, implementation of
emergence, learning and discovery features, are uncommon.

From the lessons we learnt, our recommendations for the implementation of Semantic Desktops are the
following :

--put data very close to the screen of the user - in the main memory of the desktop - and design the
implementation accordingly. If you also need a light client / server implementation, upload the heavy client
design to the server rather than the opposite
--consider that in the future your design will have to accomodate semantic networks filling hundreds of
gigabytes of fast, random access solid state memory
--low level data structures should be as simple –even naïve- and regular as possible.
--consider persistency (on disk) as a secondary problem, to be solved separately
--the physical information representation should be fine tuned, and mastered down to the bit level. Do not trust
others –like Java or Relational Databases- to take care of the rock-bottom performance.
 --said differently : Semantic Networks are at the same level as both Object Oriented Languages and Relational
Databases. In the same way Java is not implemented above Java and Oracle not implemented above Oracle, do
not implement Semantic Networks –if you want to handle future large networks in real life - above Java and
Oracle. In the case you should anyway use such high level tools, restrain yourself to their simplest features.
-- the physics of XML-based syntactical formats (or RDF, OWL, …) should not be taken into consideration for
internal implementation. Their interest is in standard external exchage formats.

156

Semantic Desktop Computing must be considered as a very innovative, -some may say revolutionary- way to
build and use information systems. In this respect, it demands and deserves implementation techniques of its
own.

ROLE VISA VIS A VIS THE SEMANTIC WEB

One can play many games with the three words : SEMANTIC / WEB / DESKTOP, and « Semantic Desktop »
is just one of the games. We can also consider the following ones with interest:

(SEMANTIC WEB) DESKTOP
SEMANTIC (WEB DESKTOP)
(SEMANTIC DESKTOPS) WEB
etc …

It strikes us that some leading Semantic Desktop projects like Haystack, Gnowsis and IRIS also find their
motivation in personal information management, before looking at the global (semantic) web resources,
although they borrow from it the basic semantic network (« triple ») representation scheme.
In this respect, we can say that the Semantic Desktops future could be absolutely independant from the
existence, strength and prosperity of the Semantic Web. (After all, semantic nets –as for them- were invented by
Aristotles). Ideliance illustrates this point of view, since it started even before the Web had come to a visible
existence.

It is also striking to realize that the motivation for the Semantic Web was to let machines exchange information
globally, whereas the motivations for the Semantic Desktop is to let humans organize information locally!

Should we consider that a P2P protocol between Semantic Desktops is still part of the Semantic Web ?

However the synergies between Semantic Personal Tools and the Semantic Web are numerous :

-- a Semantic Desktop should include a pure « Semantic Web Browser » : as « read only » as Web Browsers are
-- all the ongoing work on sharing, aligning, updating ontologies on the Semantic Web may provide useful
guidelines at the smaller scale of the Semantic Desktop
-- of course, semantic nets produced by Semantic Desktops will feed the Semantic Web –provided that efficient
policies to map them with Web Ontologies are designed
-- on the other hand, Ontologies and RDF producers in the Semantic Web will be motivated by all these new
« clients », and also care more about the quality and usability of their data

CONCLUSION : TOWARDS « Intelligence Amplifiers »

There are many other aspects in our experience with Ideliance which we could consider in the light of the
Semantic Desktop paradigm : notions of collections fusion and extraction, labelling triples with access rights,
embedding text search facilities …
The main lesson we would like to transmit is that Semantic Desktop Computing is about people, more than
about machines, architecture and protocols. Users acceptance is key, and we badly need projects which, with
the help of human and social sciences, study the cooperation between humans and Semantic Desktops.
At the end, Semantic Desktops will become « Intelligence Amplifiers »

REFERENCES ABOUT IDELIANCE

Volle Michel. Idéliance, ou "comment se faire aider par l'ordinateur pour réfléchir", in
http://www.volle.com/opinion/ideliance.htm
(A MIS consultant reports on his discovery and usage of Ideliance as a Personal Information Management Tool)

157

http://www.volle.com/opinion/ideliance.htm

Rohmer Jean. Représentation, Fusion et Analyse d'Informations mises sous forme de Réseaux Sémantiques :
vers le « Calcul Littéraire", in « Les systèmes d'information élaborée » Société Française de Bibliométrie
Appliquée, Ile Rousse, France 14-18 Octobre 2002

Rohmer Jean. The Case for Using Semantic Nets as a Convergence Format for Symbolic Information Fusion
 in NATO RTO-MP-IST-040 Information Systems Technology Panel (IST) symposium on « Military Data and
Information Fusion », Prague, Czech Republic, 20-22 Oct 2003.

Bruneau Jean-Maurice. Ideliance, Logiciel de Rupture pour l'Intelligence Economique? Un Cas d'Application sur
les Signaux Faibles, in VSST(Veille Scientifique Stratégique et Economique) 2001 Conference Barcelona, Spain

158

Nabu – A Semantic Archive for XMPP Instant Messaging

Frank Osterfeld, Malte Kiesel, Sven Schwarz
DFKI GmbH - Knowledge Management Dept.

Erwin-Schr̈odinger-Straße, Bldg. 57
D-67663 Kaiserslautern, Germany

{frank.osterfeld, malte.kiesel, sven.schwarz}@dfki.de

Abstract

Instant messaging(IM) has become more and more
common these days, and is complementing e-
mail and other means of electronic communication.
However, due to its heavily context-dependent na-
ture, searching archives of instant messages using
only full text search is a tedious task. Also, in
contrast to mails, files, and other electronic me-
dia, instant messages typically do not feature a
unique identifier or location, making it difficult to
reference a particular instant messaging conversa-
tion. Nabu is a semantic archive for XMPP in-
stant messaging designed to address these problems
by implementing a semantic message store, using
RDF(S) as its storage format. It is implemented
as a server module and will log messages, manage
access control to the archives on a per-user basis,
and allow other components to observe and anno-
tate messages.

1 Introduction
The importance of instant messaging (IM) for private and or-
ganizational communication has increased over the last years.
IM, the instant sending and receiving of (mostly short) text
messages between two or more users, complemented by a list
of peer contacts along with their online status, has become
one of the most used communication channels on the inter-
net, and more and more valuable information is exchanged
via instant messages, especially among colleagues at work.

Despite of the increasing amount of information ex-
changed, IM client support for archiving and searching the
messages exchanged is poor. This is understandable, as on
the one hand, most IM client applications are intended for
private users for whom other features are more important.
On the other hand, IM messages are typically very short and
heavily tied to their particular context, thus making efforts to
organize the archive of exchanged messages a lot more dif-
ficult than it is the case with other means of communication,
such as e-mails, where the text is essentially self–contained.
Moreover, e-mails come with a variety of additional informa-
tion such as a subject or thread references which are usually
missing in instant messages.

While e-mail can be archived in a long-term manner on
server-side using the IMAP standard, there is no standard for
archiving IM conversations. Chat logs are mostly stored lo-
cally on the client machine, using proprietary file formats.
This has several disadvantages: storing the archive locally on
the client computers is inconvenient when using more than
one computer, archives are spread over different installations,
and they quickly become out of sync. In addition, informa-
tion gets lost easily. Using proprietary, client- and protocol-
specific formats to store the information complicates manag-
ing and searching the stored information using other inter-
faces than the client UI.

In this paper we present Nabu1, an open–source system
providing server-side logging of instant messages. Nabu is
implemented for the XML-based Jabber/XMPP protocol2.
Unlike other proprietary IM protocols from major providers
such as Yahoo!, MSN or AOL, Jabber/XMPP is an open stan-
dard. Most server and client software is available under open
source licenses, which makes it possible to add Nabu’s fea-
tures as a plugin for an existing server implementation. The
Jive Messenger XMPP server3 was chosen due to its well-
designed and well-documented code base and easy extensi-
bility.

Nabu tries to integrate instant messaging into the efforts
made in the Semantic Web[Berners-Leeet al., 2001] commu-
nity to store and retrieve information in a unified way. It uses
the Semantic Web standard RDF4 to describe the stored infor-
mation on the server. For retrieving the stored information, it
supports the SPARQL query language[Eric Prud’hommeaux,
2005], which is currently going through the standardization
process at the W3C.

Using XMPP as transport protocol for SPARQL queries
and commands has several benefits. For example, XMPP
takes care of authentication and encryption; also, XMPP uses
a persistent connection, delivering higher performance than
protocols that use non-persistent connections such as HTTP,
which is used as transport protocol by XML–RPC and SOAP.

In addition to the logging of chat messages, further features
of Nabu are:

1http://nabu.opendfki.de/
2http://www.jabber.org/
3http://www.jivesoftware.org/messenger/
4http://www.w3.org/RDF/

159

• Users can add further metadata to the logged messages
by adding their own RDF statements. That way informa-
tion can be categorized and structured, making retrieval
of relevant information easier.

• Nabu supports sharing of logged messages between
users, e.g., making a conference log available to the
other group members. Privacy is ensured by a strict pri-
vacy model, restricting access to explicitely authorized
users.

• Nabu integrates instant messaging into the context elic-
itation framework of EPOS[Schwarz, 2005], send-
ing message notifications to the EPOS user observation
(when enabled by the user). Other applications can also
receive these events by registering with the Nabu com-
ponent.

The rest of this paper discusses related work, Nabu’s archi-
tecture, the RDF schemes used, RDF access control mecha-
nisms, Nabu’s observation feature, and possible applications,
followed by conclusions.

Related Work
[Karneges and Paterson, 2004] proposed a storage format and
protocol for server-side message archives as a Jabber proto-
col enhancement. The proposal suggests a simple protocol
and storage format for message archiving. It defines its own
format and does not use existing standards for message stor-
age and retrieval apart from XML.

The Haystack project[Dennis Quan and Karger, 2003]
builds a client for information management by integrating
various information sources into one frontend, using an in-
frastructure based on RDF. A messaging model was devel-
oped[Quanet al., 2003] to represent conversations from var-
ious communication channels, such as e-mail, news groups
and instant messaging, in a unified way. In contrast to Nabu,
Haystack is client-based.

The BuddySpaceresearch project[Eisenstadt and Dzbor,
2002] extends thepresenceconcept in Jabber (simple of-
fline/online/busy states), and adds information such as geo-
graphical location, current work focus etc. Furthermore, it
investigates how such additional semantics can be used to fa-
cilitate collaboration over networks. The BuddySpace Jabber
client5 demonstrates the concepts.

2 Architecture
Nabu is implemented as a plugin for the Jive Messenger
XMPP server6. By implementing Nabu as a server–side com-
ponent, every user of the Nabu–enabled server can use its ser-
vices without requiring the installation of a client–side plugin.
Since there are dozens of XMPP clients7, this was clearly the
optimal solution. Also, sharing annotations would be much
more difficult with a client–side implementation since clients
cannot be expected to be online at all times. Finally, mov-
ing complexity to the server side nicely fits into the XMPP
philosophy.

5http://buddyspace.sourceforge.net/
6http://www.jivesoftware.com/
7In our department, at least four different clients are in use.

Figure 1: Nabu Components.

The graph shown in Figure 1 describes the top-level com-
ponents of Nabu.

The central component of Nabu is theArchive. TheArchive
contains the RDF model, consisting of the public model that
stores the conversation logs which can be accessed from out-
side, and an internal model, managing internal configuration
data and privacy policies. The Nabu implementation uses
Jena[Andy Seaborne et al., 2005] for RDF handling. Models
are stored persistently in a database. The database backend is
fully encapsulated by Jena.

TheArchiveis accessed in two ways:

• Logging: the plugin intercepts XMPP messages, con-
verts them to RDF and stores them inArchive. This
is done by theLoggercomponent. The logger compo-
nent simply takes the message, checks whether logging
is enabled and if so, adds the RDF message to the RDF
graph. Message URIs are created using the address of
the XMPP server, ensuring uniqueness.

• User requests: theRequestExecutorinterface allows the
user to, for example, search the RDF graph. It takes
parsed requests in the form of request objects, executes
them, and returns a response object.

TheNabu Botcomponent is the interface between the users
and the plugin. It parses user requests, creates request objects
and passes them to theRequestExecutor. It takes the returned
responses, encodes them in a string and sends them back to
the requestors.

The Nabu Bot uses the Nabu protocol for transferring user
queries and answers. The commands of the Nabu protocol are
encapsulated as the body of chat messages. Other bindings to
the XMPP protocol are possible8 – also implementation of
such a binding is quite straightforward.

In the following section, we take a look at the RDF
schemas used by Nabu.

3 The Nabu Ontology
This section explains the most important parts of the ontol-
ogy, i.e., the RDF schema, Nabu uses for logging. It cov-
ers the most important classes and properties for representing
messages, accounts, and presence changes in RDF. Nabu han-
dles two types of data:

• The actual RDF data that can be queried externally, i.e.
logged messages, presence changes and annotations.

8For example, Dan Brickley’s foaftown proposes an XMPP binding for
SPARQL.

160

Figure 2: RDF representing an Instant Message.

• Internal data, like account settings (e.g., logging en-
abled/disabled), and privacy policies. This data cannot
be queried from the outside, and the users will never see
the RDF representations. It is only indirectly accessible
through the requests defined in the Nabu protocol.

In the following sections, the RDF schema of the data that
can be queried externally will be discussed. The schemas of
the data that cannot be directly queried will be presented in
section 5.

3.1 Message
The most important class in the Nabu ontology isMessage,
shown in Figure 2.

• nabu:bodyis a literal containing the message text.

• nabu:datetimeis the time stamp added by Nabu when
logging the message. The format is xsd:datetime9. Note
that if the sender and receiver are on different servers
and each server has Nabu installed the time stamp will
be different, so identical messages cannot be matched
using the timestamp.

• nabu:sender: Links to the account that sent the message.

• nabu:receivers: The accounts that received the message.
In an one-to-one chat, this is a single account, the chat
partner. In multi user chat (MUC), these are all accounts
that received the message, i.e. the accounts that were in
the MUC room when the message was sent. Note that
the temporary nick names users have in a MUC room
are ignored; anonymous MUC rooms are not supported.
Nick names are resolved to the corresponding accounts.
Also note that the resource part of the participant’s Jab-
ber ID is omitted in both one-to-one and MUC logs.

• nabu:inRoom: The room the message was sent in. For
details how rooms are defined see below.

• nabu:previousMessageInRoom: Links to the previous
message in the room. This is useful for tracking con-
versations and for exploring logged conversations with
a specific chat partner over time.

Unfortunately, in multi-user chat rooms it is difficult to
track what message(s) a user is replying to. In practice, most
users prefix their messages with a string denoting the receiver
in chatrooms (e.g., ”Frank: Please refrain from doing this.“).
However, Nabu does not address this issue, as other compo-
nents can add annotation as needed using an heuristic.

9http://www.w3.org/TR/xmlschema-2/datatypes.html#dateTime

Figure 3: RDF representing an Account.

File transfers and other activities such as video or voice
chat are currently not supported. Extending Nabu to imple-
ment this functionality and subclassing the Message class ac-
cordingly should be trivial.

3.2 Accounts
The Accountclass represents a user account, as shown in
Figure 3. Every user account is uniquely represented by a
Jabber ID, like ”alice@jabber.foo.org“. For privacy reasons,
Nabu does not store person–account associations. If such
a mapping is required, one may store such information us-
ing FOAF10, which already includes afoaf:jabberIDproperty
which allows linking a FOAF:Person to a Jabber ID.

Every account has a Jabber ID representing the account.
However, not every Jabber ID represents an account (see
MUC rooms), so Jabber IDs and accounts are not identical.

3.3 Rooms
A room is a virtual place where two or more users meet and
chat with each other. Every message has one room associ-
ated, and messages in a room are linked to make conversation
tracking easier. Two types of rooms exist, depending on the
chat type:

In one-to-one chats, the room is defined by the two per-
sons chatting: If Alice chats with Bob, all messages sent by
Alice to Bob and vice-versa are in the ”Alice-Bob-Room“.
The nabu:previousMessageInRoomproperty links all mes-
sages sent between Alice and Bob, making it easy for Alice to
navigate through all logged messages she sent to or received
from Bob. In the Nabu ontology, this kind of room is called
P2PRoom(Point-to-Point-Room). In RDF, the ”Alice-Bob-
Room“ might look like this:

<P2PRoom rdf:about="&foo;P2PRoom-alice-bob">
<members rdf:resource="&foo;Account-alice"/>
<members rdf:resource="&foo;Account-bob"/>

</P2PRoom>

In multi-user chat, the semantics of a room are slightly
different. While the P2PRoom is a Nabu concept and does
not exist in Jabber, the MUC protocol as defined in JEP-
0045 [Saint-Andre, 2002] introduces the concept of rooms.
A room has its own Jabber ID, just like accounts, e.g.,
support@conf.foo.org, so unlike P2PRooms, these ”MUC-
Rooms“ are not defined by their members, but by the room
name and topic.

10http://www.foaf-project.org/

161

Figure 4: RDF representing Online Presence.

<MUCRoom rdf:about="&foo;MUCRoom-foobar">
<hasJID>

<JabberID rdf:about="&foo;JabberID-foobar">
<hasResource/>
<hasNode>support</hasNode>
<rdfs:label>support@conf.foo.org</rdfs:label>
<hasDomain>conf.foo.org</hasDomain>

</JabberID>
</hasJID>

</MUCRoom>

3.4 Presence Change

If presence logging is enabled, every presence change, e.g.,
from Offline to Onlineor from Online to Away, is stored in a
PresenceChange instance, as shown in Figure 4.

• nabu:status: The new presence status.

• nabu:statusMessage: The status message the user set.

• nabu:account: The account that changed its presence
status.

• nabu:previousPresenceChange: The last logged pres-
ence change of the accountnabu:account. All logged
presences of a user are chronologically linked via the
nabu:previousPresenceChangeproperty.

4 Annotations

Nabu enables users to add their own statements to the RDF
store. This makes it possible for users to add metadata to
logged messages and share this metadata with their peers.
For example, a user could set up a set of categories to file
his conversations to facilitate later searching. He could do
this manually or could use a text classifier and categorize au-
tomatically. Since instant messages are heavily dependent on
their context (for example, imagine a user receiving an e-mail
with a question and answering via instant messaging), one
may also decide to use annotations to link the messages to
their context. We will discuss this in sections 7 and 8.

The user can add any statement he likes (except for state-
ments from the Nabu schema, see below), but it is a good
practice to reuse commonly used ontologies. Widespread vo-
cabularies for metadata and categorization are Dublin Core11

and SKOS12. We have to stress that Nabu does not restrict

11http://dublincore.org/
12http://www.w3.org/2004/02/skos/

Figure 5: RDF representing an Annotation.

the user to annotating messages with concepts – it is per-
fectly possible to link arbitrary RDF constructs to chat mes-
sages. This way Nabu is flexible enough to allow tagging
messages with context information such as “The user was
looking at the DFKI website when sending this message”.
Using Nabu’s observation features (see section 7), software
running on the user’s machine can automatically annotate
new messages when they arrive with information the anno-
tation software has access to. Also, it is possible to create
semantic links between messages: for example, it is possi-
ble to implement a more complex heuristic for determining
the reply–chain of a message (see section 3.1 for an expla-
nation on why this is not trivial). Adding this information
to messages does not require extending Nabu – one can also
write a client–side component that uses message annotations
for adding this information instead.

As an example of a simple manual annotation, let us clas-
sify a (fictional) message: ”Hi Frank, I have yet another great
feature for Nabu you could implement“. To make searching
easier, we want to specify the project the message is related
to, in this case Nabu.

The CREATESTATEMENT request adds annotations to a
message:

CREATESTATEMENT RESOURCE
http://&foo;Message-101
http://purl.org/dc/terms/subject
http://foo/Categories/Projects/Nabu

The first argument must be one of RESOURCE or LIT-
ERAL and indicates whether the object of the statement
should be handled as resource URI or as literal string. The
following tokens are the (subject, predicate, object) triple rep-
resenting the statement shown in Figure 5.

The annotations arereified, which means that each state-
ment itself becomes a resource that is linked to subject and
object. That makes it possible to add properties to the state-
ment. In Nabu, every user-added statement has a property
statedBy, linking the creator of the statement. In our exam-
ple, this is frank@jabber.foo.org. The statement is ”owned“
by the linked account. Only this account can delete the state-
ment. Also, users can read thestatedByproperty and decide
whether they trust the statement or not. Alice might decide
that annotations made by Charlie are useful and take them
into consideration, but ignore Bob’s statements.

Nearly every kind of RDF statement can be added. The
only restriction is that properties from the Nabu ontology are

162

not allowed for user statements. E.g.,dc:subject(dc = Dublin
Core13) is valid, butnabu:isInRoomis not, because the pred-
icatenabu:isInRoomis part of the Nabu ontology. This pre-
vents users from currupting (deliberately or not) the Nabu
archive or compromising privacy settings. Properties from
the Nabu ontology are managed by the server and can only be
modified indirectly by commands of the Nabu protocol.

5 Log Sharing and Privacy Settings
To gain acceptance for Nabu and server-side logging in gen-
eral, it is important to ensure the user’s privacy. This means
that Nabu must

1. Leave the user in full control over what is logged.

2. Allow users to delete sensitive information at any time.

3. Allow access to the archive only through a clearly de-
fined interface that handles authentication and respects
the privacy settings.

4. Implement conservative default settings (i.e., disable
logging, use restrictive privacy settings)

On the other hand, one of Nabu’s goals is to encourage
sharing between peers to make valuable information avail-
able to others when wanted. Therefore a privacy model is
needed that supports both ensuring privacy and allows shar-
ing of conversation logs.

In Nabu, every user is the owner of the messages he has
sent, and he can control who can read his messages or delete
them later if he wants. This means that a message is under
control of the message sender only. If two users have a con-
versation, each user is responsible for his own messages and
has no control over the messages he received from his dialog
partner.

Access control is managed viaprivacy policies. A privacy
policy contains a set of rules that control read permissions by
allowing or denying access to certain accounts or groups of
accounts. Every message logged has a link to a privacy pol-
icy that controls the access to the message, and every user
has a list of policies he can assign to logged messages. There
is always exactly one policy active at any one time. When-
ever the user writes a message, Nabu logs the message and
links it to the currently active policy. Policies are linked, not
copied: For instance, if the user adds a new account to his
policy ”friendsOnly“, the added account gains access to all
archived messages that already use the ”friendsOnly“ policy.

What does it actually mean that a resource is not accessi-
ble? If a message (or any resource in general) is not accessi-
ble, this means the resource itself and its concise bounded de-
scription14 is completely hidden from the user: The resource
itself and all links to or from the resource are hidden. When
querying the model, the resource does not show up in the re-
sults. For messages this means that neither the message con-
tent nor any links to the message are visible. This includes
annotations: If an annotation was added to link the message
to a category, this statement is not visible. This is impor-
tant, because we do not want other users to read the topics

13http://dublincore.org/documents/dces/
14http://sw.nokia.com/uriqa/CBD.html

we were talking about, even if they cannot read the actual
message content.

5.1 Privacy Policies in detail
Every privacy policy has

• a name

• an owner

• a set of rules allowing or denying access to an account
or a group of accounts

The name is an arbitrary string without spaces, e.g.,de-
fault, friends, workGroup. In the requests for policy manage-
ment the name is used to identify the policy. Thus the policy
name must be unique for a user (but of course two users can
use the same name without conflicts).

The owner is the account that owns the policy. The owner
can edit the policy and add or removes rules. The policy al-
ways implicitely grants access to the owner, so the owner can
access his own messages even if the rules would deny it. It
is only possible for a user to change the policy for a message
when he owns the currently linked policy.

The rules: A policy can contain any number of rules of the
form ”allowAccount <accountURI>“, ”denyAccount<ac-
countURI>“, ”allowGroup <groupName>“, ”denyGroup
<groupName>“.

The rules are applied in (deny, allow) order. If access is not
explicitely allowed, it is denied. That is, a policy without any
rules denies all accesses (except to the policy owner).

If both rules exist that allow and deny access to an account,
the deny-rule takes precedence and the access is denied.

5.2 Groups
As mentioned before, access permissions can be set not only
per user but also per group. A group is a plain set of accounts,
set up by the user to make privacy management easier. For
example, a user could set up a group ”friends“, and add the
accounts of his friends to this group. Instead of allowing ac-
cess per account, he can do a simple ”allowGroup friends“
and all accounts in the group gain access.

5.3 Examples
Here we present some examples demonstrating how privacy
policies can be applied.

There are five accounts, Alice, Bob, Charlie, Daniel and
Emily. Alice is the owner of the policies, and she created
a group friends with Bob and Emily in it. Note that in the
implementation, full account URIs are used, but we use Alice
instead of http://foo/Accounts/jabber.foo.org/alice for clarity
here.

The following policy allows access to Alice (as she is the
owner), Daniel and Bob.

policyOwner Alice
allowAccount Daniel
allowAccount Bob

The following policy allows access to Alice as she is the
owner, friends group, which is Bob and Emily, and Charlie.
So just poor Daniel may not read the resource (nor can the
rest of the world).

163

Figure 6: A Privacy Policy.

Figure 7: RDF representing Account Settings.

policyOwner Alice
allowGroup friends
allowAccount Charlie

In the following example, the first directive allows access
to the friendsgroup, i.e. Bob and Emily, but as the second
directive denies access to Bob explicitely, only Emily has ac-
cess (and Alice of course).

policyName friendsWithoutBob
policyOwner Alice
allowGroup friends
denyAccount Bob

Internally, privacy policies are realized using the the RDF
shown in Figure 6. The parts of the RDF shown in black can
be queried using Nabu’s query features. The other parts can
only be retrieved and manipulated using Nabu commands.

This graph shows the last policy example. The policy
friendsWithoutBobis owned by Alice. It allows access to her
friendsgroup, but denies it for Bob. The policy is attached
to a messagesomeMessagewhich was sent by Alice. While
messages, groups, and accounts are part of the public model,
the privacy policy itself and all properties like allowGroup,
denyAccount and hasPolicy are stored in the internal model.

5.4 Account Settings
For every account stored in the public model, the inter-
nal model contains a correspondingAccountSettingsinstance
saving settings related to this account.

This example graph in Figure 7 shows the AccountSettings
instance of alice@jabber.foo.org. It has the following proper-
ties:

• internal:messageLoggingEnabled and inter-
nal:presenceLoggingEnabled: Store whether message

and presence logging are enabled or not. Both default to
false.

• internal:policies link to the privacy policies owned by
the account.

• internal:activePolicylinks to the currently active policy.
This policy is attached when a presence change or mes-
sage is logged.

• internal:lastPresencelinks to the last logged presence
change of the respective account. This makes it fast and
easy for the logger to find the last presence and link new
presences to it via thenabu:previousPresenceChange
property.

6 Querying the Archive
Once Nabu logs a user’s conversations, the user proba-
bly wants to search them at some point. For query-
ing the archive, Nabu uses the SPARQL query lan-
guage[Eric Prud’hommeaux, 2005]. SPARQL is a language
for querying RDF stores, similar to SQL. Being powerful and
versatile, it allows arbitrarily complex queries. Unfortunately
it’s also quite complex for everyday use, so a GUI for the
most common queries would be desirable.

Example: One wants to search for all messages containing
”Nabu“. The following command performs this search:

QUERY SPARQL
DESCRIBE ?msg
WHERE { ?msg nabu:body ?body .

FILTER REGEX(?body, "Nabu", "i") }

The query returns all messages ?msg that have a body
?body matching the regular expression ”Nabu” (”i” makes the
search case-insensitive). For simple string searches, there is
also a shortcut available in Nabu in the form of the ”QUERY
SEARCHMSG“ command.

Nabu will return the messages matching the query as
RDF/XML. For instance, Nabu might return one message,
containing ”Me thinks, Nabu rocks big time“:

210 <rdf:RDF xmlns:rdf=...
<Message rdf:about=

"&foo;Message-094210.520">
<body>Me thinks, Nabu rocks big time!</body>

<previousMessageInRoom rdf:resource=
"&foo;Message-143802.712"/>

<inRoom rdf:resource=
"&foo;P2PRoom-frank2/"/>

<subject/>
<messageType>chat</messageType>
<streamID/>
<sender rdf:resource=

"&foo;Account-frank2"/>
<receivers rdf:resource=

"&foo;Account-frank"/>
<datetime>2005-07-14T...</datetime>

</Message>
</rdf:RDF>

Note: Nabu returns only RDF data that has been declared
as accessible. By default, this includes all messages that have
been sent or received by the user who issues the query. Nor-
mally he won’t see messages exchanged between other users.

164

If a user decides to, he can grant others access to a conversa-
tion log (for example, co-workers might decide to share the
log of an online meeting with other team members).

7 User Observation
One topic addressed in the research project EPOS[Dengelet
al., 2002] is user observation: By observing the user’s ac-
tions, EPOS tries to identify the context of the desktop in
order to support the user in his work[Schwarz, 2005]. De-
pending on the current context of a user, different contacts,
files or other resources are relevant. For instance, the context
information can be used to present currently relevant contacts
from the addressbook to the user. EPOS implements this us-
ing anassistant bar, which is a desktop panel listing relevant
contacts, resources, and projects.

Collecting observation data is done by plugins for the
user’s applications, e.g., word processors, WWW browsers
or mail clients. Each plugin observes the user’s actions in
the respective application and sends them to a central context
elicitation component. Nabu offers this functionality for in-
stant messaging, notifying messages from or to the observed
user to EPOS.

It is important to note that in Nabu, user observation is fully
controlled by the observed user. It must be activated by the
user and can be stopped at any time. Observing applications
need the observed password of the account in order to register
at the server.

Usually observation will be integrated into the context
framework by using the client API that comes with Nabu.

The observation works as follows: To observe messages
from and to Alice (alice@myserver.org), the observer pro-
gram logs in at the server as alice@myserver.org, like the
user does with her graphical client. The observer program
must use its own resource, e.g., ’observation’. To start the
observation, the program sends

OBSERVEMESSAGES on observation

to the server (to test observation, this can also be sent man-
ually to the bot). This registers the resource ’observation’ as
observer. From now on all messages Alice sends or receives
are notified to the ’observation’ resource. A notification mes-
sage consists of a subject, containing the URI of the noti-
fied message, and the message body, containing the message
CBD15.

8 Applications
Numerous applications can be realized with the techniques
presented. Let us enumerate some of these.

• A message archive– This is Nabu’s most obvious ap-
plication. As Nabu is a server-side component, similar
to IMAP, where users may access their messages in the
central archive from anywhere. Also, no inconsistencies
can occur.

• A semantic store– As items stored in Nabu can be anno-
tated, messages bear not only syntax but also semantics.

15http://sw.nokia.com/uriqa/CBD.html#definition

• A powerful message search platform– Using SPARQL,
the archive supports both fulltext search and semantic
search exploiting the relations specified in the message’s
annotations.

• An exchange platform for information– As a user’s
Nabu repository features fine-grained access control,
other users may be granted access to a user’s messages
and message annotations, extending the other user’s
knowledge repository.

• A gateway for integrating instant messages to your per-
sonal information model– Nabu enables any RDF-
capable software to access the user’s instant messages.
This way, instant messages can be integrated into the
user’s personal information model in frameworks such
as Gnowsis[Sauermann and Schwarz, 2004].

• A personal semantic knowledge base– Nabu is not only
about instant messages. It can store anything that may
be represented in RDF. Together with Nabu access con-
trol and the access mechanisms provided by the XMPP
protocol, a simple but powerful personal shareable se-
mantic knowledge base arises. As Nabu is intended to
run on a server that is continuously available, this solves
problems with spurious availability of data in case the
repository is implemented on the user’s machine. Also,
most technical problems related to reachability due to
firewalls or network address translation scenarios do not
occur in this approach.

9 Conclusion and Further Work
The Nabu project is an attempt to bring the Semantic Web and
instant messaging together, making the increasing amount of
information exchanged via instant messaging accessible us-
ing Semantic Web technology.

An ontology was developed to describe instant messaging
conversations. Using the RDF standard to represent the data
and the promising SPARQL query language for user queries,
Nabu integrates well into existing Semantic Web infrastruc-
tures. To make better use of the stored information, users can
attach metadata to their logs.

A privacy model was developed to control the accessibil-
ity of RDF data, an area where no proven implementations or
standards yet exist. Working on resource-level, it is possible
to control accessibility per resource. Although it has limita-
tions when one needs more fine-grained control, like hiding
only certain properties, it works well for Nabu.

The concepts were implemented as an extension for the
Jive XMPP server. This proof-of-concept implementation is
available16 and can be used by interested people to integrate
instant messaging and Semantic Web. In the DFKI KM work-
ing group, it is already used in the EPOS[Dengelet al., 2002]
project. The user observation functionality has been success-
fully integrated into the context elicitation.

Nabu is still a prototype. To make it suitable for wide-
spread use, more effort and feedback is needed. The main
issues are:

16http://nabu.opendfki.de/

165

• Nabu’s user interface is currently text-based. This is
flexible because it can be used on any platform and with
any client, but is neither convenient nor user-friendly.
Graphical frontends would be desirable, preferably inte-
grated in client software (via plugins). Other options are
a web frontend or integration in frameworks for desktop
search.

• Evaluation is needed to find out whether the chosen pri-
vacy model meets the user requirements. This needs ex-
perience from daily use of ”real users“, as different us-
age patterns need different privacy models. At the mo-
ment, there is always one policy active at a time. The ad-
vantage is that it is easy to manage and clear which pol-
icy is used for the current chat. It would also be possible
to specify a policy for specific chats, e.g., ”everything
I write in MUC room #workgroup should be readable
by the whole workgroup“. While this is more power-
ful, it has the disadvantage is that the user could forget
about the channel-specific setting and share information
with more people than intended. A third option would be
to always use restrictive privacy settings when logging
(i.e., only participants can read messages). Users would
manually share the log afterwards by marking the con-
versation in their client plugin and assigning a less re-
strictive policy. This usage pattern is already supported,
the user must just leave the default policy active, and
assign other custom policies to logged messages.

• Currently Nabu is only accessible via the XMPP proto-
col. In order to make the repository available to software
without requiring an XMPP library, it should be made
possible to query the archive using HTTP(S)/XML–
RPC/SOAP protocols.

Acknowledgments
This work has been supported by a grant from The Federal
Ministry of Education, Science, Research, and Technology
(FKZ ITW–01 IW C01).

References
[Andy Seaborne et al., 2005] Andy Seaborne et al. Jena Se-

mantic Web Framework, 2005.

[Berners-Leeet al., 2001] Tim Berners-Lee, James Hendler,
and Ora Lassila. The Semantic Web.Scientific American,
284(5):34–43, 2001.

[Dengelet al., 2002] Andreas Dengel, Andreas Abecker,
Jan-Thies B̈ahr, Ansgar Bernardi, Peter Dannenmann,
Ludger van Elst, Stefan Klink, Heiko Maus, Sven
Schwarz, and Michael Sintek. Evolving Personal to Or-
ganizational Knowledge Spaces. Project Proposal, DFKI
GmbH Kaiserslautern, 2002.

[Dennis Quan and Karger, 2003] David Huynh Dennis Quan
and David R. Karger. Haystack: A platform for author-
ing end user semantic web applications. InInternational
Semantic Web Conference, pages 738–753, 2003.

[Eisenstadt and Dzbor, 2002] Marc Eisenstadt and Martin
Dzbor. BuddySpace: Enhanced Presence Management for

Collaborative Learning, Working, Gaming and Beyond.
Submission to JabberConf Europe 2002, 2002.

[Eric Prud’hommeaux, 2005] Andy Seaborne (edts)
Eric Prud’hommeaux. Sparql query language for
rdf. W3c working draft, W3C, 2005.

[Karneges and Paterson, 2004] Justin Karneges and
Ian Paterson. JEP-0136: Message Archiv-
ing. Jabber Enhancement Proposal, 2004. URL
http://www.jabber.org/jeps/jep-0136.html .

[Quanet al., 2003] Dennis Quan, Karun Bakshi, and
David R. Karger. A unified abstraction for messaging on
the semantic web. InWWW (Posters), 2003.

[Saint-Andre, 2002] Peter Saint-Andre. JEP-0045: Multi-
User Chat. Jabber Enhancement Proposal, 2002. URL
http://www.jabber.org/jeps/jep-0045.html .

[Sauermann and Schwarz, 2004] Leo Sauermann and Sven
Schwarz. Introducing the gnowsis semantic desktop. In
Proceedings of the International Semantic Web Confer-
ence 2004, 2004.

[Schwarz, 2005] Sven Schwarz. A Context Model for Per-
sonal Knowledge Management. InProceedings of the IJ-
CAII’05 Workshop on Modeling and Retrieval of Context,
Edinburgh, 2005.

166

SAM: Semantics Aware Instant Messaging
for the

Networked Semantic Desktop

Thomas Franz and Steffen Staab

ISWeb, University of Koblenz-Landau, Germany
{franz,staab}@uni-koblenz.de

Abstract. While instant messaging (IM) became a mature communi-
cation means in business organizations over the last years, IM systems
did not follow this evolution comparably. Communicated content is often
stored insufficiently and hard to recall, integration into other desktop ap-
plications impossible. In this paper, we address these shortcomings and
provide concepts for novel instant messaging. In contrast to prior work
such as the Haystack system, which integrates IM data into a personal
information management application, we enhance IM based on a ready
to integrate ontological meta model that introduces semantics to instant
messaging and its content to foster advanced management. In particular,
we address networked exchange of semantic meta information to inte-
grate IM into the Networked Semantic Desktop. The Semantics Aware
Messenger (SAM) is a prototypical implementation of the concepts pre-
sented in this paper.

1 Introduction

The objective of the Semantic Desktop is to improve personal information man-
agement (PIM) by combining all content available on the desktop and relevant
to the user to i) easily manage that content, regardless of which type, and to ii)
simplify utilization of it.

The Networked Semantic Desktop as envisioned in [4] describes a networked
infrastructure that combines the Semantic Desktop with Social Networking and
P2P systems to benefit novel applications such as group collaboration.

In this paper, we address instant messaging (IM) on the Networked Seman-
tic Desktop. In contrast to prior work such as the Haystack system [10], which
integrates various desktop sources into a consistent, meta data driven personal
information management application, we enhance IM based on a ready to inte-
grate ontological meta model that introduces semantics to instant messaging and
its content to foster advanced management. In particular, we address networked
exchange of semantic meta information to integrate IM into the Networked Se-
mantic Desktop.

Today, communicating by instant messaging mainly comprises typing mes-
sages and viewing incoming messages, while most of the time, no further pro-
cessing of messages is done or offered so that message content gets lost in plain

167

text communication logs that are more or less accessible depending on the client
application. Despite poor traceability, recent studies claim that IM usage has
matured and IM is employed for miscellaneous tasks including complex con-
versation [11, 9]. Accordingly, we consider the content communicated via this
media as of increasing value that should be recallable and integrated into the
Networked Semantic Desktop.

The objective of this paper is to tackle traceability shortcomings of IM, im-
prove management of IM content, and move IM towards the Networked Semantic
Desktop. We are proposing i) an ontological meta model for instant messaging
which ii) supports integration into the Networked Semantic Desktop, and iii)
introduces meta data and semantics for IM to enable iv) sophisticated reutiliza-
tion of instant messaging data. Based on the meta model and an v) identification
scheme for IM data including meta information and semantics we vi) enable net-
worked exchange of such information via IM to vii) ground novel applications as
envisioned in [4].

In Sect. 2, we sketch a typical IM scenario to indicate shortcomings of current
IM systems (Sect. 3), explain our concepts to overcome these shortcomings (Sect.
4), and illustrate the implementation of these concepts by examples of that
scenario in Sect. 6. We give a detailed overview of the ontological meta model
in Sect. 5, and contrast our work with related work to provide a conclusion in
Sect. 7. In Sect. 8, we suggest future research and give an outlook.

2 Scenario

The extracts of chat conversations in this section render a common instant mes-
saging scenario and indicate different functions and particularities of IM.

The scenario: Steffen, being the lecturer of the Semantic Web lecture uses
IM to get some quick responses concerning organizational issues from Thomas,
who held the last exercise session for the lecture:

[0 9 : 2 9 : 0 6] S t e f f e n : how was the e x e r c i s e s e s s i o n ?
[0 9 : 2 9 : 3 3] S t e f f e n : d i d you t e l l them the date o f the exam?
[0 9 : 3 0 : 3 3] Thomas : s o l u t i o n s were ok , p a r t i c i p a t i o n was weak
[0 9 : 3 0 : 5 6] Thomas : yes , i gue s s about 20 w i l l s i g n up f o r i t

Listing 1.1. Exercise Session

At a later time, Thomas informs Steffen about his work on a paper he is writing
for the Semantic Desktop Workshop.

[1 2 : 0 7 : 4 5] Thomas : i w i l l put new v e r s i o n s o f the paper f o r
the sdws at h t tp : // i sweb . pape r s . x . y/sam . t e x
[1 2 : 0 8 : 1 8] S t e f f e n : ok , what i s go ing to change ?
[1 2 : 0 8 : 3 5] Thomas : d e s c r i b e an IM s c e n a r i o to i n d i c a t e c u r r e n t
sho r tcomings , p ropose improvements , and demonst ra te SAM
in terms o f the s c e n a r i o

Listing 1.2. Semantic Desktop Paper

168

After lunch, Thomas contacts Steffen about the scenario he mentioned in List-
ing 1.2.

[1 3 : 5 5 : 0 4] Thomas : any i d e a s f o r a s u i t a b l e s c e n a r i o ?
[1 3 : 5 5 : 2 4] S t e f f e n : why don ’ t use t h i s c o n v e r s a t i o n ?
[1 3 : 5 5 : 4 3] Thomas : r i g h t ! i t s a s u f f i c i e n t example o f a
work r e l a t e d chat
[1 3 : 5 6 : 1 5] Thomas : i ’ l l use our today ’ s e a r l i e r cha t s
as w e l l . they n i c e l y i n d i c a t e d i f f e r e n t f u n c t i o n s o f IM

Listing 1.3. Scenario for the Paper

Later on, Steffen talks to Bernhard, a co-worker in project X:

[1 7 : 1 5 : 4 2] S t e f f e n : wrt the p r o j e c t you might be
i n t e r e s t e d i n what thomas i s c u r r e n t l y do ing ; i ’ l l send
you what thomas t o l d me about tha t so f a r
[1 7 : 1 6 : 0 3] Bernhard : thanks , i ’ l l c on t a c t him when
i ’ ve read i t

Listing 1.4. Project X Work

2.1 Terminology and Observations

Isaacs et al. [9] discovered that – in professional environments – IM messages
mostly are work-related (61.8%), followed by scheduling and coordinating ones
(30.8%) and those that resemble simple questions and information (27.8%).1

Based on that terminology, we classify the chat excerpts (Listing 1.1 to 1.4)
as follows: Listing 1.1 is a sample of simple questions and information, while
Listings 1.2, 1.3, 1.4 represent work-related messages. In the given scenario, we
excluded scheduling/coordinating conversations, as they resemble a typical IM
function, but do not contribute much here.

2.2 Use Cases

Due to the fact that most IM conversations are about work, the content of
such conversations needs to be available for later reuse as illustrated by the two
following use cases.

Use Case 1: About one week after the day when the listed conversations took
place, Steffen wants to check where Thomas stored that file on the server, and
what exactly he stated about his current work. As Thomas is not available he
cannot ask him again.

Use Case 2: In order to track project development, and summarize the cur-
rent stage of project X, Steffen wants to compile all project X related content,
including messages that deal with the project.
1 Messages could be classified for more than one category.

169

3 Accomplishing the Use Cases Today

Today’s instant messengers usually store messages in plain text logs and provide
a user interface to view the logs, sometimes ordered by message date or filtered
by user. More sophisticated messengers may supply an additional search over
the message logs. Accomplishing the use cases with current systems reveals the
following shortcomings:

1. Weak Message Classification:
Finding appropriate messages by browsing the message logs requires high
user effort as the given classifications (by user, by date) do not narrow the
search space enough to easily find messages: Given that Steffen does not
recall the exact day when Thomas told him about his current work, he has
to read all the messages from several days to find the one he seeks.

2. Keyword search is unsuitable due to missing content semantics and particu-
larities of chat conversation style:
(a) A term denoting the subject of a message, or significantly distinguishing

a message from others is not necessarily contained in a message so that
creating efficient search strings is delicate. Entering a query that finds
the message Steffen looks for in use case 1 may be difficult as Thomas
did not use keywords like ”store”, ”server”, or ”file” that directly relate
to the semantics of his message in Listing 1.2.

(b) Ambiguity of search terms further decreases the average relevance of
search results. If Steffen searches for paper, he may receive messages
that deal with different concepts of paper such as writing paper, abrasive
paper, and research paper while only the latter is relevant for him.

3. Missing Context:
(a) Instant messages are rather short, and informal [7, 6, 12] therefore be-

come meaningless without context. In Listing 1.1, Thomas said ”the
solutions were ok, participation was weak”. Without the message’s con-
text it is hard to predict which solutions Thomas points at. Current
IM systems do not provide message context so that identifying relevant
messages is difficult.

(b) Topic switching and interleaving messages are particularities of IM con-
versation. Listing 1.1 has interleaving messages, as Thomas’ first message
replies to Steffen’s first message although it appears after Steffen’s sec-
ond message. The context of interleaving messages is not based on the
sequence in which they appear in time so that even browsing message
logs ordered by time does not necessarily provide relevant context.

4. Missing Messaging Semantics:
Current IM clients do not identify message properties, e.g. the creation date,
or sender of a message. Consequently, relations between them cannot be
exploited:
(a) Missing messaging semantics inhibit integration into the Networked Se-

mantic Desktop.
(b) Information exchange is of low value as just meaningless plain text can

be exchanged.

170

(c) Semantic querying using restrictions on properties is impossible, e.g.
querying for messages within a date range, sent by a certain user et
cetera.

4 Improvements by SAM

4.1 Message Classification for Message Semantics

The first shortcoming mentioned in Sect. 3 denotes weak message classifications
provided by current IM clients. SAM offers a user-definable taxonomy that is
used to add semantics to messages by annotating them with entries from the
taxonomy. For instance, Steffen might define the category work with two sub-
categories teaching and projectX. If he annotates any message related to project
X with the corresponding entry in the taxonomy, accomplishing the second use
case is as easy as browsing for all messages annotated with projectX. Message
classification also benefits search, as queries can restrict search results to be an-
notated with certain taxonomy entries. How annotations and the taxonomy are
designed is detailed in Sect. 5, how the user annotates with SAM is explained in
Sect. 6.2.

The main drawback of message classification is the user effort required to
annotate messages appropriately. This effort is lowered by automatic annota-
tion exchange between conversation partners as detailed in Sect. 4.3 and 6.4,
however, manual annotation still has to be done by at least one of a conversa-
tion’s participants in order to gain benefits. The user interface of SAM tries to
minimize this effort as much as possible (see Sect. 6.2) and for future work we
propose to integrate automatic message classification based on machine learning
technologies.

4.2 Ontological Meta Model

We employ a meta model for instant messaging in form of a unified messaging
ontology (cf. Sect. 5) that tackles many of the shortcomings listed in Sect. 3.

The ontological meta model provides semantics for IM entities such as per-
sons, messages, conversations, annotations, and message texts as it identifies and
relates such entities to each other by meaningful properties. This permits several
enhancements as detailed in the following:

Message Context: Any message is accompanied by its context, i.e. messages link
to their following message, their sender and recipient and so on. Accordingly,
messages displayed while browsing or in search results are much more informative
thus reducing the user effort of determining whether or not they are relevant.

Semantic Querying: Querying becomes more powerful as the ontological meta
model permits to define what to query for, e.g. one can not only query for mes-
sages but also for users or taxonomy entries. Moreover, restrictions on properties

171

can be defined, e.g. Steffen can request messages sent by Thomas within a cer-
tain date range, including the keyword ”paper” in their message text. Resulting
messages will directly link to related messaging entities to provide context.

Integration: As the ontology unambiguously defines messaging entities it inte-
grates IM into the Networked Semantic Desktop by providing interoperability
between applications. For instance, the sender of a message in Steffen’s store
can be identified as the author of a document on his hard disk, or the sender
of an email in his email client. Such features require, however, that applications
commit to the same ontology. Thus, SAM does not employ a proprietary repre-
sentation of persons, but integrates the Friend-of-a-Friend (FOAF2) ontology as
it is widely recognized for expressing identity.

The ontology abstracts the concept of a message considering interoperability
of different message channels as proposed in [13]. A unified view of messaging
aims at seamless integration between different messaging applications as it al-
lows to track conversations that comprise different message types and message
channels, e.g. receiving an email message and answering with an instant message.

4.3 Meta Data Exchange

All participants of a conversation deal with the same set of messages. As each
user decides how to annotate a message and which concepts to have in his tax-
onomy, there are cases where annotations differ between users, and where one
user annotated a message while the other one did not. A common meta model
on each peer, unique identification of IM entities, and provenance information
established by the messaging ontology enables automatic annotation exchange
between peers to either add further message semantics through additional an-
notations, or add annotations for not yet annotated messages. The latter case is
especially important to reduce annotation effort for the user. As each user main-
tains his own taxonomy, annotation exchange may also introduce new taxonomy
entries. SAM offers different user options to deal with incoming annotations as
explained in Sect. 6.2. Technical aspects of meta data transfer are mentioned in
Sect. 6.4.

Meta data exchange is not only useful to decrease annotation effort, it per-
mits several novel applications. In Listing 1.4, Steffen tells Bernhard to send
him, what Thomas told him. Meta data exchange as proposed by SAM allows to
automatically integrate messages sent between Thomas and Steffen into Bern-
hard’s data store so that Bernhard can utilize all features of SAM to access these
messages.

5 The Ontology

Figure 1 depicts the ontology and defines the namespaces used for the follow-
ing textual explanation of the ontology. A conversation is modeled by the class
2 http://www.foaf-project.org/

172

Fig. 1. Unified Messaging Ontology of SAM

m:Conversation, which relates to messages exchanged within a conversation by
the m:hasMessage property. A message is a subclass of foaf:Document and is
associated to its content by the m:hasText and m:hasBinary properties. The
m:follows property and its inverse, m:precedes, track the chronological order
in which messages appear, while the m:repliesTo property records further valu-
able context information that goes beyond chronological ordering: It relates a
message to the message it replies to thus relating these messages based on the
semantics of their content. This property is significant to store appropriate con-
text information for interleaving messages as illustrated in Listing 1.1. Section
6.2 explains how this property is set using SAM.

Persons are represented by foaf:human as defined in the FOAF ontology,
which already features messaging relations, including instant messaging proper-
ties such as foaf:jabberID.

In order to add semantics to messages and conversations, they are anno-
tated with entries of a taxonomy. The taxonomy is defined using the Sim-
ple Knowledge Organization System (SKOS3), an ontology to describe concept
schemes providing several predefined classes and properties for this purpose. The
skos:narrower and skos:broader properties are used to build a skos:Concept
hierarchy, while the skos:subject property is used to associate things - in our
case messages and conversations - with concepts.

Employing a standard meta ontology for knowledge representation fosters
integration of ontologies that are based on the same meta ontology. However, as
the hierarchical structure is established by only two relations, namely broader

3 http://www.w3.org/2004/02/skos/

173

and narrower, transforming existing taxonomies or lexica defined with other
meta ontologies to a SKOS representation is straightforward as well. As an ex-
ample, Wordnet4 can be transformed to a concept hierarchy defined with SKOS
by interpreting the hypernym and hyponym relations of Wordnet as narrower
and broader relations of SKOS.

Provenance data for annotations that allows to track who annotated what
and when is established by individuals of m:AnnotionStatement that references
the creator (m:annotator) and creation date of an annotation. Any such an-
notation is a reified statement that points at the resources representing the
annotation.

Provenance information is also kept for messages and taxonomy entries by
the m:sender, and m:conceptCreator properties as illustrated in Fig. 1.

6 SAM

6.1 Technologies Enabling SAM

SAM builds upon the instant messaging client BuddySpace5 [17], which was
developed during research on online presence in instant messaging at Open Uni-
versity. BuddySpace is a client for the Jabber6 network which we extended to
use the ontology depicted in Sect. 5. A programming interface was developed
that encapsulates the ontological model and provides methods to write to it and
read from it, such as adding an annotation, or retrieving messages annotated
with a given concept.

The messaging ontology is defined using the Web Ontology Language (OWL)[1].
It defines the properties and classes as explained in Sect. 5, including appropriate
restrictions for them (range, domain, cardinality, functional, inverse, et cetera).
Instances of the classes defined in the ontology are represented as RDF to sup-
port integration with the Networked Semantic Desktop and to establish a well
structured and easy to access data store that simplifies incorporation of meta
information, interlinking of resources, and exchange. The Jena7 RDF API for
Java is used to access the store.

The communication protocol used by the Jabber network is the Extensible
Messaging and Presence Protocol (XMPP)[15], an XML-based protocol that is
well supported by multiple open source programming libraries.

6.2 Annotations and Context

In contrast to common IM clients, the chat window of SAM contains an addi-
tional taxonomy panel (cf. Fig. 2). The chat window permits message annotation,
taxonomy management, and the addition of context information while chatting.
Both, the message panel and the taxonomy panel allow to accomplish multiple
4 http://wordnet.princeton.edu
5 http://kmi.open.ac.uk/projects/buddyspace/
6 http://www.jabber.org
7 http://jena.sourceforge.net/

174

(a) Selecting multiple messages. (b) Annotating with a taxonomy entry.

Fig. 2. Annotating Multiple Messages

annotations at once to reduce user effort. Annotations are made either by double-
clicking on a particular message that automatically annotates that message with
all taxonomy entries that are currently selected, or by double-clicking a taxon-
omy entry which automatically annotates all selected messages with that entry
as illustrated in Fig. 2. To further minimize user effort, if no message is selected,
double-clicking on a concept contained in the taxonomy automatically annotates
the last displayed message. As direct visual feedback, annotated messages are
displayed as child nodes in the taxonomy (cf. Fig. 2b).

New annotations are automatically sent to the conversation partner to further
reduce annotation effort and gain additional message semantics. We propose
different policies (cf. Table 1) that define how new annotations that potentially
introduce new taxonomy entries are handled based on how much trust is given
to the creator of an incoming annotation.

Table 1. Policies for handling incoming annotations.

Trust Level New Annotation New Taxonomy Entry

Low require user confirmation require user confirmation

Medium automatically add annotation require user confirmation

High automatically add annotation automatically add entry

For any created message, the m:follows, m:precedes, m:sender, m:recipient,
m:hasText, and m:hasConversation properties are automatically set by SAM
to establish context information. The m:repliesTo property can be set through
the message panel of the chat window as illustrated in Fig. 3: Selecting a message
with a right-click automatically sets the m:repliesTo property of the next sent
message to the selected one. Messages that have this property set are automati-
cally displayed underneath the message they reply to. As IM conversations often
have interleaving messages (cf. Listing 1.1) with different topics, this feature does
not only provide additional message context, but also eases IM conversation as it

175

assists the user in identifying related messages. All context information created
for a message on one client is automatically transferred to the recipient when
that message is sent to provide as much meta information as possible on both
sides of a conversation. Section 6.4 describes in more detail how the transfer of
such information is implemented.

(a) Selecting message to reply to. (b) After sending the message.

Fig. 3. Replying with interleaving messages

6.3 Semantic Search and Semantic Browsing

SAM allows to combine full-text search in message texts with semantic search
features as illustrated in Fig. 4a. The user can restrict a search by specifying
a date range for the message creation time, require specific persons to be the
sender and the recipient, and restrict search results to be associated with certain
taxonomy entries. Resulting messages are displayed with their context available
for further exploration through the property explorer that opens by clicking on
non-literal objects such as persons and taxonomy entries (cf. Fig. 4b).

The semantic browser (cf. Fig. 5) allows to view messages classified by the
individual taxonomy. Non-annotated messages are associated with an additional
taxonomy entry so that the user can still access them. As for search results,
object properties (displayed underlined) can be further examined (cf. Fig. 4b).

6.4 Meta Data Transfer

Every messaging entity (e.g. person, message) is identified by its uniform resource
identifier (URI) to support global identification and thus exchange of such enti-
ties. For example, each new instance of m:Message needs to be available for the
sender and the recipient as both may want to reutilize it.

SAM exploits the extension mechanism of the XMPP to transfer messaging
entities between different SAM clients, and to support automatic meta data ex-
change. Different extension types, namely message, annotation, resourceRequest,

176

(a) Semantic search. (b) Property Explorer.

Fig. 4. Semantic Search and Property Explorer

and resourceResponse are defined for this purpose. A message extension contains
the RDF representation of a message while an annotation extension contains an
instance of a m:AnnotationStatement. The two other extensions enable to re-
quest and retrieve one or multiple RDF resources with all their properties. The
following two use cases exemplify how the extensions are used:

1. When sending a chat message, SAM automatically creates a new instance of
m:Message with corresponding properties, and attaches its RDF represen-
tation in a message extension to the XMPP packet that sends the message.
The receiving SAM client extracts the RDF data contained in the packet’s
extension and adds it to its own store.

2. When a client receives an annotation with a taxonomy entry that is not
contained in its RDF store, the client repeatedly requests more general
(skos:broader) taxonomy entries from the sender until a retrieved entry
matches an entry in the local taxonomy so that the new taxonomy entry
can be correctly inserted into the taxonomy and the annotation becomes
effective.

7 Conclusion & Related Work

This paper presents concepts and an implementation of enhanced IM with re-
spect to the Social/Networked Semantic Desktop. SAM introduces rich meta
data, including semantics, to instant messaging and its content to provide en-
hanced management features that exploit such additional information. The main
achievement, distinguishing SAM from existing systems, is the establishment of
an IM infrastructure to globally exchange content and its semantic meta data in
order to gain knowledge. This ability grounds several novel applications such as
knowledge collaboration.

177

Fig. 5. The Semantic Browser of SAM

Zhang et al. present the Small World Instant Messenger in [18]. They build
user profiles based on users’ bookmarks or homepages, which are then used for
expertise search. In contrast to our approach they rather exploit the infrastruc-
ture provided by instant messaging without addressing any issues of instant
messaging itself. Consequently, they disregard management, reusability, and in-
tegration issues while establishing a service on top of instant messaging.

The Haystack system [14] comes with a general notion of messaging including
a unified messaging ontology [13] similar to the ontology presented in Sect. 5.
While the Haystack system focuses on integrating messaging into a personal in-
formation manager, SAM considers the networked exchange of meta information
and is ready to integrate with other applications on the Semantic Desktop.

Chirita et al. explain how to use activity based semantic meta data [3] in their
desktop search prototype. Exemplarily, they deal with email, file system, and web
cache meta data and have developed an architecture that combines such meta
data with standard full text search. While our work also combines full-text search
and meta data to improve management, we address different enhancements and
options for exploitation that are specific to the instant messaging context.

Vogiazou et al. established enhanced symbolic presence for instant messaging
[17]. One outcome of this research is the BuddySpace instant messaging client
and server component that allow to automatically group buddies and visualize
their location and presence information respectively. SAM extends BuddySpace
by semantic annotations, semantic search, semantic browsing, and (semantic)
meta data communication.

The CoAKTinG (Collaborative Advanced Knowledge Technologies in the
Grid) project [2] developed a meeting ontology to summarize content of different
collaborative technologies. The summarized content is used to provide meeting
replays that span content communicated via multiple channels, such as instant
messaging, or video conferencing. While CoAKTinG imports BuddySpace com-

178

munication logs into the meeting ontology, SAM contributes to CoAKTinG by
providing already well structured additional (semantic) meta data.

The Gnowsis system [16] provides an architecture and server component for
integrating arbitrary applications on the Semantic Desktop. Applications are re-
quired to describe their data by ontologies and are connected to the Gnowsis
desktop service by plugins. As a result, different data from various desktop ap-
plications is unified through a single Gnowsis user interface. As SAM already
employs ontologies to represent all its data, integration into the Gnowsis system
is at hand.

8 Outlook

Meta data exchange as explained in Sect. 4.3 and 6.4 can enrich knowledge
bases but also institutes several applications that go beyond that scope. Taxon-
omy overlappings between different communication partners represent a shared
view, naturally established based on communication of taxonomy entries and
their relations. Accordingly, rejecting and accepting incoming taxonomic data
is a simplistic example of online collaboration on a concept hierarchy. Further
work on generalizing the process model will allow online collaboration that is
independent of a specific problem domain.

While IM is employed by business organizations, improving company wide
knowledge management through expertise search might be a welcomed feature
in businesses. The Bibster project [8] establishes semantic routing based on the
expertise of peers. In Bibster, expertise is computed from annotations of bibli-
ographic data with topics from the ACM topic hierarchy. The knowledge base
provided by SAM can be exploited similarly, however, not to implement semantic
routing but to compute the expertise of users and provide an expertise search.

As mentioned in Sect. 4, we consider automatic message classification as a
future improvement. As instant messages differ from other text documents [9,
12], we consider classification of such messages as a challenging task. However,
as SAM provides rich message context, any message is usually related to several
other messages that may be exploited to improve classification. Moreover, if
each SAM client runs a classifier that works on a potentially different knowledge
base, we may investigate how to combine different classifiers and their results to
improve overall classification quality.

A very significant open issue is how to incorporate security and privacy issues,
especially trust as defined in [5] as credibility and reliability of resources.

Application oriented visions include the integration with existing software
for the Semantic Desktop such as the Haystack or the Gnowsis systems.

Acknowledgments

We would like to thank Arup Malakar for his contributions to the development of
SAM. This work is conducted with respect to the upcoming project Knowledge

179

Sharing and Reuse across Media (X-Media), funded by the Information Society
Technologies (IST) programme of the 6th Framework Programme.

References

1. Grigoris Antoniou and Frank van Harmelen. Web Ontology Language: OWL. In
Handbook on Ontologies, pages 67–92. 2004.

2. Michelle Bachler, Simon Buckingham Shum, Yun-Heh Chen-Burger, Jeff Dalton,
David De Roure, Marc Eisenstadt, Jiri Komzak, Danius Michaelides, Kevin Page,
Stephen Potter, Nigel Shadbolt, and Austin Tate. Collaboration in the Semantic
Grid: a Basis For E-Learning. In Grid Learning Services Workshop, 7th Interna-
tional Conference On Intelligent Tutoring Systems, pages 1–12, 2004.

3. Paul-Alexandru Chirita, Rita Gavriloaie, Stefania Ghita, Wolfgang Nejdl, and
Raluca Paiu. Activity Based Metadata For Semantic Desktop Search. In ESWC,
pages 439–454, 2005.

4. Stefan Decker and Martin R. Frank. The Networked Semantic Desktop. In WWW
Workshop On Application Design, Development and Implementation Issues in the
Semantic Web, 2004.

5. Jennifer Golbeck, Bijan Parsia, and James A. Hendler. Trust Networks On the
Semantic Web. In CIA, pages 238–249, 2003.

6. Rebecca E. Grinter and Margery Eldridge. Y Do Tngrs Luv 2 Txt Msg? In
ECSCW, pages 219–238, 2001.

7. Rebecca E. Grinter and Leysia Palen. Instant Messaging in Teen Life. In CSCW,
pages 21–30, 2002.

8. Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken, Peter Mika, Mariusz
Olko, Michal Plechawski, Pawel Pyszlak, Björn Schnizler, Ronny Siebes, Steffen
Staab, and Christoph Tempich. Bibster - A Semantics-Based Bibliographic Peer-
to-Peer System. In International Semantic Web Conference, pages 122–136, 2004.

9. Ellen Isaacs, Alan Walendowski, Steve Whittaker, Diane J. Schiano, and Can-
dace A. Kamm. The Character, Functions, and Styles of Instant Messaging in the
Workplace. In CSCW, pages 11–20, 2002.

10. David R. Karger, Karun Bakshi, David Huynh, Dennis Quan, and Vineet Sinha.
Haystack: A General-Purpose Information Management Tool For End Users Based
On Semistructured Data. In CIDR, pages 13–26, 2005.

11. Michael J. Muller, Mary Elizabeth Raven, Sandra L. Kogan, David R. Millen, and
Kenneth Carey. Introducing Chat Into Business Organizations: Toward an Instant
Messaging Maturity Model. In GROUP, pages 50–57, 2003.

12. Bonnie A. Nardi, Steve Whittaker, and Erin Bradner. Interaction and Outeraction:
Instant Messaging in Action. In CSCW, pages 79–88, 2000.

13. D. Quan, K. Bakshi, and D. Karger. A Unified Abstraction For Messaging On the
Semantic Web. In The Twelfth International World Wide Web Conference, 2003.

14. Dennis Quan, David Huynh, and David R. Karger. Haystack: A Platform For
Authoring End User Semantic Web Applications. In International Semantic Web
Conference, pages 738–753, 2003.

15. Ed. Saint-Andre. RFC 3920: Extensible messaging and presence protocol (XMPP).
Technical report.

16. Leo Sauermann. The Gnowsis Semantic Desktop For Information Integration. In
WM 2005: Professional Knowledge Management, pages 39–42, 2005.

180

17. Yanna Vogiazou, Marc Eisenstadt, Martin Dzbor, and JiŕıKomzak. From Bud-
dyspace to CitiTag: Large-Scale Symbolic Presence For Community Building and
Spontaneous Play. In ACM SAC, pages 1600–1606, 2005.

18. Jun Zhang and Marshall W. van Alstyne. SWIM: Fostering Social Network Based
Information Search. In CHI Extended Abstracts, page 1568, 2004.

181

Semantic Social Collaborative Filtering with
FOAFRealm

Sebastian Ryszard Kruk, Stefan Decker

Digital Enterprise Research Institute, Galway, Ireland?

<firstname.lastname>@deri.org, http://www.deri.org

Abstract. The most popular collaborative filtering implementations re-
quire either a critical mass of referenced resources and a lot of active
users. Other solutions are based on finding a referral with an expertise
on the given domain of discourse.
In this article we present the semantic social collaborative filtering so-
lution to information retrieval. We describe how the concept of users’
managed collections can be exploited to provide collaborative filtering
system based on social network maintained by the users themselves.
We present FOAFRealm, a user profile management system based on
the social networking and the FOAF metadata. FOAFRealm enables
distributed collaboration between parties in the semantic social collabo-
rative filtering way.

1 Introduction

The contemporary Internet contains a lot of information. In the unorganised
structure of the Web all the information that we are looking for seems to be
always just behind the corner. Though, still beyond our scope. And when we
fail to find that information, it turns to be useless. Search engines and online
catalogues tend to return a lot of resources as an answer to our queries. Very
often some of results are unrelated to given queries. No wonder, we end up
asking our friends and acquaintances for interesting references on the exact topic.
Collaborative filtering is an idea of automating the process of asking around when
looking for the information on the Internet[1].

Since early implementations of collaborative filtering, like introduced in [2],
a number of methods have been developed for the ”collaborative filtering” and
”social filtering” [2–4]

Contributions The paper makes the following contribution to the field of col-
laborative filtering and user profile management systems:
? This material is based upon works supported by the Science Founda-

tion Ireland under Grant No. SFI/02/CE1/I131. Authors thank all members
of the JeromeDL (cf. http://www.jeromedl.org/) and the FOAFRealm (cf.
http://www.foafrealm.org/) working groups for fruitful discussions on this doc-
ument.

182

– We introduce a new approach to collaborative filtering - the semantic social
collaborative filtering that covers both active and passive types and solves
additionally some privacy/security issues.

– The reference implementation library (FOAFRealm), can be embedded into
of web applications, providing additionally unified, distributed users man-
agement system based on FOAF.

– Our solution introduces goals like: distributed user profile management, pri-
vacy of the profile information, security of the provided knowledge, utilisation
of social networks.

Outline of the paper The next section describes the architecture of the se-
mantic social collaborative filtering in the context of other similar solutions. In
section 3 we present the evaluation of the underlying model of social interac-
tions in the semantic social collaborative filtering. We describe in section 4, the
FOAFRealm system that implements a distributed user profile management sys-
tem and delivers semantic social collaborative filtering features. Later, we discuss
the relations between social collaborative filtering and digital library systems.

2 Semantic Social Collaborative Filtering

The semantic social collaborative filtering presented in this article is based on
two concepts: distributed collections and annotations of resources. Each user
classifies only a small subset of the knowledge, based on the level of expertise
he/she has on the specific topic. This knowledge is later shared across the social
network.

2.1 How does Social Collaboration Work

The problem that there is a trade-off between accuracy and scalability is often
found in search engine applications. The information gathered in online collec-
tions is very precise, as the human factor is involved in the indexing process.
But since the Internet is growing so fast, the process of creating the catalogue
does not scale. On the other hand, search engines do the indexing work without
involving the human activity. And results of queries are not always satisfiable.

A social network is a set of people or group of people, with some pattern
of interactions or ”ties” between them[5–8]. A social network is modeled by
a digraph where the nodes represent individuals, and a directed edge between
nodes indicates direct relationship between two individuals.

It is possible to construct a subgraph, on top of a social network, that rep-
resents flow of expertise in the certain domain. The idea of the semantic social
collaborative filtering is based on this observation. Each person in the social
network gathers the interesting information in collections he/she has created.
Collections maintained by other people can be easily linked into own collections
created by the user. As we show later (see section 3) the information dissemi-
nated through the collections linking across the social network corresponds to
the expertise level on particular subject in the social network.

183

Fig. 1. The scenario of a simple semantic
social collaborative filtering model

Distributed collections. The
information is gathered in col-
letions by a number of people.
Each of them handles specific do-
mains of discourse within the col-
letions information space he/she
has created. The quality of the in-
formation gathered across the col-
letions can be satisfied by approv-
ing the expertise in given domain
of discourse.

Each user maintains his own
collections (private bookshelf [9])
and renders them accessible to
his/her friends [10]. We can as-
sume that some of topics are bet-
ter explored by some people. Each
collection has a quality level as-
signed to it, based on the expertise the owner has on the related topic. Each
user is also aware of the expertise level of other people on given topics.

Resources annotations. Apart from managing collections by providing the
categorisation description of resources, the semantic social collaborating filtering
utilises comments and annotations provided by the users. The annotations are
represented as fora with some additional semantic content. Annotations can
be used by other people as a shorthand to quickly explore: (1) the content or
meaning of the resource; (2) the context of resources; (3) the general opinion of
other users.

2.2 Semantic Social Collaborative Filtering Scenario

In our example scenario, Alice writes a thesis on ”Mediation in Bibliographic
Ontologies”. She registers to the digital library run by the University. She dis-
covers that some of her friends are already registered to the library as well. With
features based on online communities, she connects her profile to her friends pro-
files. Later on, Alice starts to gather the information required for her thesis topic.
She keeps links to resources she has found in collections managed by the online
bookmarks system. Soon she discovers that resources that she has bookmarked
do not cover the topic of the thesis at satisfiable level. The following sections
describe different algorithms Alice uses to find the desired information with the
help of the semantic social collaborative filtering.

Simple Social Collaborative Filtering To find the desired information Alice
sings up to the university digital library. The system used by the library is based
on the simple semantic social collaborative filtering implementation (see Fig. 1).

184

Alice uses the searching features provided by the digital library web application
(see Fig. 2(a)) to find interesting resources.

We introduce a solution to the problem stated in previous section (see 2.2) –
a simple semantic social collaborative filtering model (see Fig. 2(b)). Each col-
lection is categorised by the owner. Collaborative filtering feature in the digital
library lists all the collections, within the given range of friendship neighbour-
hood, with topics related to the ones defined by Alice. Each collection has a
quality level assigned to it. The quality of the collection corresponds to the ex-
pertise level of the owner on related topic. The expertise level can be computed
with PageRank algorithm applied to graphs of collections inclusions and social
network. Both graphs represents the rank value each person and each collection
receives from other people. The rank values are assigned directly (by people to
people) and indirectly (by including someone’s collection to own collection).

Alice finds out that one of her friends, Caroline, gathers the information
about digital libraries and her expertise level on that topic is very high. Though
her direct friend Bob is interested in Artificial Intelligence, she finally decides
to link resources provided by Eric, who has a highly ranked ”Semantic Web”
collection. From now on, Alice takes the advantage of the information gathered
by Caroline and Eric in their collections.

Secured Semantic Social Collaborative Filtering Alice is still looking for
more information required for her thesis. She decides to register in an open,
hererogenous digital library. Some people protect their collections with access
control restrictions (see Fig.3). The restrictions applied on the collection are
based on maximal distance and minimal trust level between two people in the
social network graph. Apart from defining friendship relations, users express the
quality (trust level) of every outgoing social connection.

Since not all information should be accessible by everyone, some of it need to
be protected from people from the outside of the given community. This is why
access control lists (ACL) have been introduced (see Fig.4(a)). In the semantic
social collaborative filtering environment based on ACL each collection has its
own ACL, that defines the maximal distace and minimal friendship quantisation
level from the specific person1 to the person willing to access that collection.
Only when this is satisfied the user can access and include this collection in
his/her collections.

Alice wants to make use of the knowledge provided by Damian. But the
algorithm for retrieving a list of collections in the secured environment (see
Fig.4(b)) omitted some of collections. With ACL applied Alice is out of the
range defined in Damian’s ACL constrains. The collection managed by Damian
is not presented to her.

1 please note that it does not have to be an owner of the collection, thought the owner
is the one that manages ACL

185

procedure ListCollectionsSM (p,t) : collections[]
for p′ ∈ P with PeerDistance(p,p′) < knowsRange
C′ ← C′

⋃
PeerCollection(p′)

end for
sort C′ according to FinalRankingSM

end procedure

(a) Algorithm retrieving list of collections

P is a set of peers
C is a set of collections
FoafKnows is a set of directed connections between peers
Gpeers(P, FoafKnows) is a digraph of friendship relations
T is a lattice of categorisation topics
We assume that each collection c ∈ C has exactly one owner p ∈ P .

PeerCollection: P → 2C – returns all collections owned by the peer
OwnedBy: C → P – returns the owner of the collection
Expertise: (P, C)→ [0, 1] – computes the quality of the collection based on the peer’s
expertise on related topic
Categorisation: C → T – returns the list of topic describing collection
PeerDistance: (P, P) → N – computes distance between two peers in the social
network graph using Dijkstra algorithm
Similarity: (T, T)→ [0, 1] – computes similarity level between two topics
FinalRankingSM : (PeerDistance,Similarity,Expertise)→ [0, 1] – computes ranking
value for a collection based on distance to the owner, similarity level and quality
measure

knowsRange – defines a maximal distance between two people when traversing the
graph of friendship relations.

(b) Definition of model

Fig. 2. The simple model of social collaborative filtering

2.3 The Benefits

The main bottleneck of existing passive collaborative filtering systems is the
process of gathering users’ preferences[4]. A reliable system requires a very large
number of people to express their opinion about a large number of topics. This
requires from users to either fill out a survey or perform some activities (like e.g.
buying a product, reading a book) over a certain time.

Active collaborative filtering solutions depends on maintaining the social
network by users themselves. Outdated information on list of friends can mislead
the person in his quest for an answer.

Backward Referral Chaining Maintaining a list of friends, posting a ques-
tion and gathering the answers may be time consuming. That is why the social
collaborative filtering (a new approach to active collaborative filtering) tends to

186

Fig. 3. The scenario in the secured semantic social collaborative filtering model

ease some hardships by introducing the concept of backward referral chaining,
reusing existing classification schemata and extrapolating user’s profile informa-
tion with interests of his friends.

Usually, a user is not aware of the whole social network. To gather the knowl-
edge outside of his direct friendship neighbourhood the user has to rely on ref-
erences provided by his friends. Because the expert in the specific domain can
be quite distant from the user, in terms of relationship links, the access to the
answer provided dependents on the path to an expert. As it has been introduced
in 2.2, an expert can restrict the access to some parts of information by applying
access control lists.

The referral chaining[11] has two strong dependencies: accuracy of finding the
right path to an expert, and responsiveness factor of the found expert. The back-
ward referral chaining introduced in the social collaborative filtering inverses the
process of finding an expert. The answers provided by different people (including
experts) are being assembled into hierarchical knowledge base. Users link into
their collections, information provided by some other people. In many cases, the
expertise of the latter, on given topic is higher.

Connection to the established classification schemata. In social collab-
orative filtering each person can create own categories according to the local
understanding of the world. The definition of the category might be hard to
understand to other peers because of the use of ambiguous descriptions or an
native language.

We propose to apply additional semantically reach description based on ex-
isting thesauri or classification ontologies, like WordNet[12] or Dewey Decimal
Classification[13, 9]. This description can help to understand the meaning of the
category both to people and machines. The latter can then utilise this knowledge
in e.g. recommending related categories created by other peers.

187

ACLPD is an access control constrains, defining maximal distance D (in number of
’hops’) from user P
ACLFQ is an access control constrains, defining minimal FriendshipQuantization
value (calculated across the graph) from user P

DistanceACL: (C)→ 2ACLP D – defines a list of allowed maximal distances to the user
QuantizationACL: (C) → 2ACLF Q – defines a list of allowed minimal
FriendshipQuantization values
Peer: (ACL)→ P – returns a peer from which the computation of ACL dinstance/level
is do be performed
Distance: (ACLPD)→ N – returns the maximal distance defined in ACL
Quantisation: (ACLFQ) → [0, 1] – returns the minimal FriendshipQuantization
level

(a) Definition of model

procedure ListCollectionsACL(p,t) : collections[]
cp ← PeerCollection(p)
for p′ ∈ P with PeerDistance(p,p′) < knowsRange

for c′ ∈ PeerCollection(p′)
with ∀aclPD ∈ DistanceACL(c′) PeerDistance(Peer(aclPD), p) < Distance(aclPD)
with ∀aclFQ ∈ QuantizationACL(c′) FriendshipQuantization(Peer(aclPD), p) >
Quantisation(aclPD)
with CollectionDistance(cp,c′) < inclusionRange
C′ ← C′

⋃ {c′}
end for
for c ∈ C with FriendshipQuantization(p,OwnedBy(c)) > quantisationLevel
if ∀aclPD ∈ DistanceACL(c′) PeerDistance(Peer(aclPD), p) < Distance(aclPD)
and ∀aclFQ ∈ QuantizationACL(c′) and ∃c′ ∈ C′ CollectionDistance(cp,c′) +
CollectionDistance(c′,c) < inclusionRange
then C′′ ← C′′

⋃ {c}
end for
sort (C′

⋃
C′′) according to FinalRankingCI

end procedure

(b) Algorithm retrieving list of collections

Fig. 4. The secure model of social collaborative filtering

Extrapolated user’s profile. When information about user’s activities (per-
sonal bookshelf, resources’ annotations) is gathered for a longer time it can be
re-used during the search process. The query expansion process[9] takes into
account semantically rich descriptions of users’ preferences reflecting their activ-
ities. The result set becomes more user oriented than with a generic search.

New users registered to the system very often suffer from lack of rich profile
information. This may have a strong influence on the quality of search results.
To overcome this problem then social collaborative filtering paradigm introduces
the concept of an extrapolated user’s profile. The profile of the new user can

188

be represented with some probability depending on trust level (see 2.4) as a
combination of profiles of his/her friends.

2.4 Security and Privacy Issues

Collaborative filtering implementations suffer in most cases from very weak se-
curity features or frequent privacy abuse. The information about the user in
passive collaborative filtering systems is very often gathered without his knowl-
edge. In the active collaborative filtering the user very often has no chance to
protect himself from gathering information about him.

To implement the security and privacy features the concept of digraph of
interpersonal connections have been utilised. Each user defines a list of his friends
and states the level of trust to each of them. The user can then define the maximal
distance and minimal trust level required from the person which wants to view
information gathered in specific category.

As all the information about the user is provided by himself and he/she
manages the access control lists for each piece of information, the privacy of the
user is preserved.

3 Evaluation of Semantic Social Collaborative Filtering

Semantic social collaborative filtering utilises existing social networks instead of
creating artificial connections between people. That is why on the contrary to
other collaboration filtering solution, there is no need to evaluate an algorithm
for creating a social network, as the social network is given explicitly.

On the other hand, since the semantic social collaborative filtering is based
on friendship connections, the actual similarities of interests between connected
users might differ. That is why, the evaluation of this collaborative filtering
approach should prove that the dissemination of knowledge is possible within
graph of semantically annotated friendship connections.

Simulation model In this section we present the implementation of the simple
semantic social collaborative filtering model. We prove that average level of
expertise in the subgraph of social network is almost maximal within 6 degrees
of separation.

The definition of a simulation model has been based on similar ideas defined
in Refferal Web project[11]. The main difference between social semantic collab-
orative filtering and the Refferal Web is that in the Refferal Web project, the
process of finding an expert on certain topic is performed manually by the user.
In semantic social collaborative filtering, semantical annotation on the knowl-
edge provided in the social network is used to automate the process of finding
the high quality of information. The simulation model itself might be similar to
the one presented in [11], so we just need prove that it is possible to find an
expert on the given maximal degree of separation.

189

Underlying assumptions. In the model of social network for the semantic
social collaborative filtering, each user manages collections with information on
selected topic. The different users represent different expertise on the given topic.
We assume that:

– The quality of the information provided by a user on a certain collection is
proportional to the expertise level of the user on the topic of collection.

– It is possible to find a user with a high expertise on given topic within the
network of social connections.

According to simple social collaborative filtering model (see Fig. 2(b)) the
simulation environment is modeled by a set of users and a set of collections
managed by those users. There is exactly one user that owns each collection.
On the base of the user’s expertise on related topic the quality of the collection
is defined. Each user has a predefined set of other users he knows (this relation
should not be considered as implicitly symmetric).

Although according to the Small World Phenomena[14, 15] the distribution of
the degree of the friendship connections is power-law based (Zipf’s distribution,
see Eq. 1) we have decided to perform second set of experiments where the
degree of friendship connections is a bell-curve shaped (normal random variable
see Eq. 2).

O(i) =
n

iθHθ(V)
,Hθ(V) =

V∑

i=1

1
iθ

(1)

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2)

The distribution of expertise on a certain topic within the social network
can be based on the Lotka’s Law[16], stating that the number of authors making
n contributions is about 1

na of those making one contribution, where a is often
nearly 2. Since the expertise on a certain topic is proportional to the number of
high quality of publications, the probability of the level of expertise (the level
of expertise over the number of users that have one) is Zipfian shaped as well.
Each collection has a quality value assigned to it that represents the expertise
the owner has on the related topic.

In order to make sure that there would be at least one absolute (Expertise(T)
= 1) expert in each topic T , we have normalised the associated expertise values
dividing each but the value of the highest expertise in each topic.

The list of topics used to describe content of collection has been based on
Dewey Decimal Classification[13]. This simplifies the computability of the model
in the sense of comparison similarity between topics. Each category has a three-
digit number (100 - 999) associated. Categories are structured as a three level
tree. Although in the real world implementation categories are described addi-
tionally with WordNet words vectors, DDC seems to be enough for the modeling
purpose.

190

procedure AverageMaximalExpertise(R) : ¯Emax(R)
for p′ ∈ P with
select t ∈ Tp find c that
t =Categorisation(c)
PeerDistance(p, Owner(c)) < R
e =Expertize(Owner(c), c) is maximal
AverageMaximalExpertise + = e

NP

end procedure

Fig. 5. Algorithm calculating average maximal expertise in the semantic social collab-
orative filtering model in the given range

Definition of the experiment. During the experiment each user (p ∈ P ,
sizeOf(P) = NP) tries to find in the social network within a given range R,
the collection that provides the information on the topic t ∈ Tp. The topic is
randomly selected from the list of topics associated to collections owned by the
user. The average value of the highest expertise Ēmax(R) level found within
given range is computed (see Fig.5).

We have performed four experiments. Each time the social network model
consited of NP = 1000 users.

Each user in our social collaborative filtering environment had only one col-
lection associated. This simplification is correct since during the experiment we
are looking only for collections with exactly the same topic as selected. So col-
lections associated with each topic creates a subgraph that is independent of the
actual number of collections owned by each user.

The expertise level for each collection has been randomly selected according
to power law distribution. In the first two experiments the degree of friend-
ship connections has been randomly selected according to normal distribution
(µ =25, σ =12.5). In the last two experiments the power law distribution
(θ =1.9) has been applied. During each experiment average maximal expertise
values Ēmax(R) has been calculated for maximal degree of separation R ∈ [1, 8].

Results of simulation. Table 1 presents results of all four experiments.

Table 1. Results of the experiment - average maximal expertise Ēmax(R)

R σ = 12,5F (Bell) θ = 1,9F (Zipf)

1 0,07072 0,06427 0,01793 0,01595

2 0,69098 0,69192 0,10557 0,09042

3 0,96399 0,96183 0,33044 0,29836

4 0,96796 0,96782 0,62892 0,61653

5 0,96796 0,96782 0,82896 0,82980

6 0,96796 0,96782 0,90953 0,91751

191

It is interesting that even for the power law based distribution user is able
to find information with almost the highest possible quality within 6 degrees of
separation (see Fig.6).

Fig. 6. Average expertise level in the neighbourhood
of the given size

Conclusions on results
of simulation Following
experiments by Kauth[11]
we have constructed simi-
lar social collaborative fil-
tering model. The results
revealed that each user is
able to find (on average)
the best quality of infor-
mation provided by other
users within the subgraph
of social network bounded
by 6 degrees of separa-
tion. These experimental
results proved that the
constructed social net-
work model corresponds
to the small world phe-
nomena[14]. Hence, the
assumptions underlying the
social collaborative filter-
ing has been fullfiled. It is
possible to find an expert (with an average expertize level above 90%) within
the small social network neighbourhood.

4 FOAFRealm - the Reference Implementation of
Semantic Social Collaborative Filtering

The FOAFRealm is a library for distributed users management based on the
FOAF vocabulary. It enables users to control their profile information, as the
information can be accessed in the open FOAF format. Users can sign-in au-
tomatically across the P2P network (called D-FOAF2) of FOAFRealm enabled
systems[17].

FOAFRealm provides a basic implementation of the semantic social collabo-
rative filtering concept. The knowledge (annotations and private collections) can
be shared among registered users. Security constraints can be applied to each
piece of information separately.

The current implementation of FOAFRealm consists of four layers:

2 D-FOAF project: http://d-foaf.foafrealm.org/

192

– The distributed communication layer providing access to highly scalable Hy-
perCuP3 P2P infrastructure to communicate and share the information with
other FOAFRealm implementations..

– FOAF and collaborative filtering ontology management. It wraps the actual
RDF storage being used from the upper layers providing simple access to the
semantic information. The Dijkstra algorithm for calculating distance and
friendship quantisation is implemented in that layer.

– Implementation of the org.apache.catalina.{Realm,Valve} interfaces to
easily plug-in the FOAFRealm in to Tomcat-based web applications. It pro-
vides authentication features including autologin based on Cookies.

– A set of Java classes, Tagfiles and JSP files plus list of guidelines that can
be used while developing user interface in own web applications.

The library has been successfully deployed as a user management system in
JeromeDL - e-Library with Semantics4. It is used to handle private bookshelves
of readers, and provides additional semantical annotations to the resources. The
concept of extrapolated user profile has been adapted in the semantically en-
hanced search engine in JeromeDL. So that even new users to the system can
benefit from the full-fledged semantic search process.

The FOAFRealm system has also become a part of MarcOnt Initiative5 col-
laboration portal for ontologies management based on negotiations. The portal
will utilise social networks based features of FOAFRealm to:

– isolate outside world from the ontology management community. The regis-
tered users will be allowed to take part of the ontology management process
when they will be defined as a friend of at least on of the community mem-
bers.

– differentiate evaluations of ontology changes suggestions provided by different
members of the community. We will explore if evaluations provided by close
friends of the person that posted the suggestion should be ranked lower
than evaluations provided by people with higher degree of separation from
the suggestion owner.

5 Related work

Collaborative filtering. The most popular types of the collaborative filtering
systems are Active Collaborative Filtering and Passive Collaborative Filtering.
The distinction between those is based on the activeness of the user that receives
information. With passive collaborative filtering, the information about the user,
such as: mailing-lists posts, links on home pages, citations in publications and
co-authors of articles, is utilised. Since the user does not actively take part in
maintaining his network of friends, he has no direct impact on information he/she
receives.
3 Lightweight HyperCuP Implementation project: http://www.hypercup.org/
4 JeromeDL - e-Library with Semantics: http://www.jeromedl.org/
5 MarcOnt Initiative: http://www.marcont.org/

193

Active collaborative filtering implements two models of information retrieval:
user pull model - where a user generates a query to the network of other users,
and user push model - where the answers on previously stated questions or
information filters, are feed to the user.

Though by shifting from central (a search engine) to a distributed method of
recommendation the problem tends to be more manageable, particular collab-
oration filtering implementations suffer various difficulties: (1) ”heterophilous
diffusion” (exchange information across different socio-economic groups) is ne-
glected in favour to ”homophilous diffusion” (exchange of information within
socio-economic groups); (2) security and privacy issues are weakly supported;
(3) meaning (semantics) of shared concepts are lost; (4) when the network of
friends is created automatically by harvesting various databases with advance
algorithms: the ”critical mass” of registered users is required to provide satisfi-
able level of correlation to user’s interests; it is impossible to create a digraph of
social connection from most of commonly used sources; privacy of individuals is
violated; monopolies are supported[18] because a service provider has to gather
a lot of information to become accurate (”critical mass”); (5) when the user
actively uses fora or mailing-lists: (i) there is no guarantee that there will be
an answer to the posted question, or that the answer will be through; (ii) there
might be no expert on the specific field of discourse in the ”direct friendship
neighbourhood” of the user; (6) some systems requires from users to answer
long questionnaires [4] in order to find similarities in users’ interests.

Hybrid filtering[19], the combination of content filtering and social filtering,
is used to maximise precision with a recall still above specified limit.

Active collaborative filtering solutions concentrate on utilising the existing
social connections provided explicitly. One of the approaches [10] is build on the
the common practise where people tell their friends or colleagues of interesting
documents. Users collect bookmarks on the interesting World Wide Web pages
that they have found. [20] describes a social collaborative filtering system where
users have direct impact on filtering process. The changes in the users interests
are exploited to provide thorough relevance feedback to the system..

To format and distribute collections of bookmarks several simple system have
been developed. With Simon system [21] users can create ”subject spaces” which
are lists of hypertext links to the WWW pages with annotations on them. One
of other possible solutions is to find a personal referral that can answer the given
query. The network of relationships can also help in exploring the hidden web,
the part of the Internet that is not indexed by search engines [11], as some of
the information is deliberately not accessible outside the intranets [10, 22].

Online social communities are the underlying key concept of the semantic
social collaborative filtering presented in this article. In the last few years this
field has been widely explored by several implementations.

Some of them, like Orkut6 provides forum-like channels of dissemination
of knowledge, where community members can ask questions to their friends
6 Orkut online community portal: http://www.orkut.com/

194

or other members of specific thematic group. In the Semantic Web field the
FOAF (a vocabulary for RDF [23]) format has been introduced to describe the
interpersonal connections.

User Profile Management The existing implementations of user profile man-
agement lack: (i) fine granularity of security constraints; (ii) scalability; (iii)
openness/privacy. Both of which play important roles in semantic social collab-
orative filtering.

One of the features that is becoming more and more important in social P2P
environment is single-sign-on[24]. Each time a user uses a new web system, he
would rather not provide all the same information about himself over and over
again. Solutions like Microsoft Passport7 or Sxip8 provide such features.

6 Future Work and Conclusions

The semantic social collaborative filtering presented in the article opens new
possibilities of exchanging and managing knowledge. Users can share their book-
marks (collections and their content) with their friends. Everyone can organise
the knowledge by gathering collections that other people are maintaining. Since
collections can be linked it is possible to find more relevant information in cate-
gories provided by some distant people. Annotations are also a key part of the
semantic social collaborative filtering. Together with private collections (private
bookshelves) they are utilised in the semantically enhanced information retrieval
in systems like digital libraries.

FOAFRealm is a reference implementation of the semantic social collabora-
tive filtering. It refers to social networks and open standards like FOAF. FOAF-
Realm provides support for J2EE based web applications for quick extending
their features with user management and social collaborative filtering. Since the
social network is represented as a digraph, FOAFRealm utilises informations
about distance between two people and the trust level, to provide the security
and privacy features.

Current implementation of FOAFRealm, D-FOAF, provides a distributed
user profile management system and hence, the social semantic collaborative fil-
tering across different systems. The future step, DigiMe, will deliver this features
to mobile devices and will explore the ad-hoc social networks paradigm.

References

1. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to
weave an information tapestry. Commun. ACM 35 (1992) 61–70

7 Microsoft Passport: http://www.passport.net/
8 SXIP - Passport/Liberty done right: http://www.sxip.com/

195

2. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: GroupLens: An
Open Architecture for Collaborative Filtering of Netnews. In: Proceedings of ACM
1994 Conference on Computer Supported Cooperative Work, Chapel Hill, North
Carolina, ACM (1994) 175–186

3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering. (1995) 43–52

4. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating
“Word of Mouth”. In: Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems. Volume 1. (1995) 210–217

5. Trevor, J., Hilbert, D.M., Billsus, D., Vaughan, J., Tran, Q.T.: Contextual Contact
Retrieval (2002)

6. Fukui, H.O.: SocialPathFinder: Computer Supported Exploration of Social Net-
works on WWW (2003)

7. Newman, M., Watts, D., Strogatz, S.: Random graph models of social networks.
In: Proc. Natl. Acad. Sci., to appear. (2002)

8. Hoadley, C., Pea, R.: Finding the ties that bind: Tools in support of a knowledge-
building community (2002)

9. Kruk, S.R., Decker, S., Zieborak, L.: JeromeDL - Reconnecting Digital Libraries
and the Semantic Web. In: DEXA’2005. (2005)

10. Maltz, D., Ehrlich, K.: Pointing the way: active collaborative filtering. In: Pro-
ceedings of the Conference on Computer-Human Interaction. (1995) 202–209

11. Kautz, H.A., Selman, B., Shah, M.A.: The Hidden Web. AI Magazine 18 (1997)
27–36

12. Fellbaum, C.: WordNet An Electronic Lexical Database (1998)
13. Dewey, M.: A Classification and Subject Index for Cataloguing and Arranging the

Books and Pamphlets of a Library - Dewey Decimal Classification. guternberg.net,
http://www.gutenberg.net/catalog/world/ readfile?fk files=59063 (2004)

14. Milgram, S.: The small world problem. Psychology Today 67 (1967)
15. Barabasi, A.L.: Linked: The new science od Networks. Cambridge Perseus Press

(2002)
16. Lotka, A.J.: The Frequency Distribution of Scientific Productivity. Journal of the

Washington Academy of Sciences 16 (1926) 317–323
17. Grzonkowski, S., Gzella, A., Krawczyk, H., Kruk, S.R., Moyano, F.J.M.R.,

Woroniecki, T.: D-FOAF - Security Aspects in Distributed User Managment Sys-
tem. (In: TEHOSS’2005)

18. Techniques, R.P.: Privacy-Preserving Collaborative Filtering using (2003)
19. Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as Classification: Using Social

and Content-Based Information in Recommendation. In: AAAI/IAAI. (1998) 714–
720

20. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user
profile constructed without any effort from users. In: WWW ’04: Proceedings of
the 13th international conference on World Wide Web, New York, NY, USA, ACM
Press (2004) 675–684

21. Simons, J.: Using a Semantic User Model to Filter the ”World Wide Web” Proac-
tively. (1995) 455–456

22. Kautz, H., Selman, B., Shah, M.: Referral Web: Combining Social Networks and
Collaborative Filtering. Communications of the ACM 40 (1997) 63–65

23. http://www.w3.org/TR/rdf: Resource Description Framework (RDF). W3C Rec-
ommendation (1999)

24. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A Community
Authorization Service for Group Collaboration (2002)

196

Task Specific Semantic Views: Extracting and
Integrating Contextual Metadata from the Web

Stefania Ghita, Nicola Henze, Wolfgang Nejdl

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{ghita,henze,nejdl}@l3s.de

Abstract. Tasks and working scenarios on the desktop involve specific context
information which is useful for finding relevant documents related to that context.
Automating the process of retrieving and generating this context information is
important to avoid time-consuming manual annotation not feasible in everyday
work. This paper focuses on automatically extracting and integrating contextual
information from web pages used in such working scenarios. The key observation
is that in such scenarios we often use a set of web sites to get relevant informa-
tion, implicitly syndicating their data into a coherent scenario specific informa-
tion space. We show how these data can be extracted automatically from the web
pages stored in local browser caches, based on appropriate query wrappers over
these pages. These data are then combined into a task specific semantic view,
building upon schema integration rules based on a global as view approach and
view materialization, and transformed into RDF metadata for enhancing contex-
tualized search on the desktop. We describe both the conceptual framework as
well as our current prototype and conclude with a discussion of further research
issues.

1 Introduction

People structure their (work) lifes according to their main activities and, emerging from
these daily activities, browsing history is an important mirror of their information seek-
ing behavior. Typically, when people search for information on the web, they do not
rely on only one source of information, but many. For example, if a user searches for
a publication and its relevant context, he does not only search on one web site, but
will combine the information from several sites into a coherent whole. For example, on
CiteSeer he will look for the papers that are cited by a specific paper as well as the ones
citing it, and on DBLP he will look for the conference that the paper was published at
and search for more papers in the same track. So in general, what people try to do is to
collect useful information from many sites and manually syndicate this information on
their desktop, hoping to have a better view over all relevant information available for
specific tasks.

This information is very useful in the desktop search context, as we have discussed
in [6], and is available in browser caches. However, from these pages stored as HTML
documents, it is very difficult to extract the relevant information automatically. What

197

2

we really need is to have this information represented in a structured form, automati-
cally transformed into the relevant task specific RDF context metadata, whose structure
is specified using task specific ontologies. The main contribution of this paper is to
show how this can be done, based on automatic extraction of relevant context informa-
tion from web sites and automatic syndication of this context information into context
metadata specified by task specific ontologies representing a global view over available
context information. We will present an integrated system for context extraction and
syndication based on the user’s browsing behavior, that is able to gather information
from web sites visited by the user during his activities. The system not only stores web
pages in their original form, but extracts and syndicates all relevant information, thus
reconstructing the relevant information space underlying these pages.

In the next section we present two motivating scenarios and discuss how we ex-
tract and syndicate information in such task specific scenarios. We will discuss in more
detail in Section 3 the schemas describing web data sources and task specific ontolo-
gies, as well as the transformation steps required to extract relevant information and to
syndicate it into (materialized) task specific global views. These transformation steps
are further detailed in 4, where we describe how we extract web information using
the Lixto toolkit and how we materialize our task specific views using mapping rules
written in the TRIPLE language. We also describe how these transformation steps are
automatically triggered in our Beagle++ desktop search infrastructure. We conclude
with a discussion of related and future work.

2 Motivating Scenarios

Let us start with two working scenarios where we want to retrieve already viewed in-
formation, the first one suitable for research activities, the second suitable for movie
fans.

2.1 Research Scenario

Alice is a researcher that has as her main interests peer-to-peer networks and RDF
technology. Some time ago she searched for some papers about this subject on the web.
These actions have been memorized and will influence her personal profile.

In order to find the necessary information, Alice uses two main information
sources: CiteSeer, citeseer.ist.psu.edu, for the citing and cited papers, and DBLP,
http://www.informatik.uni-trier.de/∼ley/db/, for the conference information (tracks, edi-
tions). Alice discovered a paper about Edutella, ”EDUTELLA: A P2P Networking
Infrastructure Based on RDF” on the CiteSeer web site, as well as some other papers
that cited this one, including ones that were written by the same author, Wolfgang Nejdl.
As Alice was interested in the conference that this paper was presented at, she followed
the link towards the DBLP web site. On the corresponding WWW 2002 conference
page on DBLP, she looked at another paper in the same track (Query Language for
Semantic Web) as the Edutella paper, ”RQL: a declarative query language for RDF”.
Another paper published by the same author was available from the WWW 2003 con-
ference, ”Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-
to-Peer Networks”.

198

3

The system has stored all this browsing behavior and represented it as RDF meta-
data, both from the CiteSeer web page and the DBLP one. The data harvested this way
contains all data from the appropriate web pages dedicated to a certain paper or con-
ference. This merged data are very useful, as it provides all relevant information about
each resource, as seen in Figure 1.

Fig. 1. Syndicated Data View for Research Scenario

When Alice searches again for Edutella resources, she does not only find the paper
she retrieved, but additionally get the stored context of this paper. In particular, this in-
cludes some publications that cited this paper, and especially the ones with the same au-
thor: ”Super-Peer-Based Routing Strategies for RDF-Based Peer-to-Peer Networks”,
”Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-to-Peer
Networks”, ”Role Oriented Models for Hypermedia Construction”. The system is also
able to make the connections between different resources based on the research scenario
context metadata. The system knows that Alice viewed the paper both on CiteSeer as
well as on the DBLP site, and displays additional data that was extracted from that
web site, including the conference that the paper has been presented at, some other pa-
pers that were presented in the same track, and other editions of the same conference
(WWW).

2.2 Movies Scenario

In our second scenario we investigate how the context is useful for movie fans. Let us
take a look at Bob who is a big fan of Harrison Ford and likes science-fiction movies. He

199

4

is usually browsing the IMDB (www.imdb.com) web site for information and his per-
sonal history includes that that he has viewed Harrison Ford’s page so many times. For
purchasing products from the internet, Bob uses Amazon (www.amazon.com), which
also has links to the IMDB site.

Some time ago, Bob ordered the “Star Wars” CD. Now he wants to buy the DVD,
too, and he will be provided with the relevant context. When searching for this DVD,
the system realizes that Bob has in the past browsed information about this movie and
displays the joined information from the two intensely visited web sites, Amazon and
IMDB. For example, the director and the actors for this movie will be displayed, to-
gether with other movies that these actors participated. Since Bob is a big fan of Har-
rison Ford, whenever he views the page on Amazon about the “Star Wars” movie, he
will automatically see information retrieved from the web pages of the movies that Har-
rison Ford participated, as viewed on IMDB. Among the displayed metadata, Bob can
also see the rating from IMDB (7.7/10) or the price that he paid for the CD at the time
he had bought it. He will also receive some additional movie recommendations from
IMDB (”Shaft”) and from Amazon (”Psycho”).

Besides these suggestions, Bob will also receive additional valuable information,
i.e. comments from users of the IMDB web site. Not any recommendations, though,
since the system will be able to choose among the multitude of comments about this
movie the one made by his favorite commenter, “Grann-Bach”. This comment is also
very highly rated by the users of the IMDB system (22/30), even though on the IMDB
page some other user’s comment would appear. This will be done because Bob always
reads his comments and this fact is memorized in his personal history. So whenever
Bob wants to buy something, additional information about the product will be made
available to him, based on information extracted from his past activities (see Figure 2).

3 Relevant Data and Transformation Steps

As seen in Figure 2, we can partition the process behind our motivating scenarios into
distinct steps, further detailed in the rest of this paper. The first step takes care of the ex-
traction of information from various web sites, each web site having a specific schema
for their content, as discussed in Section 3.1. The data retrieved in an XML format will
contain the relevant web page information for each context and will be transformed
into RDF data using XSLT (Section 3.2). After this transformation, the data are syndi-
cated and materialized (based on appropriate mapping rules) into task specific semantic
views, and can be used to answer queries based over these views.

3.1 Schemas for Web Page Content

Data driven HTML pages contain two kinds of information: about the structure of the
page (repetition of items) - data items are listed as rows of a table, or are structured in
distinct sections - and about what is presented within this structure - the actual infor-
mation. The first type (partially) reflects the structure of the database that were used
to generate the web page. All pages generated from databases and a lot of other ones
repeat the same structural items so that we can recognize different information items

200

5

Fig. 2. Syndicated Data View for Movies Scenario

rather easily. For example, a Hotel Information Server has web pages structured based
on the databases entries: the description of an individual Hotel with details like gen-
eral information, pictures, contact address, etc. In the case of our research scenario,
the information about scientific publications is often presented in the same style (see
Figure 3), and includes title of the paper, year of publication, authors, and cited papers.

As a first step, we need local schemas for the web pages interesting for a specific
scenario. Appropriate collections of web pages share some structure for presenting the
content, e.g. all pages from CiteSeer that present information about a publication be-
long to a class, together with the web pages that are associated to this page by dedicated
links (in Figure 3 these are the links under the rubric “cited by” plus the according
web pages). In a (manual) preparation step, we analyze each of these collections for
expressive metadata, and design a small, local ontology which describes the objects of
discourse of each of these collections. We can then harvest information about entities
and their different attributes. For example, for papers we have publications and confer-
ences and the attributes for these entities. Similarly, the IMDB and Amazon web sites
reflect the underlying database entries: movies, actors, directors. Such a local schema
for the CiteSeer source is depicted in Figure 4.

In all these cases, the information on the web page is semi-structured, and this
will allow us to construct machine-readable metadata from these web pages in a semi-
automated manner (see Section 4.1). This is done based on the reconstructed schema
and an appropriate query on the HTML page which extracts information according to
that schema.

201

6

Fig. 3. CiteSeer Web Page

Fig. 4. CiteSeer Local Schema

3.2 Task Specific Semantic Views

Depending on the tasks and context the user is working in, his context includes all
relevant information from the local schemas which we described in the last section.
This context can be represented by a task specific semantic view integrating the relevant
data from the local sources we discussed in the previous section. This semantic view
specifies all metadata needed of this context, and is described using ontologies. Let us
take a look on two ontologies appropriate for our two example scenarios.

Research Ontology. Figure 5 depicts an overview image of the ontology that defines
appropriate context metadata for the research scenario. The ”Publication” class rep-
resents a specific type of file, with additional information associated to it. The most
important attributes are “Author”, “Title”, as well as relationships regarding citing and

202

7

Fig. 5. Research Ontology

cited papers. These attributes and relations can easily be retrieved from a CiteSeer web
page, “Conference” and “Year” harvesting is done more reliable from the DBLP site.
As each publication is stored as a file, it is also connected to the file context, and thus to
the file specific information like path, number of accesses, etc. Additionally, it is pos-
sibly connected to visited web pages / URLs a publication has been downloaded from.
Authors are persons, which are modeled based on the FOAF ontology, as members of
interest groups (foaf:Group).

If we take a look at Figure 1 we see that some attributes are omitted from the more
web page-specific ontologies, such as “Co-citations” retrieved from the CiteSeer web
page, and that some attributes have different names, even though they represent the
same information, such as “Title” and “Paper Title”. So this ontology represents a spe-
cific view on the local data sources, appropriate for the task context.

Movies Ontology. The central part of the movies ontology is the “Movie”, as seen
in Figure 6. It is associated to the participating actors, the director, the year it was
released and its genre (comedy, action, thriller, science fiction, etc.) The IMDB site
also provides a “Rating” computed with the help of the ranks provided by different
registered users. An interesting feature of this database is the fact that the system also
makes recommendations for other movies. Users comment on movies, these comments
have a credibility value based on their usefulness to other users. As in the research
scenario, this ontology again represents a syndicated view of the Amazon and the IMDB
ontologies, as seen in Figure 2.

3.3 Transforming Web Page Content Information into Task Specific Metadata

Combining data from different sources and providing the user with a unified view of
these data is known as the “data integration” problem [19, 16, 4]. The set of sources (in
our context the set of visited web pages) contain the relevant data, while a global schema

203

8

Fig. 6. Movies Ontology

(in our context the task specific ontologies) provide a unified view of the underlying
sources. For modeling the relation between the sources and the global schema we will
use the global-as-view approach [8, 10], which describes the mappings between local
sources and the global schema as a set of assertions

g ; qS

where g represents an element of the global schema and qS a query over the sources.
Such a mapping explicitly specifies how to query the local sources for each element
contained in a query over the global schema, or alternatively, how to materialize the
global schema based on the instances from the local data sources.

Using these mappings, we can materialize instances of the task specific ontologies
when the user browses new web pages, or reformulate queries over the task specific
ontologies during search time. Obviously, the second alternative is not really useful in
our context as users have come to expect nearly instantaneous access to search results
from web search engines.

As we assume exact views and do not allow integrity constraints in the global
schema, our data integration algorithm can exploit the “single database property” [4]
which means that all instances of relations of the global schema can be computed by
the corresponding views over the sources, using the mapping rules as transformation
rules. So view materialization is the more feasible approach for our application, and we
just have to remember how the derived global schema instances depend on the source
data in order to recompute the views when source data change. This is similar to view
materialization in data warehouses [7].

The global database is thus constructed by merging the important information from
the relevant sources of information, i.e. the information extracted from the web pages
browsed are merged into the global database containing our activity driven metadata
as specified by the task specific ontologies. We can easily see that the data is not only
a projection or a subset of the data provided by one site, but another representation of
the information. When we map from the global to the local level, we can have differ-

204

9

ent transformations from the different local schemas. We represent these mappings as
discussed in [15]:

Y earglobal(Paper, Y ear)→ConferenceDBLP (Paper, Conference),
Conference Y earDBLP (Conference, Y ear).

T itleglobal(Movie,Name)→ TitleAmazon(Movie, Name).
T itleglobal(Movie,Name)→ NameIMDB(Movie,Name).

4 Metadata Extraction and Transformation

Now that we know how our global ontologies look like and how the data extracted from
the web pages is structured, we have to describe how exactly we transform data from
local data sources into RDF instances corresponding to the global ontologies. We need
the following two steps to go from web pages to contextual metadata:

– extract task related metadata from distributed, inhomogeneous sources into local
schemas (Section 4.1)

– transform this gathered metadata into one, common context schema (Section 4.2)

Even when web pages change, their structure tends to stay the same so any wrappers
or transformation rules remain valid. Metadata are then extracted automatically when
the web page is visited again. Of course, initial effort has to be invested for completely
new wrappers or ontologies.

4.1 Extraction of Web Information Using Lixto

As described in Section 3.1, we are interested in the structured information containted
in web pages. We use the Lixto Toolkit [12] for handling this extraction part. The Visual
Wrapper from Lixto [2] provides a methodology and tool for the visual and interactive
generation of query wrappers - programs, that automatically extract data from semi-
structured data sources like web pages and transform them into XML. Lixto wrappers
contain queries in the Elog query language, which is based on monadic Datalog plus
extensions for regular expressions. The extractor, using as input an HTML document
and a previously constructed program, generates as its output a pattern instance base, a
data structure which encodes the extracted instances as hierarchically ordered trees and
strings. For our publication scenario, an excerpt of the XML extraction of the example
page depicted in Figure 3 looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<document>

<Publication>
<Title>Super-Peer-Based Routing and Clustering Strategies for

RDF-Based Peer-to-Peer Networks</Title>
<Author>Wolfgang Nejdl</Author>
<Author>Martin Wolpers</Author>
<Author>Wolf Siberski</Author>
<Author>Christoph Schmitz</Author>
<Author>Mario Schlosser</Author>
<Author>Ingo Brunkhorst</Author>

205

10

<Author>Alexander Loeser</Author>
<Year>2003</Year>
<Link>http://citeseer.ist.psu.edu/..../nejdl03superpeerbased.pdf</Link>
<Citations>

<CitationTitle>Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications</CitationTitle>

<CitationTitle>A Scalable Content-Addressable Network</CitationTitle>
<CitationTitle>Mediators in the Architecture of Future

Information Systems</CitationTitle>
<CitationTitle>The TSIMMIS Project: Integration of Heterogeneous

Information Sources</CitationTitle>
<CitationTitle>A Measurement Study of Peer-to-Peer File Sharing

Systems</CitationTitle>
........

</Citations>
<CitedBy>

<CitedByTitle>Self-Organization of a Small World by Topic</CitedByTitle>
<CitedByTitle>Semantic Query Routing and Processing in P2P Database

Systems: The ICS-FORTH SQPeer Middleware</CitedByTitle>
<CitedByTitle>Top-k Query Evaluation for Schema-Based Peer-to-Peer

Networks</CitedByTitle>
<CitedByTitle>Super-Peer-Based Routing Strategies for RDF-Based

Peer-to-Peer Networks</CitedByTitle>
.........

</CitedBy>
</Publication>

</document>

For this XML output, a small part of the Lixto extractor, which harvests data about
the title of a paper, is shown in the following snippet:

<StringSourceDef description="" maxInstances="-1" name="Title"
parentName="TitleLine">

<ExtractionRules>
<StringExtractionRule description="" parent="TitleLine">

<Head description="">
<I>

<Var name="0"/>
</I>
<O>

<Var name="1"/>
</O>

</Head>
<AtomChain>

<SubText description="">
<I>

<Var name="0"/>
</I>
<STD>

<SimpleSTD>
<RE pattern="(([A-Z]|[A-Z]+|[A-Z]\w+).*(\s|\-)([A-Z]\w+|[A-Z]+|[a-z]+))"/>

</SimpleSTD>
</STD>
<O>

<Var name="1"/>
</O>

</SubText>
</AtomChain>

</StringExtractionRule>
</ExtractionRules>

</StringSourceDef>

In a second step, the extracted XML data are then transformed to RDF using an
XSLT script, resulting in the following format:

206

11

<rdf:Description rdf:about="http://citeseer.ist.psu.edu/569523.html">
<dc:publisher>University of Hannover</dc:publisher>
<dc:title>Super-Peer-Based Routing and Clustering Strategies for RDF-Based

Peer-to-Peer Networks</dc:title>
<dc:creator>

<rdf:Seq>
<rdf:li rdf:resource="#Wolfgang Nejdl"/>
<rdf:li rdf:resource="#Martin Wolpers"/>
<rdf:li rdf:resource="#Wolf Siberski"/>
<rdf:li rdf:resource="#Christoph Schmitz"/>
<rdf:li rdf:resource="#Mario Schlosser"/>
<rdf:li rdf:resource="#Ingo Brunkhorst"/>
<rdf:li rdf:resource="#Alexander Loeser"/>

</rdf:Seq>
</dc:creator>
<dc:date>2003</dc:date>
<dc:identifier>http://citeseer.ist.psu.edu/..../nejdl03superpeerbased.pdf

</dc:identifier>
<citeseer:cites>Chord: A Scalable Peer-to-Peer Lookup Service for

Internet Applications</citeseer:cites>
<citeseer:cites>A Scalable Content-Addressable Network

</citeseer:cites>
<citeseer:cites>Mediators in the Architecture of Future Information

Systems</citeseer:cites>
<citeseer:cites>The TSIMMIS Project: Integration of Heterogeneous

Information Sources</citeseer:cites>
<citeseer:cites>A Measurement Study of Peer-to-Peer File Sharing

Systems</citeseer:cites>
.........
<citeseer:cited_by>Self-Organization of a Small World by Topic

</citeseer:cited_by>
<citeseer:cited_by>Semantic Query Routing and Processing in P2P Database

Systems:The ICS-FORTH SQPeer Middleware</citeseer:cited_by>
<citeseer:cited_by>Top-k Query Evaluation for Schema-Based Peer-to-Peer

Networks</citeseer:cited_by>
<citeseer:cited_by>Super-Peer-Based Routing Strategies for RDF-Based

Peer-to-Peer Networks</citeseer:cited_by>
..........

</rdf:Description>

4.2 Transformation into Task Specific Semantic Views Based on the Mapping
Rules

After the extraction and transformation of data according to our local schemas, we then
have to transform these data into the global schema, which gives us a unified view on
all the local sources that we can query for each scenario. The ontologies described in
Section 3.2 provide these task specific semantic views, specifying the final format for
the contextual metadata for each scenario.

This transformation step is facilitated by the mapping rules (see Section 3.3) which
provide the translation between the local properties and relations identified on the web
sites (e.g., CiteSeer local ontology) and the properties and relations that are specified in
the syndicated ontology (e.g., research ontology). The mapping rules are necessary for
all items we want to keep for the global view. In order to materialize our task specific
semantic views, we translated the mapping rules in Section 3.3 into TRIPLE rules [18].
The following examples show how contextual information described in the research
ontology and in the movie ontology can be constructed from data extracted from the
local sources (DBLP, Amazon and IMDB in this case):

207

12

FORALL PAPER,YEAR PAPER[global:has_published->YEAR] <-
EXISTS CONFERENCE conference(PAPER,CONFERENCE)@DBLP.

FORALL MOVIE,NAME MOVIE[global:has_title->NAME] <-
title(MOVIE,NAME)@AMAZON
OR name(MOVIE,NAME)@IMDB.

4.3 Triggering These Transformation Steps

Our current Beagle++ prototype [6, 5] is being built on top of the open source Bea-
gle desktop search infrastructure, which we extended with additional modules (meta-
data generators) handling the creation of contextual information, and a ranking module,
which computes the ratings of resources so that search results are shown in the order
of their importance. Compared to existing desktop search applications this makes it
easier to find relevant resources based on the additional contextual information and to
use link-based ranking algorithms like PageRank operating on the context information
graph, in addition to traditional TF/IDF measures.

Beagle Event Based Architecture. The main characteristic of our extended desktop
search architecture is metadata generation and indexing on-the-fly, triggered by modi-
fication events generated upon occurrence of file system changes. Events are generated
whenever a new file is copied to hard disk or stored by the web browser, when a file is
deleted or modified, when a new email is read, etc, and according to the type of events,
we trigger the appropriate annotation steps. Much of this basic notification functionality
is provided in Linux by an inotify-enabled Linux kernel, which is used by Beagle.

Fig. 7. Beagle Extensions for Metadata Support

Web Cache Metadata Generator. Figure 7 shows how additional metadata generators
are integrated into our Beagle++ prototype. The queryable responsible for the web
cache annotation is WebHistoryQueryable. Each URL typed in the web browser that is
not in the cache will be transmitted by Beagle++ to the Lixto wrapper that harvests the
data according to the appropriate local ontologies. The XML data are then translated

208

13

via XSLT into RDF and then are materalized into the global semantic views with the
help of the TRIPLE mapping rules, stored into a RDF file, and indexed appropriately.
If the URL is in the cache, the relevant metadata will be displayed.

4.4 Metadata Visualization

Fig. 8. Beagle++ Metadata Window

Let’s suppose that Alice searched for the words ”semantic desktop”, and she chose
among the results the paper ”Activity Based Metadata for Semantic Desktop Search”.
When visualizing this result, the corresponding metadata can be seen as well. A new
window pops up displaying a list of details that correspond to the ontology related to
the type of resource. The result is stored on the desktop as a file sent as an attachment
by Bob. The metadata window displays the annotations corresponding to publications
together with other contextual information associated with it, retrieved from all the
other sources (e.g., DBLP, CiteSeer). The publication has 5 authors and for each of
the authors we can further display the next level of metadata. For example, in Figure
8, Alice extended author S. Ghita and she can see other publications of this author.
Additionally, she can see that the publication was presented at the ESWC conference
in 2005, its referenced publications and the ones that cited it. Information related to the
provenance of this resource is also shown, the email it was saved from and its sender.

We are currently extending our prototype to be able to display metadata on arbitrary
ontologies.

209

14

5 Related Work

Our approach integrates ideas from various fields: metadata extraction and syndication
in the web as well as recent achievements for the semantic desktop.

In [14], the authors describe an approach for personalized content syndication, fea-
turing a central content syndicator instance which answers user requests. Our approach
differs from this approach as we do not focus on content brokerage but on metadata
brokerage, and incrementally construct metadata which we use for modeling a user’s
context and preferences. Therefore, formats for content syndication like RSS [17] are
not expressive enough to create the metadata needed. A related approach creating meta-
data descriptions on behalf of a web extraction process is described in [3]. The author
creates RDF descriptions about publication information from dedicated sites in an au-
tomated process, as well as new views on the data based on these descriptions and
additional background knowledge available for this application.

One of the most interesting semantic search efforts concerning metadata enrichment
of results and their visualization is being performed in the TAP project [13]. TAP builds
upon the TAPache module, which provides a platform for publishing and consuming
data from the Semantic Web. Its knowledge base is updated with the aid of the on-
TAP system, which includes 207 HTML page templates, being able to read and extract
knowledge from 38 different high quality web sites. The key idea in TAP is that for
specific searches, a lot of information is available in catalogs and backend databases,
but not necessarily on web pages crawled exhaustively by Google. The semantic search
results are independent of the results obtained via traditional information retrieval tech-
nologies and aim to augment them. In contrast, metadata information in our scenarios
reflects contextual and activity-based metadata information available on our desktop.

The difficulty of accessing information on our computers has prompted several first
releases of desktop search applications during the last months. The most prominent
examples include Google desktop search [11] and the Beagle open source project for
Linux [9]. They do not exploit metadata information, but rely on a regular text-based in-
dex. Apple Inc. has integrated an advanced desktop search application (named Spotlight
Search [1]) into their new operating system, Mac OS Tiger. Even though they did add
semantics into their tool, only explicit information is used, such as file size, creator, last
modification date, or metadata embedded into specific files (images taken with digital
cameras for example). While this is indeed an improvement over regular search, it still
misses contextual information often resulting or inferable from explicit user actions or
additional background knowledge, as discussed in this paper.

6 Conclusions and Future Work

In this paper we discussed how relevant data can be automatically extracted from web
sites visited by the user during his work and syndicated into task specific semantic
views, which represent contextual information relevant for specific tasks and contexts.
This contextual information can be exploited to enhance desktop search beyond full-text
indexing, leading to more search results as well as to richer result representation.

We are currently putting all implementation pieces together in our Beagle++ pro-
totype, and will evaluate it in more depth in the application scenarios described in this

210

15

paper. Additionally, we intend to investigate in more detail how to incrementally update
views whenever the content of revisited web pages has changed, in order to keep our
contextual information consistent.

References

1. Apple spotlight search. http://developer.apple.com/macosx/tiger/spotlight.html.
2. Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Declarative information extraction,

web crawling, and recursive wrapping with lixto. In 6th International Conference on Logic
Programming and Nonmonotonic Reasoning, Vienna, Austria, 2001.

3. Robert Baumgartner, Nicola Henze, and Marcus Herzog. The Personal Publication Reader:
Illustrating Web Data Extraction, Personalization and Reasoning for the Semantic Web. In
ESWC, Heraklion, Greece, May 29 - June 1 2005.

4. Andrea Cal, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the ex-
pressive power of data integration systems. In 21st Int. Conf. on Conceptual Modeling, 2002.

5. P.-A. Chirita, S. Ghita, W. Nejdl, and R. Paiu. Semantically enhanced searching and ranking
on the desktop. In ISWC, November, 2005.

6. Paul Alexandru Chirita, Rita Gavriloaie, Stefania Ghita, Wolfgang Nejdl, and Raluca Paiu.
Activity based metadata for semantic desktop search. In Proceedings of 2nd ESWC, Herak-
lion, Greece, May 2005.

7. Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A formal perspective on the view selection
problem. In Proceedings of the 27th International Conference VLDB, pages 59–68, Rome,
Italy, September 2001. Morgan Kaufmann.

8. Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom. The TSIMMIS
approach to mediation: Data models and languages. Journal of Intelligent Information Sys-
tems, 8(2):117–132, 1997.

9. Gnome beagle desktop search. http://www.gnome.org/projects/beagle/.
10. Cheng Hian Goh, Stéphane Bressan, Stuart Madnick, and Michael Siegel. Context inter-

change: new features and formalisms for the intelligent integration of information. ACM
Transactions on Information Systems, 17(3):270–270, 1999.

11. Google desktop search application. http://desktop.google.com/.
12. Georg Gottlob, Christoph Koch, Rober Baumgartner, Marcus Herzog, and Sergio Flesca.

The Lixto Data Extraction Project — Back and Forth between Theorie and Practice. In ACM
Symposium on Principles of Database Systems (PODS), volume 23. ACM, June 2004.

13. R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings of the 12th Inter-
national Conference on WWW, pages 700–709. ACM Press, 2003.

14. W. Kießling, W.-T. Balke, and M. Wagner. Personalized content syndication in a preference
world. In EnCKompass Workshop on E-Content Management, Eindhoven, The Netherlands,
2001.

15. Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,
2002.

16. Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering
queries using views. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pages 95–104, San Jose, Calif., 1995.

17. RDF Site Summary specification. http://web.resource.org/rss/1.0/.
18. Triple, an rdf rule language. http://triple.semanticweb.org/.
19. Jeffrey D. Ullman. Information integration using logical views. Theoretical Computer Sci-

ence, 239(2):189–210, 2000.

211

Towards a Semantic Wiki Experience –
Desktop Integration and Interactivity in WikSAR

David Aumueller, Sören Auer

Department of Computer Science
University of Leipzig, Augustusplatz 10-11, 04103 Leipzig, Germany

{david|auer}@informatik.uni-leipzig.de

Abstract. Common Wiki systems such as MediaWiki lack semantic annota-
tions. WikSAR (Semantic Authoring and Retrieval within a Wiki), a prototype
of a semantic Wiki, offers effortless semantic authoring. Instant gratification of
users is achieved by context aware means of navigation, interactive graph visu-
alisation of the emerging ontology, as well as semantic retrieval possibilities.
Embedding queries into Wiki pages creates views (as dependant collections) on
the information space. Desktop integration includes accessing dates (e.g. re-
minders) entered in the Wiki via local calendar applications, maintaining
bookmarks, and collecting web quotes within the Wiki. Approaches to refer-
ence documents on the local file system are sketched out, as well as an en-
hancement of the Wiki interface to suggest appropriate semantic annotations to
the user.

1 Introduction

The ease of content authoring and publishing on the World Wide Web culminates in
Wiki environments. The huge free encyclopaedia Wikipedia for example was created
by an ever-growing community of contributing end-users. To manage the vast
amount of content therein categories and lists of related concepts are manually main-
tained by certain users. Extending the Wiki syntax to allow for simple semantic anno-
tations would cut down the effort of keeping such collections up-to-date, as also pro-
posed in [5]. The WikSAR [1] prototype demonstrates a straightforward approach to
enter semantics in a Wiki and presents a variety of features building on these annota-
tions. The additional expenses in semantic authoring are enticed by instantaneously
gratifying the users in various ways. Especially, the new interactive graph visualisa-
tion and navigation possibilities make the creation of meaningful connections be-
tween concepts attractive.

The next section explains the features of the semantic Wiki prototype – character-
istics that common Wiki systems do not offer – i.e. how to enter semantics and take
advantage of them. Section 3 explains the possibilities currently available in WikSAR
to integrate the user’s desktop and outlines potentials for further future approaches.
Section 4 presents the interactive graphical navigation system novel to WikSAR.

212

Figure 1. Interface of the WikSAR prototype.

2 Semantic Wiki features

The WikSAR interface consists of a Wiki page and the optional interactive graph
visualisation that can be switched on and off within a separate frame. A Wiki page in
WikSAR is divided into three parts (Figure 1): The form for editing the text, the ren-
dered Wiki text above, and the sidebar on the right containing context-dependent
links, constructed merely from semantic information present on other Wiki pages.

2.1 Semantic authoring

The WikSAR prototype uses the WikiWord or CamelCase syntax similar to Ward
Cunningham’s original Wiki Wiki Web [6]. However, WikiWords are not only used
to create hyperlinks to other Wiki pages but are interpreted either as subject, predi-
cate, or object in Semantic Web statements, i.e. RDF triples. The page name of a
Wiki page here always denotes the subject of statements embedded in the Wiki text.
Predicate and object are simply entered on an empty line within the Wiki text with
WikiWords separated by a colon and space. Thus, on a page named “PrinceHamlet”
the line “FigureBy: WilliamShakespeare” represents the statement <PrinceHamlet>

213

<FigureBy> <WilliamShakespeare>. By combining all such embedded statements a
formal ontology emerges within the Wiki. An important aspect in ontology creation
regarding the Semantic Web is to adhere to given schemas and to use already estab-
lished vocabularies. An editing assistance in that direction can be integrated in the
Wiki by suggesting already used WikiWords or vocabulary from external reference
ontologies. The recently emerged notion of mixed client and server-side Web applica-
tions (e.g. AJAX1 Asynchronous Javascript and XML) eases the creation of
intuitively usable interfaces, such as Google Suggest2 and del.icio.us3 tag suggestions
– these techniques can support the user in editing semantic statements in the Wiki.

2.2 Semantic navigation in context

The entered statements are used immediately to create links to related pages depend-
ing on the current context. Firstly, breadcrumbs inform the user about her position in
the Wiki showing the path back to the root of the site or concept. Secondly, the side-
bar shows pages or concepts related to the current concept including their type of
relationship. These special backlinks, i.e. typed backlinks, include links to pages that
contain e.g. more detailed information about mentioned concepts on the current page,
often leading deeper into the site or taxonomy. E.g. on the page WilliamShakespeare
there would be a typed backlink that leads to “PrinceHamlet” which is a “FigureBy”
the current concept. The breadcrumbs on the other hand show the way back, up the
hierarchy, saying e.g. that WilliamShakespeare is an author, which again is a person.
Thus, two important questions regarding the usability of a web site get answered:
“Where am I?” and “Where can I go?”. In addition to these navigational means on
every page, the semantic annotations are used to automatically generate a class hier-
archy or a complete map of the ontology as labeled graph, i.e. a typed site map.

2.3 Semantic retrieval

The triples created in WikSAR are available for semantic queries. Using a triple store
that supports RDF query languages, such as RDQL and SPARQL, the Wiki space can
be queried to return distinct concepts (pages). The current query syntax in WikSAR
allows filtering by specific predicate-object combinations, as in “predicate operator
object”, allowing equality, quantitative comparisons, and regular expressions as op-
erator. Concatenating expressions by spaces implies ‘and’-semantics. The query “In-
stanceOf=LiteraryAuthor BornIn=~England DateOfBirth between 1800 and 1900”
returns a list of authors born in the 19th century in England, as demonstrated in [1].

2.4 Semantic views and query chaining

WikSAR accepts a variety of proprietary commands embeddable in Wiki pages to
generate and include content gathered from all available data. For example the links

1 http://www.adaptivepath.com/publications/essays/archives/000385.php
2 http://www.google.com/webhp?complete=1
3 http://del.icio.us

214

in the sidebar get created by putting special operators in the template Wiki page for
the SideBar. Likewise, queries in WikSAR need not produce only search results
available temporarily to the querying user; queries can be embedded persistently
within Wiki pages, too. Whenever a page containing a query statement gets loaded
the specified query is executed and the result is embedded seamlessly within the Wiki
page, thus creating a special view on the Wiki information space. That way it is pos-
sible to maintain pages containing always up-to-date query results, e.g. collections of
related concepts such as EnglishAuthors or StrongBeer. Newly entered content any-
where on the Wiki will immediately be reflected in dependant collections or concepts
as well – without any manual effort. We plan to use such collections further to create
more complex queries by allowing to chain queries, i.e. by using the result set of one
query as input for another one. Allowing any list of concepts as input (even manually
created lists, e.g. lists only of personal interest) would facilitate retrieval possibilities
for very specific interest. In a Wiki collecting e.g. scientific publications, a user might
have lists of favourite authors and favourite subjects; using these as input to a query
she could retrieve publications of her explicit needs and have the list always available
as distinct Wiki page. Publishing query results or single Wiki pages as RSS-feed
informs the user immediately about changes matching her special interest without the
need to visit the Wiki.

3 Desktop Integration

Due to their flexibility Wikis are often used for Personal Information Management
(PIM), as already suggested by [6]. Important in this context is to bridge the gap
between the Wiki accessible only by a web browser and the local desktop environ-
ment, i.e. local applications and the file system. Both worlds have their advantages
for PIM; the Wiki and the information therein residing on a web server are omnipres-
ent, accessible from any machine with Web access. Conversely, reminders of ap-
pointments can be better triggered locally by calendar applications, and collections of
user-centric files, such as office documents and PDFs, usually reside locally, as well.

WikSAR publishes dates entered in the Wiki as remote calendar entries in the iCal-
endar format. Such calendar files accessible by the HTTP protocol can be imported or
subscribed to by desktop calendar applications (e.g. Mozilla Sunbird), which can then
for example trigger reminders.

Interesting PIM applications are the maintenance of lists of web bookmarks, as
well as of quotes from web pages. WikSAR uses so-called bookmarklets (some
JavaScript statements that are called from within a web browser by a single user click
to provide access to information on the currently open web page) to put selected
pieces of text and/or the URI of the resource onto the Wiki. Such collections may be
of interest to single person or a whole community. Using a Wiki to maintain book-
marks and web quotes makes them accessible not only from the web browser where
they got collected but from anywhere. Further, they can be easily annotated, too.

Accessing the local file system from within a remote web application is impossible
due to security reasons. We plan to be able to reference local files from within the
Wiki nevertheless by either providing a link to one’s desktop search engine as these

215

search engines (e.g. Google Desktop Search) are more and more accessible via HTTP
calls on localhost. Another approach may utilize the magnet URI scheme, an open
scheme “enabling seamless integration between websites and locally-running utili-
ties”4. This is already successfully applied in the P2P-domain by providing unique
keys for files that file-sharing applications can then search for. To reference emails of
a PIM user, cross platform component models to email clients may provide the miss-
ing link, such as XPCOM5 for Mozilla Thunderbird.

4 Interactive Graph Visualisation and Navigation

Visualisation of complex information spaces is an important area of research in itself
to help understand data, e.g. [2]. In the Wiki context the link structure, i.e. the inter-
connections between Wiki pages, may be drawn as a graph, as e.g. done by TG Wiki-
Browser6. Labelled graphs as available in WikSAR via the entered Semantic Web
statements offer more sophisticated visualisation and filter possibilities as merely a
graph of un-typed hyperlinked pages. Visualising ontologies is possible for example
in Protégé7. WikSAR offers a novel approach by integrating an interactive graphical
representation within the Wiki; navigating through the Wiki space is possible in ei-
ther the Wiki or the graph, changing focus simultaneously in both views.

The graph of WikSAR pages is built upon the entered semantic triples. These are
interpreted as directed labelled graph with subjects and objects being nodes, and
predicates becoming labelled edges. Since an object of one triple may be the subject
of another, these edges are chained to spawn a directed graph. To overcome the prob-
lems of visualising large graphs, the popular fisheye views and hyperbolic trees show
the part of the graph of interest more prominently than the rest of the graph.

For the Wiki we chose a special tree layout algorithm that always renders the con-
cept in focus as root of a tree and grows the tree via breadth-first-search along the
graph, as provided by the prefuse toolkit [4] as radial tree layout8. Here, the node in
focus, i.e. the root, resides in the centre of the visualisation, with the children at-
tached. Deeper descendants get displayed further away from the centre such that
every level of the hierarchy resides on its own circle around the root. For the Wiki
context this tree layout got adapted to display less information the deeper the concept
resides in the current tree, i.e. the concept in focus and its immediate children are
displayed with labels both for concept nodes and edge type, whereas deeper nodes
merely are cherished with a circle instead of label and without labelling the edge type.
By default, concepts being further away than four hops from the current one in focus
do not show up at all. The visualisation will be enhanced by allowing the user to
control the displayed tree depth and filter or highlight specific types of edges.

4 http://magnet-uri.sourceforge.net
5 http://xulplanet.com/references/xpcomref/group_Mail.html
6 http://www.touchgraph.com
7 http://protege.stanford.edu
8 Due to patent restrictions the hyperbolic tree layout algorithm is not available in prefuse.

216

We believe that the interactive graph helps to understand the relationships between
concepts in WikSAR by providing a playful approach to examine the information
space, e.g. the relationships among the characters in a Shakespearian play (Figure 2).

Figure 2. Interface of the WikSAR prototype with interactive graph.

5 Conclusion

With WikSAR, the presented Wiki prototype, it is straightforward to author semanti-
cally annotated content and to enjoy the benefits thereof, a challenge identified by [3].
A simple query interface offers retrieving information not only by keyword but also
with respect to specific semantics represented in the Wiki. Persistently embedding
queries into Wiki pages allows to create automatically updated collections of con-
cepts and monitoring of specific changes of content collected on the site. Browsing
the Wiki ontology as interactive graph representation further enhances navigation and
helps to understand complex structures by giving a graspable overview. Future en-
hancements to bridge the gap between the Wiki application on the Web and local
applications will improve personal information management.

References
[1] Aumüller, D., Semantic authoring and retrieval within a Wiki. In Demo Session at the

ESWC 2005, Heraklion, Greece (2005). Available at <http://wiksar.sf.net>.
[2] Geroimenko, V., Chen, C. (Eds.) Visualizing the Semantic Web. Springer (2003)
[3] Halevy, A. Y., et.al.: Crossing the Structure Chasm. Conf. on Innovative Data Systems

Research, California (2003)
[4] Heer, J., Card, S. K., Landay, J. A.: prefuse: a toolkit for interactive information visualiza-

tion. In CHI 2005, Human Factors in Computing Systems (2005)
[5] Krötzsch, M., Vrandečić, D., Völkel, M.: Wikipedia and the Semantic Web – The Missing

Links. In Wikimania 2005, 1st Int. Wikimedia Conf., Frankfurt, Germany (2005)
[6] Leuf, B., Cunningham, W.: The Wiki way: quick collaboration on the web. AW (2001)

217

An activity based data model for desktop
querying

(Extended Abstract)?

Sibel Adalı1 and Maria Luisa Sapino2

1 Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA,
sibel@cs.rpi.edu,

2 Università di Torino, Corso Svizzera, 185, I-10149 Torino, Italy
mlsapino@di.unito.it

1 Introduction

With the introduction of a variety of desktop search systems by popular search
engines as well as the Mac OS operating system, it is now possible to conduct
keyword search across many types of documents. However, this type of search
only helps the users locate a very specific piece of information that they are
looking for. Furthermore, it is possible to locate this information only if the
document contains some keywords and the user remembers the appropriate key-
words. There are many cases where this may not be true especially for searches
involving multimedia documents. However, a personal computer contains a rich
set of associations that link files together. We argue that these associations can
be used easily to answer more complex queries. For example, most files will have
temporal and spatial information. Hence, files created at the same time or place
may have relationships to each other. Similarly, files in the same directory or
people addressed in the same email may be related to each other in some way.
Furthermore, we can define a structure called “activities” that makes use of these
associations to help user accomplish more complicated information needs. Intu-
itively, we argue that a person uses a personal computer to store information
relevant to various activities she or he is involved in. Files may be related to
activities either directly or indirectly with some degree of relationship. In this
paper, we define a simple model of an activity and show the types of queries that
can be answered using the activity model. Our model assumes that activities can
involve files that are related to each other in many different ways: a period of
time that may contain disjoint intervals, different locations, a group of people
that we interact with and various combination of these types of associations.
Furthermore, files may be related to multiple activities independent of their par-
ticipation in one activity. Finally, our model aims to find the best indicators of
an activity for a specific user and computer based on the data provided by that
user.
? This work was supported by the National Science Foundation under grants EIA-

0091505 and IIS-9876932.

218

2 Activity based querying

As a movitating example, suppose the user wants to find the photo of the Panda
from her trip to the zoo and her photos do not have the necessary tags. It is
possible to search for this information by first finding the time frame for the
specific trip to the zoo by using a keyword query for all the relevant files and
then limit the search to files created or photos taken at this time frame. Similarly,
it is possible to limit searches to relevant people, directories based on the user’s
needs and find information by following associations known to her. In this case,
we are able to find specific information and at the same time follow the links
to browse the related information along different dimensions. This is similar to
the way we recall information that we do not remember. To accomplish this, the
system simply needs to show the relevant associations for any searched query.

To facilitate this type of querying, we define the notion of an activity as
follows: Suppose O refers to the universe of objects that could be stored in the
computer. Then, an activity actF is defined as a function actF� : O → Dτ where
τ = (Dτ ,�) is any partial order. Intuitively, an activity is an outside event that
triggers the use of a computer and the creation or use of data. Examples of pro-
fessional activities that an academician may be involved in are publishing papers
at conferences or journals, sending proposals, teaching classes, etc. Examples of
personal activities may be taking trips, participating in sportive activities and
personal gatherings, etc. We are not interested in modeling the meaning of these
activities, but how they cause the creation of data objects for this specific user.
For example, for a trip to visit friends or family, pictures taken at that trip,
emails and web site visits corresponding to purchase of tickets and email cor-
respondence with friends can all be considered relevant to the trip. These in
fact model different aspects of the trip. For a conference, we might also create
documents such as papers and presentations in addition to the files associated
with a trip. To define an activity, we assume the user defines an activity schema
actS as an ordered list actS = 〈 lf1 . . . lfk 〉 of logical formulae lf i constructed
from predicates defining the “where”, “when”, “what” type of constraints with
possible crisp or fuzzy semantics. The activity actF defined by the above schema
is then given by:

actF(o) =
{

min{i | o |= lf i} if ∃i.(1 ≤ i ≤ k) ∧ o |= lf i

k + 1 otherwise

for any object o ∈ O. The ordering of constraints gives further information
about the ordering of relevance where each object belongs to the highest priority
logical formula that is satisfied by the properties of the object. For fuzzy con-
straints, we assume the existence of fuzzy logical operators and functions that
merge sorted lists containing objects and scores.

To further enhance the functionality of the system, we develop clustering
methods to find the common properties of objects for an activity. The aim is to
help the user by showing relevant properties of objects for an activity beyond
those that are specified by the user. Being able to identify and sort files in

219

relationship to an activity and find the most relevant properties of objects for
an activity allows us to perform the following set of tasks on top of the enhanced
search queries that we discussed earlier:

– Show me the files on the visit to Company Acme last year. Find the dates,
people involved in the visit, files created for the trip and organize them in
the order of relevance together with the relevant categories of information.

– Organize my emails based on the known activities. Parse important proper-
ties for each activity and place each mail in one or more activities based on
how well they match the given activity (how many properties it matches).

– Limit my keyword search to those items relevant to activity “Writing the
activity paper”. Order the matching items with respect to their match to the
given activity.

– Hide all items relevant to activity “Car Purchase” in all my searches. Given
a level of sensitivity, do not show the items that appear to be related to a spe-
cific activity. For example, in a professional setting, do not show files related
to personal use of the same computer. This allows the user to implement
their own notion of privacy in different settings.

– Order all files based on their relationship to this file. Given a video clip, we
can find other related items such as presentations we have given with that
video clip or the people we met during these meetings. We can also limit the
search to a specific activity to focus the search further.

– Show me all related activities for a specific time/person/place. If a number
of activities are known to the computer, than we can search and find out
which activities we were involved in a specific period of time or a given place.
This allows us to recall “history” as it is relevant to us.

We are currently working on a prototype of our system to illustrate the above
mentioned functionality.

3 Related Work

When the available information is stored on the users’ desktops, it is important
for information management applications to be able to model users’ interpre-
tation of their data and to capture the possibly different meanings, semantics
links, and relationships that the users associate to the information units avail-
able. For this purpose, various Personal Information Management tools are being
developed to assist the user with her navigation/browsing over various forms of
personal digital data [10, 5, 4, 8, 13, 12].

MyLifeBits [10] is a research project and a software environment which aims
at storing, in digital form, everything related to the activities of an individual
and providing full-text search, text and media annotations, and hyperlinks to
personal data. Another Microsoft project, Stuff I’ve Seen [5], aims at managing
personal data, such as already-read email messages, for reuse. Retrieval and
presentation of information are based on contextual cues, such as time and author
in the case of email.

220

Recently, there is more work on personal desktop information management.
Chandler [4], for instance, is an interesting open source example of such manage-
ment tools, integrating calendar, email, contact management, task management,
notes, and instant messaging functions. Haystack [8] and Gnowsis [13, 12] are
systems that adopt the semantic web data modeling approach, and treat all the
data objects stored on the desktop as resources on which semantic networks are
defined using the Web Consortium’s Resource Description Framework (RDF)
[11].

More user centered treatment of object semantics recently lead to a new
emerging research area referred to as Experiential Computing [6, 2, 1]. Accord-
ing to this approach, the user interaction systems should exploit and reflect as
closely as possible users’ previous experiences. Thus, users should be part of
the complete system. Experiential environments allow a user to directly observe
data and information of interest related to an event and to interact with the data
based on his or her own interests in the context of that event. By developing ex-
periential environments, researchers aim to develop new generation information
management systems which transform database applications from being simply
information sources to being powerful insight and experience sources. The data
generated for each event is experienced by an observer and interpreted to create
knowledge. In this knowledge production process, the observer plays an impor-
tant role to interpret the data, and capture the experienced semantics. Recently,
there is interest in developing methods to exploit relationships between objects
for data cleaning problems [7].

Our approach differentiates from all of the above systems. Based on the fact
that objects in a desktop may be related to each other in different ways in
different contexts, we argue that users create and modify data as a function of
activities that they are involved in. The relatedness of an object to an activity is
a fuzzy notion. We develop methods to define and query activities. This allows
users to not only locate relevant information but also organize their desktop in
relationship to these activities.

4 Conclusions and Future Work

Our notion of an activity - a way to group objects in a user’s desktop into over-
lapping clusters of related objects and related properties - is a first step towards
solving the problem of scale when dealing with an ever increasing amount of
data both on our own desktop as well as in other data sources that we use and
share. Even though available semantic information such as free text or semantic
annotations can be consumed easily in any desktop system including ours, gen-
erating this information is still very resource intensive. Similarly, content-based
retrieval methods for image, video and other media suffer from the problem of
being too general. The content of an image may be described very differently
based on context. Hence, there is a need to integrate these methods with other
data organization methods such as activities to facilitate their effective use.

221

We are in the process of implementing our prototype activity search and
browse system as described in this paper. To this end, we are investigating
various algorithmic and system issues in the implementation of this system.
One of the main future problems we need to address is the issue of structured
activities where an activity may be described by combining simpler activities. An
activity may have many different aspects, for example a trip has a preparation
phase, the actual trip followed by the other related activities. Based on our
queries, we might be interested in a certain aspect of a given activity and the
system should immediately adapt to this using a form of relevance feedback. Even
though we can keep activity definitions fairly simple, we can learn about user’s
specific preferences based on their interactions with the system and integrate
these back into the system. Our long term goal is to augment the desktop with
inference tools that make use of the semantic data available in the activities to
automatically associate semantics with data objects. The availability of these
solutions would be an important first step towards solving the problem of scale
in information systems.
Acknowledgment. We would like to thank Ramesh Jain for stimulating dis-
cussions on multimedia querying and experiential computing.

References

1. P Appan, H. Sundaram, D. Birchfield, “Communicating everyday experiences” Pro-
ceedings of the 1st ACM workshop on Story representation, mechanism and context,
2004.

2. S. Boll , U. Westermann, “Mediaether: an event space for context-aware multime-
dia experiences”, Proceedings of the 2003 ACM SIGMM workshop on Experiential
telepresence, 2003.

3. Jan Chomicki: Preference formulas in relational queries. ACM Trans. Database Syst.
28(4): 427-466 (2003).

4. “Vision of Chandler”, www.osafoundation.org, 2005
5. S. T. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins. “Stuff

i’ve seen: A system for personal information retrieval and re-use.” Proceedings of
SIGIR, 2003.

6. R. Jain. “Experiential computing”, Commun. ACM, vol.46(7), 2003, pp. 48–55.
7. D. V. Kalashnikov, S. Mehrotra, Z. Chen: “Exploiting Relationships for Domain-

Independent Data Cleaning.” SDM 2005.
8. D.R. Karger, K. Bakshi, D. Huynh, D. Quan, V. Sinha: “Haystack: A General

Purpose Information Management Tool for End Users of Semistructured Data.”
Proc. CIDR 2005.

9. F. Manola and E. Miller: “RDF primer”. www.w3.org/TR/rdf-primer/, 2003.
10. “MyLifeBits Project”, research.microsoft.com/barc/mediapresence/MyLifeBits.aspx,

2005.
11. “Resource Description Framework (RDF)” //www.w3.org/RDF/, 2005.
12. L. Sauermann: “The Semantic Desktop - a basis for Personal Knowledge Manage-

ment.” Proc. I-KNOW 05.
13. L. Sauermann: “The Gnowsis Semantic Desktop for Information Integration” Pro-

ceedings of IOA Workshop of the WM2005 Conference.

222

OntoPIM: How to Rely on a Personal Ontology for
Personal Information Management

Vivi Katifori 2, Antonella Poggi1, Monica Scannapieco1,
Tiziana Catarci1, and Yannis Ioannidis2

1 Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Universit̀a di Roma “La Sapienza” - Via Salaria 113, I-00198 Roma, Italy

surname@dis.uniroma1.it
2 Department of Informatics and Telecommunications

University of Athens - 157-84, Ilisia, Athens, Hellas, Greece
vivi@mm.di.uoa.gr, yannis@di.uoa.gr

1 Introduction

Nowadays, our personal computer contains a huge amount of information, that is stored
in several different formats, including emails, pictures,text documents, media file, ad-
dress books, etc. When we need to look for some information, one possibility is to use
a keyword-based search tool, such as Google Desktop [1]. We then get several links to
documents, mails, databases, etc. that relate to our searchbut are often too scattered in
order to let us easily obtain the information we are looking for, even if this information
is actually contained in our desktop.

In this paper, we propose a framework for Personal Information Management (PIM),
calledOntoPIM, that relies on the use of aPersonal Ontology, that describes user’s do-
main of interest in terms of objects, classes and relations.The ontology is personal in
the sense that it reflects the user view of her domain(s) of interest. It is used to assign a
semantics to the information contained in the user desktop,as well as to query the sys-
tem in order to obtain a certain information. Then, by relying on the Personal Ontology,
our framework overcomes the limitations of desktop search tools available nowadays.
In particular, by the use of theSemantic Save, it provides the user the possibility to store
any object of interest according to its semantics, i.e. to relate it to the concepts of the
Personal Ontology, where an object may be a mail, a document,a picture, or any other
type of data. Then, the user is able to query the Personal Ontology, whereas the system
carries out the task of suitably processing the query, accessing the different pieces of
information involved in the query, and assembling the data into the final answer.

The main contributions of this work are therefore (i) the framework definition for
Personal Information Management using a Personal Ontology, and (ii) the architecture
for the system, that encompasses heterogeneous data wrapping, data integration and
personalization tools. This work is part of a wider project called TIM - Task-centered
Information Management - under development in the frame of the DELOS NoE [2].
TIM has the two main goals of (i) classifying personal information by means of a user-
tailored ontology, and (ii) allowing task-oriented interaction with one’s own PC. In this
paper, we focus on the first goal.

The paper is organised as follows. In Section 2, we illustrate the use of the Semantic
Save. In Section 3, we discuss the architecture of the system. Then, in Section 4, we
present the formal framework underlying the OntoPIM system.

223

2 Semantic Save
In this section, we illustrate how the OntoPIMSemantic Saveworks. Suppose that we
have filled our last travel cost statement. We then proceed asfollows.

– First, we indicate that we are saving an object of typedocument. The system ex-
tracts from the document a set of metadata, e.g. theauthor and thedate. The ob-
jects that are created in this step are calleddomain independent (DI) objects, since
they may exist in every domain and have always the same set of attributes.

– Second, we specialize the type of the data with respect to a particular domain. In
our scenario, we indicate that the document we are saving is an object of type
travel cost statement (TCS), that is one of thedomain specific (DS) typesthat
are associated with thebusiness domain. Thus, a new DS object of typeTCS

is created, whose part of the attributes is automatically mapped from part of the
attributes of the DI object. This is the case of the attributetraveller in our example.
We then may be asked to enter some other attributes associated with thetravel cost
statementDS type, as for example thelocation and theoccasionof the travel.

– Finally, the system maps the attributes of interest of the newly created object of
typeTCS to concepts of the Personal Ontology. Note that this step is performed
automatically, thanks to a set of rules, calledmappings, that characterize each DS
type and are specified when the DS type is newly created. The semantics of these
mappings is that each attribute value becomes arepresentationof an instance of
the concept to which the attribute is mapped. In our scenario, OntoPIM maps the
attributetraveller of the travel cost statement to the conceptcolleague. Similarly,
it maps thelocation and theoccasionrespectively to the conceptscity andevent.

The result of the performed Semantic Save is graphically represented in Fig. 1(a), where
the ontology is represented in the flavor of a simplified Entity-Relationship model.

Colleague

Transport

Travel Assigned

CityReachable

Destination

(0,n)

(1,1)

(0,n)

(0,n) (0,n)

Lives
(0,n) (1,1)(1,n)

Person

GoalEvent
(0,1) (1,1)

Travel cost

statement

Document

content

location

occasion

author

date
title

id (filename)

format

Ontology

Domain

specific

types

Domain

independent

types
content

id

to

From

Date

To

(1,1) (1,1)

(0,n) (0,n)

traveller

from

(a) Semantic Save result

User

DS LAYER

DI LAYER

------photos documents emails

Mapping Builder

PHYSICAL LAYER

Semantic Save Manager

Wrapper

Interface

OS

Interface

Logical

Layer

Interface

Personal

Ontology

Builder

Personal

Matcher

Query/Result

Query

Processor

Personalization

Tool

(b) OntoPIM architecture
Fig. 1.

3 The OntoPIM Architecture

The OntoPIM architecture is shown in Figure 1(b). Note that all the modules interact
with three diffent data layers that, starting from the bottom, are: (i) the physical layer,
storing files or relational tables or any other physical objects that can be stored on a PC;

224

(ii) the first wrapper layer (DI Layer) representing domain independent (DI) objects
from the physical layer, such as emails, documents, photos etc., and (iii) the second
wrapper layer (DS Layer) representing domain specific (DS) objects that correspond to
domain specific types, such as the travel cost statement of the running example.

In what follows we describe the main OntoPIM modules.

– The user interacts with thePersonal Ontology Builder (POB)in order to build her
own Personal Ontology. Such representation is intended to be completely indepen-
dent of the physical representation of information.

– The Personalization Tool (PT) interacts with the POB, to automate the creation
and the modification of the ontology on the basis of an appropriate user profile.
Moreover, the PT is responsible for automating the SemanticSave function to some
extent, proposing itself possible concepts to be associated with the document, com-
pleting queries with things implied by the user, etc.

– The Mapping Builder (MB) allows the user to create and modify her DS types.
By interacting with the user, it establishes the correspondence between DS objects
of the DS Layer and concepts of the Personal Ontology. This specification is then
translated into the set of rules that constitutes the set ofmappingsthat will be for-
mally introduced in the next section.

– TheSemantic Save Manager (SSM)takes as input a physical objecto and uses the
mapping created by the MB module to perform the Semantic Saveby: (i) invoking
the operating system in order to saveo in the OS file system, (ii) creating the DI
abstraction ofo and (iii) linking it to the corresponding wrapper.

– The Personal Matcher (PM) performs instance matching. It is responsible for
identifying attribute values of different DS objects as representing the same real
world entity. It produces as output the set ofmatching rulesthat describe how to
perform the matching. These rules will be formally presented in the next section.

– TheQuery Processor (QP)is responsible to process and answer the queries posed
by the user over the Personal Ontology. More specifically, the QP exploits the ab-
straction created by the SSM, the mapping created by the MB and the rules pro-
duced by PM, in order to rewrite the query in terms of queries to wrappers, that
retrieve the actual data from the physical layer.

4 Formal Framework
In this section, we introduce the formal framework underlying the OntoPIM system,
that encompasses two main functions that are the Semantic Wrapping and the Seman-
tic Integration. The former aims at overcoming the personaldata heterogeneity and its
primitive lack of semantics by presenting the information contained in its mails, doc-
uments, etc. as data tuples of relations that are meaningfulwith respect to the user’s
domain of interest. On the other hand, the Semantic Integration function lets the user
query the ontology, that represents its personal, integrated view of its domain of interest,
while the system carries out the task of suitably retrieving, reconciling and assembling
the actual data. Because of lack of space we will focus here onthe more challenging
part of the system, i.e. the Semantic Integration. In particular, this makes use of a sim-
ple description logic, called DL-Lite [4], to describe the Personal Ontology provided to
the user. DL-Lite is tailored to capture basic ontology languages and it is particularly

225

suitable in our context, where the user may want to pose complex queries over a huge
amount of data. Thus, in DL-Lite, answering conjunctive queries posed over the Per-
sonal Ontology can be done in polynomial time in the size of the personal data. Notably,
DL-Lite comes with a system, called QUONTO [3], upon which OntoPIM is built.

Given an appropriate Semantic Wrapping layer that presents user’s own data as DS
objects, the Semantic Integration part of OntoPIM can be characterized by means of a
quadrupleSI = 〈O,S,M,R〉, such that:

– O is the Personal Ontology, described by means of a DL-Lite TBox.
– S is a set of DS types.
– M is a set of mappings, i.e. a set of rules of the form:

RS(v) → conj(x,y), I(x,v),
whereRS ∈ S, v,x,y denote variablesv1, ...vn, x1, ...xn, y1, ...ym, n is the arity
of RS , m ≥ 1 and conj(x,y) is a conjunction of atoms of the formC(z) or
R(z1, z2), whereC andR are resp. a basic concept and a role inO, z, z1, z2 are
variables inx,y andI(x,v) is a set of atoms of the formI(x, v) that indicates that
v is a representation of the instancex. We callI Instance relation.

– R is a set of rules, calledmatching rules, that specify how to identify and match
different representations of the same instance of a given concept. These rules are
applied to the set of atoms generated by the mappings.They may have one of the
following forms:
1. C(x1) ∧ C(x2) ∧ I(x1, v) ∧ I(x2, v) → x1 = x2;
2. C(x1) ∧ C(x2) ∧ I(x1, v1) ∧ I(x2, v2) ∧ sim(v1, v2) → x1 = x2.

wherex, x1, x2 are variables inx, v, v1, v2 are variables denoting data values,C

is a basic concept ofO, sim(v1, v2) is a predicate that checks whetherv1, v2 are
similar according to a certain similarity definition, andconj(x) andI(xi, vi), are
defined as above fori = 1, 2.

To illustrate the scenario above, let us come back to the example of the Section 2. We
establish a connection between the data of interest contained in each object of type
TCS and the Personal Ontology graphically represented in Figure 1(a) by means of the
following mapping assertion:

TCS(v1, v2, v3, v4, v5, v6, v7) → Goal(x1, x4), I(x4, v4), Destination(x1, x3),
I(x3, v3), Assigned(x1, x2), I(x2, v2), From(x1, x5),
I(x5, v5), To(y, x6), I(x6, v6).

Then for each concept ofO we define a matching rule of type 1. We also define the
following matching rule of type 2 stating that two dates thatare expressed in a different
format represent the same instance of the concept Date:

Date(x1), I(x1, v1), Date(x2), I(x2, v2), sameDate(v1, v2) → x1 = x2,
where we assume that the system is able to evaluate the predicatesameDate(x1, x2).

Now, suppose that we are saving a travel cost statement concerning the travel that
Mr. Cabernet made to participate to the World Wine Event (WWE) in Bordeaux from
the 1/09/2003 to the 5/09/2003. TheTCS mapping generates the following set of facts,
that constitutes a portion of the DL-Lite ABox:

Travel(x1), Event(x2), Goal(x1, x2), City(x3), Destination(x1, x3),
Colleague(x4), Assigned(x1, x4), Date(x5), From(x1, x5), Date(x6), To(x1, x6).

Moreover, the mapping generates the following portion of the Instance relationI:

226

ConstantRepresentationConstantRepresentationConstantRepresentation
x2 WWE x4 Mr.Cabernet x6 05/09/03
x3 Bordeaux x5 01/09/03

Then, given the DL-Lite TBox expressed by means of the Personal OntologyO, the DL-
Lite ABox obtained above, the Instance relationI and the matching rulesR, the system
can answer any conjunctive query overO and, for every constantxi possibly returned, it
proposes the set of corresponding representations, according to the computed extension
of the relationI. Note thatx1 has not any representation. This is not surprising since the
instances of the concept Travel would never be mapped to any attribute value. Similarly,
it would not make sense to ask for an instance of the concept Travel.

5 Conclusion
We have presented a novel approach to Personal Information Management that takes
advantage of the use of a Personal Ontology to store the data of one’s desktop and to
provide the user for an intelligent and efficient way of querying such data. We have
proposed a framework that (i) overcomes data heterogeneityand lack of semantics by
the use of a Semantic Wrapping function, (ii) integrates dataand makes it accessible
through a unified, user’s conceptual view, by the use of a Semantic Integration function.
Finally, we have presented the architecture of the system.

Currently, we are facing theinstance matchingproblem by incorporating in the
framework a set of rules responsible for detecting different representations of the same
instance. In the future, we plan to investigate how to produce this set of rules. Moreover,
note that once the matching rules have been applied, we actually keep all different
representations of the same instance. However, sometimes we may want to correct some
them. Suppose for example that in our domain view, a colleague has a unique email
address. On one hand, two different email addresses may be associated to the same
colleague because of spelling errors, in which case we wouldlike to keep only the
correct address. On the other hand, whenever a colleague moves, we may want to update
his address while keeping the old one, in order to be able to retrieve, for example, an
email that he sent us before moving. We plan to work on this in the future. Finally,
we have discussed how personalization would come into play in order to help the user
expressing queries, saving documents, etc. This will be theobject of future deeper joint
research activities. Moreover, we aim at studying how to rely on OntoPIM in order
to develop a task-centered tool that would for example automatically fill a travel cost
statement thanks to the data in our desktop.

References

1. Google Desktop,http://desktop.google.com/.
2. DELOS NoE,http://http://delos-noe.iei.pi.cnr.it/.
3. A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,M. Palmieri, and

R. Rosati. QuOnto: Querying Ontologies. InProc. of the 20th Nat. Conf. on Artificial In-
telligence (AAAI’05), 2005.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
Description Logics for Ontologies. InProc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI’05), 2005.

227

A Web Information Retrieval System

Architecture Based on Semantic MyPortal

Haibo Yu1, Tsunenori Mine2, and Makoto Amamiya2

Department of Intelligent Systems, {Graduate School1, Faculty2} of Information
Science and Electrical Engineering, Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, JAPAN

{yu, mine, amamiya}@al.is.kyushu-u.ac.jp

Abstract. In this paper, we mainly focus on a communication mecha-
nism which enables efficient information publishing and sharing among
semantic desktops. We propose MyPortal as a “one stop” for all the
information relevant to the user and further propose the conceptual ar-
chitecture of a P2P community Web information retrieval system based
on MyPortal. This architecture enables not only precise location of My-
Portal instances and their Web resources but also the automatic or semi-
automatic integration of hybrid semantic information delivered through
Web content and Web services, and it also ensures that the semantics will
not be lost during any part of the lifecycle of the information retrieval
process.

1 Introduction

Current Web design targets human consumption, based on keywords for infor-
mation indexing and searching, which not only gives rise to an enormous number
of irrelevant search responses, but is unsuitable for machine processing. In ad-
dition, the user’s desktop information and the published Web information are
managed separately, giving rise not only to a redundancy of information but also
creating difficulties in managing the relationship among items of information and
applying user personalization.

Currently, there are some research projects, such as Haystack [1] and Gnowsis
[3] trying to use semantic Web technology for the management of user personal
desktop information. However, they lack the functionality for searching, access-
ing, aggregating and processing of the Web information on the fly when necessary
and a unified interface for managing not only the personal desktop information
but also the relevant Web information. And a reasonable architecture and effi-
cient mechanisms for the connecting, discovering, and sharing of the information
among semantic information nodes are necessary.

In this paper, we make our main concern on how to connect these information
nodes in a robust and efficient way, how to discover and share the information
among these information nodes and what functionalities need to be provided in
order to realize these targets.

228

We propose our semantic Web information retrieval system architecture based
on the following main ideas.

First, “combining Web portal technology with semantic desktop technology
to provide a “one stop” for the user to all his relevant information.” As seman-
tic desktop provides a good solution for managing user personal information but
lacks the functionality to search, collect and aggregate information from the Web
for the user on the fly. On the other hand, Web portals provide a good solution
for collecting relevant information for the user, but lack options for personaliza-
tion and suffer from the problems of centralized architecture. We make use of
the basic mechanisms for semantic personal information management of current
semantic desktops and enhance their Web information publishing and sharing
functionalities to construct a semantic MyPortal.

Second, “using peer-to-peer computing architecture to connect MyPortals
with emphasis on an efficient method for reducing communication load.” De-
centralized P2P systems are robust, scalable and cheap to maintain, but tend
to have large amounts of information transferred among many peers. Hence, an
efficient mechanism for reducing communication loads with least loss of precision
and recall is very important in a P2P information retrieval system. We propose
our Agent-Community-based Peer-to-Peer information retrieval method called
ACP2P to connect and manage the communication among MyPortals.

Third, “ensure that the semantics are not lost sight of during any part of the
lifecycle of information retrieval.” In order to enable consumer re-using semantic
data, we designed the interfaces and the protocols involved in the whole life cycle
of information retrieval tasks with semantic technology.

Fourth, “all participants contribute to the semantic description consistently.”
Efficient searching for high quality results is based on pertinent matching be-
tween well-defined resources and user queries, where the matching reflects user
preferences. We use Web site capability description (WSCD) to describe the
capabilities of MyPortal and submit user queries consistently.

Fifth, “integrating Web information delivered through Web contents and
Web services.” Conventional Web contents and Web services have been managed
separately as they targeted different consumer, we will support the integrated
management of semantic Web contents and Web services at different levels in
MyPortal.

2 MyPortal

MyPortal is a “one stop” that links the user to all the information s/he needs. It
is at the user’s own desktop, which is also a Web server itself and is designed to
manage user’s personal information with semantic Web technology in a flexible
personalized way. It provides both semantic browser and semantic search engine
functionalities and these functions manage not only local user desktop informa-
tion but also the remote semantic MyPortal information. Its information can be
published through Web contents and Web services and shared by others with
proper authority.

229

The structure of MyPortal is shown in Fig 1. It consists of following four
components: core component provides basic support for semantic Web technolo-
gies and knowledge management, user interface component provides a unified
interface for creating, browsing, querying, and managing of the relevant infor-
mation, desktop information management component manages the conventional
personal information such as documents, e-mail, contact information, and com-
munication component which is the delegate of the user for communication with
other MyPortals. ����������	
���������������� ��
�
���
�����	�	������

Ontology

User Interface
Agent

Information Retrieval
Agent (IRA)

Query
Engine

Knowledge
Management

Web Services
Management

Desktop
Information

Adaptors

Inference
Engine

�� !
History Management

Agent (HMA)

Desktop Information
Management

User
Interface

Core Component

Transformation

Communication
Component

Fig. 1. Structure of MyPortal

One can refer to [4] for a little more detail for MyPortal.

3 Conceptual Architecture of Web Information Retrieval

System Based on MyPortal

Our conceptual architecture for a community semantic Web information retrieval
system is illustrated in Fig 2.

The architecture consists of three main components: a “consumer” which
searches for Web resources, a “provider” which holds certain resources, and
a mediator which enables the communication between the consumer and the
provider. In our architecture, the providers and consumers are all MyPortal.
Each provider describes its capabilities in what we call a WSCD (Web site ca-
pability description), and each consumer will submit relevant queries based on
user requirements when a Web search is necessary. The mediator is comprised of
agents assigned to the consumer and providers using an Agent-Community-based
P2P information retrieval method to fulfill the search and access tasks.

3.1 Connecting MyPortals with ACP2P method

The communication between consumer and providers is based on an Agent-
Community-based Peer-to-Peer information retrieval method called ACP2P method[2],

230

UI Agent

IR Agent

MyPortal 1

IR Agent

WSCD
(GID, WCD, WSD)

MyPortal

HM Agent

Providers

MyPortal 2

IR Agent

WSCD
(GID, WCD, WSD)

MyPortal n

IR Agent

WSCD
(GID, WCD, WSD)

Mediator

Consumer

…

Fig. 2. A Conceptual Architecture

which uses agent communities to manage and look up information related to a
user query.

In order to retrieve information relevant to a user query, an agent uses
two histories: a query/retrieved document history (Q/RDH for short) and a
query/sender agent history (Q/SAH for short). Making use of the Q/SAH is
expected to have a collaborative filtering effect, which gradually creates virtual
agent communities, where agents with the same interests stay together.

The ACP2P method employs three types of agents: user interface (UI) agent,
information retrieval (IR) agent and history management (HM) agent. A set of
three agents (UI agent, IR agent, HM agent) is assigned to each user. Although
a UI agent and an HM agent communicate only with the IR agent of their user,
an IR agent communicates with other users’ IR agents to search for information
relevant to its user’s query. A pair of Q/RDH and Q/SAH histories and retrieved
content files are managed by the HM agent.

The ACP2P method is implemented with Multi-Agent Kodama (Kyushu uni-
versity Open & Distributed Autonomous Multi-Agent) [6]. Kodama comprises
hierarchical structured agent communities based on a portal-agent model. A por-
tal agent is the representative of all member agents in a community and allows
the community to be treated as one normal agent outside the community.

We are currently planning to use SPARQL RDF query language and SPARQL
protocol as our semantic communication interfaces between providers and con-
sumers.

3.2 Web site capability description (WSCD)

Resource location is based on matching between user requirements and Web site
capabilities, hence a capability description of MyPortal is necessary. We describe
the layered capabilities of MyPortal by layers.

First, we semantically describe the general capabilities of the Web site, and
we call this a “general information description (GID).” The GID gives an explicit
overview of the Web site capabilities such as their category, topic, and can be
used as the initial filter for judging congruence with user preferences. Second, we

231

give the Web content capability description (WCD), it is the metadata of Web
contents and is composed of knowledge bases of all domains involved. Third, we
give the Web service capability description (WSD) which is further expressed
by two layers: “a semantic Web service description (SWSD)” and “a concrete
Web service description (CWSD).” This hierarchical capability-describing mech-
anism enables semantic and non-semantic Web service capability-describing and
matchmaking for different levels.

For the details of our Web site capability description mechanism, one can
refer to document [5].

4 Conclusion

In this paper, we addressed our main ideas on constructing a P2P community se-
mantic Web information retrieval system based on MyPortal, mainly focused on
how to connect MyPortals to enable automatic and efficient information shar-
ing and what functionalities are necessary when constructing a MyPortal. In
the future, we will realize a prototype of MyPortal and a P2P community Web
information retrieval system based on MyPortal, and evaluate the effectiveness
of our approaches. Experiments in using the ACP2P method for semantic Web
data retrieval in a dynamic multiple community environment will also be carried
out.

References

1. D. Huynh, D. Karger, and D. Quan. Haystack: A Platform for Creating, Organizing
and Visualizing Information Using RDF. In Proceedings of the International Work-
shop on the Semantic Web (at WWW2002), 2002. http://semanticweb2002.aifb.uni-
karlsruhe.de/proceedings/Research/huynh.pdf.

2. T. Mine, D. Matsuno, A. Kogo, and M. Amamiya. Design and implementation
of agent community based peer-to-peer information retrieval method. In Proc. of
Eighth Int. Workshop CIA-2004 on Cooperative Information Agents (CIA 2004),
LNAI 3191, pages 31–46, 9 2004.

3. L. Sauermann. The Gnowsis Semantic Desktop for Information Integration. In IOA
Workshop of the VM2005 Conference, 2005.

4. H. Yu, T. Mine, and M. Amamiya. Towards a Semantic MyPortal. In The 3rd
International Semantic Web Conference (ISWC 2004) Poster Abstracts, pages 95–
96, 2004.

5. H. Yu, T. Mine, and M. Amamiya. Towards Automatic Discovery of Web Portals
-Semantic Description of Web Portal Capabilities-. In Semantic Web Services and
Web Process Composition: First International Workshop, SWSWPC 2004, LNCS
3387/2005, pages 124–136, 2005.

6. G. Zhong, S. Amamiya, K. Takahashi, T. Mine, and M. Amamiya. The Design and
Implementation of KODAMA System. IEICE Transactions on Information and
Systems, E85-D(4):637–646, April, 2002.

232

Authoring and annotation of desktop files in seMouse

Oscar Díaz, Jon Iturrioz, Sergio F. Anzuola
{oscar.diaz, jon.iturrioz, jibfeans}@ehu.es

The Onekin Group - University of the Basque Country
P. O. Box 649, Po. Manuel de Lardizabal, 1, 20.018 San Sebastián (Spain)

Abstract. Coping with an increasing number of files is one of the challenges of
current desktops. Adding semantic capabilities is one possible solution. Aligned
with this proposal, this work introduces the notion of “knowledge folder” as a
coarse set of documents bound together by a common ontology. The ontology
plays the role of a clipboard which can be transparently accessed by the file ed-
itors to either export (i.e. annotation) or import (i.e. authoring) metadata within
the knowledge folder. Traditional desktop operations are now re-interpreted and
framed by this ontology: copy&paste becomes annotation&authoring, and folder
digging becomes property traversal. However, a desktop setting requires seam-
less tooling for these ideas to get through. To this end, this work proposes the
use of the mouse as the “semantic device”. Through the mouse, the user can
classify, annotate, author, and locate a file as a resource of the underlying ontol-
ogy. Moreover, being editor-independent, the mouse accounts for portability and
maintainability to face the myriad of formats and editors which characterizes cur-
rent desktops. The “semantic mouse” is implemented as a plug-in for Windows.

1 Introduction

Current desktops should be enhanced with mechanisms that permit users to abstract
away from �les.This work builds on the notion of knowledge folder, i.e a coarse set
of information elements bound together by a common ontology. The folder contains
an ontology, the instantiations, and the resources being annotated. A desktop can hold
distinct knowledge folders, and a given �le can belong to several knowledge folders. In
contrast with current folders, this mechanism attempts to abstract away from how �les
are physically organised, by providing an ontology-based organisation.

As an example of a knowledge folder, consider all the documentation that goes with
a research project. This includes the project proposal (e.g. a Word �le), bills being payed
by the project funds (e.g. Excel �les), etc. These �les can be scattered around distinct
(physical) folders. Even though, they can belong to the same knowledge folder as some
of the following clues indicate,

– data replication among documents (e.g. the funding body appears in the proposal
but it is also acknowledged on the articles),

– simultaneous access. More than a document is accessed during �a typing session�
(e.g. when writing the article, the proposal is checked out for the submission dead-
line),

233

– event correlation. Creation/removal of the documents are not totally independent
(e.g. a bill does not exist without a project proposal), etc.

Current desktops ignore this situation and treat �les as isolated units. Today, we copy
and paste the text values from one �le to another, and the ontology is kept (and man-
aged) in the users mind. And too often, �le location turns into digging through a hier-
archical folder tree.

This paper presents how this situation can be improved by the introduction of
knowledge folders. Speci�cally, copying&pasting becomes annotating&authoring, and
folder digging becomes ontology traversal. By tapping current �le structures into an on-
tology, authors can both populate the ontology (i.e. annotation), and reuse the instances
of the ontology while authoring a document. The ontology instances play the role of a
clipboard which can be transparently accessed by the �le editors to either export (i.e.
annotation) or import (i.e. authoring) metadata within the knowledge folder. As for �le
location, �les are now resources of an ontology. This permits to enhance and contextu-
alize desktop search based on the ontology properties, and navigate along the ontology
associations.

Being in a desktop setting, we can not ignore usability. Handling of knowledge
folders should be as seamless as possible. Rather than providing separate tools for ex-
porting/importing (i.e. annotation/authoring), we strive to accommodate to the current
tools for traditional copy&paste operations: the mouse. This will certainly facilitate user
adoption.

To this end, the semantic mouse (seMouse) is introduced. By clicking on its middle
button, seMouse exports/imports properties from the ontology, regardless of the editor
you are working with. It does not matter whether you are working with Word, Power-
Point, Netscape, etc, the �semantic� button is available for annotation/authoring. In this
way, the user does not have to move to a new editor when annotating (like in SMORE
[2]), nor has to learn a new �ontological interface� when �les from different formats are
edited (like in SemanticWord [3]).

Both, the support of knowledge folders as the underlying infrastructure, and the use
of the mouse as the device to interact with this infrastructure, are the main contributions
of this work towards making desktops semantic.

Next section introduces seMouse through �ve scenarios, namely, �le classi�cation,
annotation, authoring, semantic navigation and ontology editing.

2 seMouse at work

seMouse is an annotation/authoring device that achieves editor-independence by work-
ing at the operating-system level: the mouse. This section introduces seMouse with the
help of an example.

As a knowledge folder, consider the cluster of heterogeneous documents that goes
with a research project. This includes the project proposal (e.g. one Word �le), bills
payed with the project funding (e.g. twenty Excel �les), papers as deliverables of the
project (e.g. twenty �les in both .pdf and .doc formats), participants (whose desktop
counterpart can be either the homepage, an .html resource, or a .pdf resource) and com-
ments (being realized as either emails or .doc resources).

234

Fig. 1. A sample ontology.

Regardless of their format and folder location, it is likely that a high degree of
content reuse as well as frequent contextual navigations within this ��le space� happens.
This is what makes this set of files a knowledge unit. Being in a participant -an html �le-,
you frequently need to locate her project proposals -Word �les-, or being in a project
proposal, the associated papers -PDF �les- are commonly accessed.

A knowledge folder comprises an ontology (�gure 1 shows the one for the sample
problem). Five classes are identi�ed. Each class is characterized by a set of value-based
properties (e.g. title, keyword, abstract). Associations are de�ned between these classes
(e.g. a project is supervisedBy a participant) (termed ObjectProperty in OWL). And the
expressiveness of OWL can be used to de�ne inverse and transitivity properties between
the associations.

Although the ontology is at the core of the semantic desktop, this paper focuses
on authoring and annotating resources of the ontology. We do not address how the
inference power of the ontology can achieve its full potential in a desktop setting.

Once the ontology has been set, the population process begins. The key idea is to
use the mouse as the semantic device so that interactions with the underlying ontology
are achieved via mouse clicks. Speci�cally, pressing the middle button on the mouse
causes an interaction with the ontology manager. This interaction is context-sensitive,
i.e. the button accomplishes distinct operations depending on the place the pointer sits
on. Next paragraphs introduce �ve scenarios of the use of the semantic mouse.

Scenario 1: file classification. First of all, �les need to be identi�ed as instances of
any of the ontology’s classes. This is achieved by opening a �le, and pressing the middle
button. A menu pops up for the user to indicate to which class this �le is a resource.

Scenario 2: annotation (see �gure 2 and 3). Annotation&authoring becomes the
counterpart of copy&paste in traditional desktops, with the difference that now these
operations are conducted along the ontology net. What is being exported(i.e. copy) is
no longer a string but a class property of the ontology.

If a �le has already been categorised, the annotation process may begin. If some
text is selected, the mouse is used to export this text as part of the value of a property
as it is shown in �gure 2. Of course, the set of properties will depend on the class of

235

Fig. 2. Scenario 2: annotation. Some text is selected. Being a deliverable file, the menu displays
properties of this class. The text will become the value of the chosen property.

Fig. 3. Scenario 2: annotation. No text is selected. The menu shows associations of the file class.

the resource. In the example, title, keyword and abstract correspond to properties of the
deliverable class.

On the other hand, if no text is selected, the middle button is used to establish
associations with other �les. This situation is exempli�ed in �gure 3. In this case, the
CORDIS project template for EEC projects has been used. When the middle button
is pressed, a menu pops up for the user to link the current resource with other target
resources. The menu is customised for the current resource, that is, the associations
are restricted to those available for the current resource, whereas the target �les are
also limited to those of the appropriated class. In the example, the association can only
be established with deliverables �les since this is the destination class of the delivers
association.

Scenario 3: authoring (see �gure 4). Associations being set during annotation can
now be exploited. For instance, the project resource can import the title of its associated
deliverable resources. In the example, the article “Authoring and Annotation of Web
Pages in CREAM” appears as a deliverable of the current �le. By selecting this article,

236

Fig. 4. Scenario 3: authoring. The title of a deliverable is imported into a project resource.

the menu is extended rightwise to show up its properties. The user can select one of
these properties, and its value is inserted at the cursor place.

Scenario 4: semantic navigation . File location in current desktops frequently im-
plies folder digging. By contrast, semantic navigation strives to exploit the associative
behaviour of the human memory. A resource can be located from the resources it is
related to. That is, the ontology provides the context to facilitate resource location.

Once a �le has been selected, semantically-related �les can be located by pressing
the middle button, regardless of the folders where these �les are physically located,
providing a resource-centric navigation. This facilitates location of neighbour resources,
but it may be cumbersome whenever browsing is required. In this case, a graph-based
RDF visualizer can be a better option (see [1] for an overview of RDF visualizers).

3 Conclusions

This work strives to lower the adoption barrier of the semantic desktop by providing
seamless tooling. To this end, we support the notion of �knowledge folder� as the under-
lying infrastructure, and the �semantic mouse� as the interactive device. Being editor-
independent, the mouse accounts for portability and maintainability to face the myriad
of formats and editors which characterizes current desktops. Similar to other areas of
computing, a balance is needed between generality (e.g. format-independence, editor-
independence, etc), and functionality (i.e. the semantic tooling available). seMouse il-
lustrates a semantic-lite approach where a compact set of functions are available to no
matter which editor within Windows.

References

1. John Gilbert and Mark H. Butler. Review of existing tools for working with schemas, meta-
data, and thesauri. Technical report, Hewlett Packard Laboratories, October 2003.

2. Aditya Kalyanpur, James Hendler, Bijan Parsia, and Jennifer Golbeck. SMORE - Semantic
Markup, Ontology, and RDF Editor. http://www.mindswap.org/papers/SMORE.pdf, 2004.

3. Marcelo Tallis. Semantic Word Processing for Content Authors. In Workshop Notes of Knowl-
edge Markup and Semantic Annotation Workshop (SEMANNOT 2003). Second International
Conference on Knowledge Capture (K-CAP 2003), October 2003.

237

Context as Foundation for a Semantic Desktop

Tom Heath, Enrico Motta, Martin Dzbor

Knowledge Media Institute, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, United Kingdom

{t.heath, e.motta, m.dzbor}@open.ac.uk

Abstract. Adoption of semantic web technologies and principles presents an
opportunity to change the conceptual model of desktop computing. Moving
from a traditional position where the desktop is largely tied to a specific
computational device, a semantic desktop could exist as a broad, networked
space defined relative to the user. In this position paper we argue that personal,
computing, and knowledge contexts are the appropriate means by which to
define and shape the desktop space, and that collectively they provide the
foundation for novel functionality in a semantic desktop.

1 Introduction

The traditional conceptual model of desktop computing is no longer applicable. In a
heavily networked world, the distinction between a desktop as realised by an
operating system running on local hardware, and the web as something separate and
external, is false. What makes the desktop unique is not the location of execution of
its underlying code, but its role as a space that is largely under the control of one
individual; a personal domain that in some way reflects or represents their world.

Consequently, developers of a semantic desktop face a choice between simply
applying semantic web principles to a traditional desktop environment whilst
retaining the same conceptual model, or using the power of these technologies to
enable a more ecologically valid interaction paradigm that emphasizes the person, the
tasks they perform, and the context in which they do so, irrespective of where the
code is executed. Whilst both approaches may bring benefits, we advocate the second.
In this position paper we will discuss how that context may be defined, represented,
and used in pursuit of this aim.

Ubiquitous computing literature has largely defined context in terms of computing
resources, the user’s location, and the identity of people around them [1]. Our
conceptualization of a semantic desktop requires a broader view to be taken if this
greater ecological validity is to be achieved. In the following sections we will identify
three facets of context (personal, computing, and knowledge) and the interactions
between them, whilst also examining how each may be represented and utilised in a
semantic desktop, and what novel features this may provide.

238

2 Personal context

Reminiscent of a phenomenological view of context [2], personal context
encompasses properties of the individual as they exist in the world, which may
influence a task being performed but are not specific or unique to it. In [3] the authors
identify several such properties, including a person’s social context (social networks
they are part of), their preferences (values or opinions held), resources they have
available for performing a task (such as time or attention), and their location.
Inevitably these factors interact, such as one’s location in a busy office reducing the
attention available for performing a task.

In terms of semantic representation, social networks and nodes within them can be
represented with vocabularies such as FOAF [4] and SWAP Personal Information
Markup [5]. Representing the resources available for performing a task may be
informed by work in the field of instant messaging, regarding how to describe
presence and availability (e.g. online, low attention, do not disturb). Personal
preferences might be described using multiple domain-specific vocabularies (such as
the Vegetarian Ontology [6]) or through a generic ontology of preference which could
be applied to any domain. Vocabularies such as Basic Geo [7] can be used to express
latitude and longitude locations in a machine-readable way. However, to
meaningfully represent the individual’s location this will need to be complemented by
ontologies of place and space that describe locations in terms of their function,
significance, and interrelations.

At present these personal context factors, if represented or used at all within a
desktop environment, are done so on a per-application basis, adding unnecessary
cognitive overhead to the performance of tasks. For example, a user may have to
maintain separate contacts lists in their email and instant messaging applications, or
may have to state their location when searching the web for local restaurants and
again when booking a flight.

The ability to create personal context widgets to represent and manage this context
information and make it available across tasks is a key benefit of a semantic desktop
over a conventional one. We hypothesise that this provides a more realistic cognitive
model to the user, where the factors and entities that characterise their world are
captured in one place rather than distributed piecemeal or not represented at all. A
trend towards integrating applications that share a social component can be seen in
Chandler [8], and this should be welcomed as long as the focus remains on integrating
contextual information and providing services on top of this.

3 Computing context

In the ubiquitous computing literature, resources such as network connectivity [9],
applications available, and characteristics of the device being used are seen as key
aspects of context. These factors should be represented and utilised in a semantic
desktop as they may impact on how a task is performed, and they do reflect aspects of
the user’s world. This may be achieved using CC/PP profiles [10], which provide a
means to describe the capability of a device and preferences about how it is used, and

239

may be extensible to describe factors such as the network connectivity available at
any one time.

An ontology of application types that describes their capabilities in functional
terms (e.g. ImageManipulator, MessageHandler) could be populated with those
applications available to any particular computing environment (whether they are
implemented at the local machine or the webtop level).

However, our view emphasises the desktop as a reflection of the user’s world.
Consequently, the objects that populate that world and the tasks performed within it
are key, with the resources and applications available playing only a secondary, more
abstract role. Influenced by aspects of the Xerox ‘Star’ computing environment [11]
we believe that a semantic desktop can enable an interaction paradigm centred on
digital objects, their contexts, and associated tasks, in a way that a conventional
desktop cannot. By object context we mean factors such as the people or objects
depicted in a photograph or the occasion on which it was taken, the person who sent a
message, or the organisation who published a document.

Whilst some actions users may wish to perform would be generic to most objects
(such as view, share, edit), others may be determined by the object type (such as
cropping or resizing an image), or its associated contexts. Awareness of how context
manifests itself for different types of object would allow true context menus to be
implemented, providing access to functionality or services tailored to that specific
object. For example, such a menu for an audio file could provide access to other
tracks by the same artist, a discography, or current tour dates. Similarly, a context
menu for a message object might provide access to contact details for the sender, or
inferences about how best to contact them in response, based on their current
availability.

Ontological descriptions of the types of objects available in a semantic desktop, the
actions that may be performed on them, their associated contexts, and the capabilities
of applications available to the desktop could enable a semantic registry for the
desktop, with reasoning able to determine the best code to execute to perform a
particular action or task, rather than requiring an explicit decision from the user.

4 Knowledge context

Whilst a traditional filesystem is concerned with managing files that exist on a local
machine, the same limitations do not apply to a semantic desktop. Instead, a semantic
filesystem should focus on the management and application of knowledge that
supports user tasks wherever it resides, enabling a knowledge-oriented computing
environment that adheres to our model of the desktop as a representation one person’s
world.

Here semantic web technologies can bring great benefits over conventional
desktops, firstly through improved knowledge representation, secondly through the
ability to reference any resource, irrespective of whether it is a digital object itself or
simply a reference to an entity in the real world, and thirdly irrespective of whether it
is located locally or remotely.

240

However, if these abilities are to be maximally exploited in the support of tasks,
then we must be able to assess the provenance and validity of knowledge in the
system; the knowledge context. Just as conventional filesystems have metadata
recording when a file was created and last modified etc., so a semantic filesystem
should have knowledge metadata indicating the source of knowledge in the system, its
age, whether it has been validated or not, and inferences about its likely
trustworthiness. An ontology of knowledge characteristics could define the exact
nature of this metadata, populated over time as knowledge is added to the system and
evidence is accumulated to qualify, validate or contradict the assertions.

Awareness of knowledge context brings some novel features to a semantic desktop
which could support the tasks outlined in [3]. If locating a certain piece of knowledge
within a semantic desktop, the ability to prioritise results based on inferred
trustworthiness could help reduce cognitive overhead. Similarly the user may only
wish to monitor knowledge within the environment that is recent whilst ignoring older
stable items, and knowledge context can enable this. It also provides a foundation for
the evaluating task, which consists of “determining whether a particular piece of
information is true, or assessing a number of alternative options”.

5 Interactions between facets of context

Whilst the context facets discussed here have been treated separately there are
inevitable interactions between them, and a semantic desktop must facilitate these to
provide maximum benefit. For example, how well someone is known to us (personal
context, social factor) is likely to effect how much we trust knowledge they share with
us (knowledge context). Similarly, in a situation where someone has limited resources
for performing a task they may accept knowledge as a solution even if it is from a less
trusted source, simply to have reached some solution. These interactions can enable
novel features, as shown by the example above where an objects context menu could
provide access to the author’s contact details and, where permission exists, to their
personal context, such as current availability and inferences about how best to contact
them.

The extent of these interactions can be illustrated by the task of locating recipes for
a dinner party. In this case a semantic desktop could take into account the personal
context of the user by excluding certain cuisines they have indicated they don’t like,
and by prioritising results from the same sources as recipes that have a trusted
knowledge context. An object context could be provided by creating links between
the semantically annotated recipes and the necessary ingredients as listed in an online
shop.

6 Conclusions

A semantic desktop has the potential to introduce a new style of interaction in
personal computing that is not feasible with conventional technologies. In this
knowledge-based environment, the desktop is defined in relation to the user, not the

241

hardware, operating system, application, or protocol being used. However, parameters
are required to shape this semantic desktop to the individual, and in this paper we
have argued that context is an appropriate and powerful basis on which to do so.
Whilst each facet of context we have discussed enables different functionality,
interactions between them are central to the performance of tasks by the user. A
semantic desktop based on the foundation of these facets and their interactions
represents a novel and powerful interaction paradigm.

Acknowledgements

This research was partially supported by the Advanced Knowledge Technologies (AKT)
project. AKT is an Interdisciplinary Research Collaboration (IRC), which is sponsored by the
UK Engineering and Physical Sciences Research Council under grant number GR/N15764/01.
The AKT IRC comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and
the Open University.

The authors would also like to thank John Domingue and Marian Petre, conversations with
whom inspired some of the ideas in this paper; and two anonymous reviewers, whose
comments led to significant improvements.

References

1. Dey, A. K., Abowd, G. D., Salber, D.: A Conceptual Framework and a Toolkit for
Supporting Prototyping of Context-Aware Applications. Human-Computer Interaction 16
(2001) 97-166

2. Svanaes, D.: Context-Aware Technology: A Phenomenological Perspective. Human-
Computer Interaction 16 (2001) 379-400

3. Heath, T., Dzbor, M., Motta, E.: Supporting User Tasks and Context: Challenges for
Semantic Web Research. In: Proc. ESWC2005 Workshop on End-User Aspects of the
Semantic Web (UserSWeb) (2005)

4. Brickley, D., Miller, L.: FOAF Vocabulary Specification. http://xmlns.com/foaf/0.1/ (2005)
5. SWAP Personal Information Markup. http://www.w3.org/2000/10/swap/pim/doc (2003)
6. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In: Proc.

Cooperative Intelligent Agents (2003)
7. Basic Geo (WGS84 lat/long) Vocabulary. http://www.w3.org/2003/01/geo/ (2003)
8. O. S. A. F.: What's Compelling About Chandler: A Current Perspective.

http://www.osafoundation.org/Chandler_Compelling_Vision.htm (2005)
9. Khedr, M., Karmouch, A.: Negotiating Context Information in Context-Aware Systems.

IEEE Data Engineering Bulletin (2004) 21-29
10. Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0.

http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/ (2004)
11. Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby, C., Beard, M., Mackey, K.:

The Xerox Star: A Retrospective. Computer 22 (1989) 11-26, 28-29

242

DeepaMehta – A Semantic Desktop

Jörg Richter2 and Max Völkel1 and Heiko Haller1

1 AIFB, University of Karlsruhe, Germany
{mvo,hha}@aifb.uni-karlsruhe.de,

http://www.aifb.uni-karlsruhe.de/WBS
2 Co-Founder and Lead Architect of DeepaMehta, Berlin, Germany

jri@freenet.de, http://www.deepamehta.de

Abstract. DeepaMehta is an open source semantic desktop application
based on the Topic Maps standard. Its conceptualization and especially
the UI have been guided by findings of cognitive psychology in order
to provide a cognitively adequate working environment for knowledge
workers of all kind. It uses a graph visualization similar to concept maps.
DeepaMehta aims to evolve nowadays’ separated desktop applications
into an integrated workspace, enabling the user to organize, describe,
relate, edit and use almost any information objects.

Introduction In this paper we present the Topic-Map-centric semantic desk-
top ”DeepaMehta”. First we state some psychological requirements for personal
knowledge management (PKM). Then we describe the UI concepts and their
realisation via the Topic Map metaphor. We conclude with a brief evaluation
based on psychological criteria and a selection of related works.

Psychological Requirements It should be the main goal of any knowledge
management software, to facilitate the creation, externalisation, and (re)construction
of knowledge. Since there is evidence, that conceptual human knowledge is actu-
ally stored in an associative way, comparable to semantic networks [1], it appears
sensible to provide the knowledge worker with a UI, where the contents are dis-
played, managed, created, and refined in such an associative manner (i. e. items
together with their relations to other items) that enables the construction of
semantic networks [2].

Mapping Techniques3 exploit the fact, that one can use his natural sense of
spatial orientation, which has not been optimized by evolution for text or even
hypertext. We can use our sense of orientation that easily distinguishes spatial
positions and layouts (also in a plane) to gain orientation in our knowledge
space. Furthermore, there has been a lot of research in cognitive psychology that
showed, that the use of concept-map-like techniques can have various positive
effects on learning and problem solving – i. e. knowledge generation and -use
[2–4].
3 In this article the Term “Mapping” is used as coined in the domain of instructional

psychology, i. e. in the sense of creating and using visual knowledge representations
called “maps” like mind-maps, concept maps etc.

243

Another requirement stemming from psychological viewpoint is a low cog-
nitive overhead. This is “the additional effort and concentration necessary to
maintain several tasks or trails at one time” [5]. Because our working memory
and thus capacity for conscious processing are so limited, we should avoid wast-
ing it to secondary tasks like worrying about saving files, dealing with layout
and formatting while writing or regaining orientation in the information envi-
ronment. It is thus a major goal of usability research to reduce such cognitive
overhead.

Fig. 1. A Topic Map (typical DeepaMehta working screen)

Design The design of DeepaMehta is centered around the model of Topic Maps.
Topic maps are a human-oriented approach to encode knowledge and knowledge
about knowledge. Topic maps consists of topics, associations and occurrences. In
the semantic web, this relates to resources, relations and instances. Topic maps
form a type system which is self-describing, much like RDF schema. We assume
some familiarity with Topic Maps and refer the reader to the ISO standard [6]
and relations to RDF [7].

DeepaMehta is an application framework with a Topic-Map-based user inter-
face (c. fig. 1), the design of which is based on findings in cognitive psychology.
Information of any kind as well as the relations between information items can
be displayed and edited in the same space. The user is no longer confronted
with files and programs. There are no overlapping windows, no menu bar and
no dialog boxes. Topic Maps are individual views on interconnected contents.

244

An application in this context is a collection of topic types, for which specialised
and generic commands (e. g. what’s related, hide, retype, delete) are executable
by the user.

A Cognitively Adequate User Interface One of the most obvious problems
in current desktop user interfaces is that of context switching. Users are currently
switching between different applications for every sub-task. Each switch presents
a completely new interface to the user, even if the underlying concepts don’t
change much: An address used within a text document is conceptually not much
different from the same address used in an email. Today’s desktop UI’s are
application-oriented, not data- or task-centric. DeepaMehta gives the user stable
views, letting the user focus on the task itself, without leaving the work-context:
In one and the same view the user can read an email, link it to an existing
topic, attach a note to it, search for related media, save the search results, make
semantic statements and spatially arrange all these items on the screen. If a user
leaves his workspace, he will find it later exactly as he left it.

Browsing the WWW is an easy endeavor. Figuring out later where one has
been is not that easy. A browsers history is purely time-based (1) and offers
no possibility to attach any kind of information to it (2). Even worse, after a
fixed time interval, the history is often erased automatically (3). If not, it be-
comes so large that a useful information retrieval is impossible (4). Additionally,
the browsers history contain no information about other resources accessed (5).
Bookmarks do offer the ability to attach notes to web addresses, but still have
the problems (4) and (5). Bookmarks require a lot of additional effort compared
to normal web browsing. DeepaMehta offers constructive browsing as a so-
lution. Each resource used is represented as a topic in the current workspace.
Each new topic is placed right next to the one where it originated from. The user
can replace it conveniently to another place in his workspace, which is always
visible. Now surfing the web – or accessing other resources – automatically cre-
ates a map of seen things. Even searches, refined searches and search results are
represented in the same intuitive fashion. This spatially arranged map visualises
a work process better then a few named bookmarks or a list of URLs. This map
is automatically persisted and usable.

Traditional applications have a fixed set of objects they deal with. The Deep-
aMehta type system is extensible. The user can construct new topic and re-
lation types on the fly in the same user interface, using a set of very few built-in
topic types like topic type, assoc. type, property, prop. value, data source, search,
map, and workspace. New topic types can be used instantly and serve as the
basis for the UI. The user management is also carried out using the topic map
concept (e. g. each user represented by a topic, with relations to groups and
shared workspaces).

DeepaMehta is realised with a service oriented architecture (SOA) offer-
ing many communication and integration options. It comes with a rich client, a
browser interface and a set of desktop adapters. Data can be stored in several
back-ends, exported to XTM or PDF or even shared via SOAP web services.

245

Each topic type can be provided with it’s own java class, to give it unique func-
tionality.

For collaboration, users can share their workspace (topics, topic types and
types positions) in the web interface with others, relying on the integrated access
control system and central synchronisation server.

Evaluation The DeepaMehta architecture defines a new application model
and gives developers a framework to design DeepaMehta-applications. Such ap-
plications are easy to maintain and updated, as the business logic resides on the
server. Also a range of interaction front-ends is offered: rich client, thin client,
web browser and even a PDA interface4. The thin client framework provides a
solid framework for many kinds of interaction clients. A more up-to-date user
interface is planned.

This flexibility enabled the successful deployment of several commer-
cial sites in a variety of domains5. Among these are two eLearning projects,
a geographic information system about city quarters “Kiezatlas”. For consul-
tants, a competence analysis tool was implemented. A third project acts as an
information management system for modern and contemporary artwork.

In order to evaluate the usefulness of the innovative user interface for per-
sonal knowledge management, we check6 it against a set of criteria set up to
evaluate visual mapping tools for personal knowledge management from a cog-
nitive psychological point of view [4].

– Free Placing an item on the canvas is possible.
– Free Relations: Stating relations between items in DeepaMehta is possible

in all degrees of formality (unlinked nodes, unlabeled links, labelled links,
typed links)

– Every item can be given an Annotation in natural language.
– The most basic and useful way, to deal with complexity and clarify the macro

structure of a domain, is to use chunking a.k.a. clustering [8, 9]. DeepaMehta
offers only visual grouping within a single map or the ability to create explicit
sub-maps.

– For brainstorming, too many mouse-clicks are currently required and cre-
ating new items without leaving the keyboard, is not possible at all. The
cognitive overhead should be reduced for standard tasks.

– The detail and context problem [5, 10] is solved in DeepaMehta by splitting
the screen and showing the user always both the actual content (property
pane) and the context information (topic pane). The linked topic-view on the
left gives him always all related items, while the rights side can be navigated
classically by traversing links or editing property values.

4 Download at http://www.deepamehta.de/docs/deepamobil.html
5 http://www.kiezatlas.de, http://artfacts.net
6 Due to space limitations, the commented evaluation can only be found in the long

version of this paper

246

DeepaMehta’s UI and interaction paradigm takes a consequent approach of min-
imalist design, where only relevant controls are shown. As this differs from com-
mon interfaces, it requires some initial time to get acquainted. Providing zooming
capability and a grouping feature would surely increase its utility, especially for
the use of larger and more complex maps.

Conclusion In this paper we presented the DeepaMehta framework for a unified
personal knowledge management. A user works with his unified knowledge (UK)
as he sees data bases, contacts, emails, projects and other data through the same
structured, interface. This interface offers personal ontology-based management
(POM) through its flexible and extensible Topic Map approach. The whole
application is part of a networked environment (NE), in which users can easily
share concepts and content. Thus DeepaMehta is a true NEPOMUK, which
has been used successfully in a number of commercial projects. In the future,
usability improvements and RDF integration will be explored.

Related Work The node-and-link type of DeepaMehta’s visualisation is inspired
by the concept capping approach [11], that has proven successful in improving
learning in many different scenarios (see [3] for an overview of studies). There has
also been a lot of research on a semi-formalized derivative of concept mapping,
dubbed knowledge mapping, that uses fixed sets of typed relations [2].

Acknowledgments: Research reported in this paper has been partially financed

by the EU in the IST-2003-507482 project Knowledge Web 7 and is supported by the

German Federal Ministry of Education and Research (BMBF) under the SmartWeb

project. We would like to thank our colleagues for fruitful discussions.

References

1. Quilian, M.R. In: Semantic Memory. MIT Press, Cambridge, MA (1968)
2. O’Donnell, A.M., Dansereau, D.F., Hall, R.: Knowledge Maps as Scaffolds for

Cognitive Processing. Educational Psychology Review 14 (2002)
3. Jonassen, D.H., Beissner, K., Yacci, M.: Structural Knowledge: Techniques for

Representing, Conveying and Acquiring Structural Knowledge. Lawrence Erlbaum
Associates, Inc (1993)

4. Haller, H.: Mappingverfahren zur Wissensorganisation (2003)
5. Conklin, J.: Hypertext: an introduction and survey. Computer 20 (1987) 17–41
6. Michel Biezunski, Martin Bryan, S.R.N.: ISO/IEC 13250:2000 Topic Maps. Tech-

nical report (1999)
7. Pepper, S.: Ten theses on Topic Maps and RDF. Technical report (2002)
8. Anderson, J.R.: Cognitive Psychology and Its Implications. 6th edn. Worth Pub-

lishers (2005)
9. Miller, G.A.: The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review 63 (1956) 81–97
10. Furnas, G.W.: Generalized fisheye views. (1986) 16–23
11. Novak, J.D., Gowin, D.B.: Learning how to learn. Cambridge University Press,

New York (1984)

7 see http://knowledgeweb.semanticweb.org

247

How to build a Snippet Manager

Steve Cayzer, Paolo Castagna

Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ
{steve.cayzer, paolo.castagna}@hp.com

Abstract. In our research group, there is a need to capture, organize and share
resources associated with a domain of exploration. We are building a tool for
this task, based on previous experience in the knowledge management domain.
In this position paper, we present our thoughts on what works (and what
doesn’t work), together with details of our initial implementation.

1 Introduction

The snippet manager idea is not a new one [1]. It refers to the idea of a small peer
group capturing ‘snippets’ of information in a lightweight manner, categorizing and
sharing them. There have been a number of approaches to this problem over the
years; in this paper we present our opinions on what works, and what doesn’t work.
We also define the scope – even the ideal snippet manager would not be a panacea
for knowledge management generally. Rather, it is a useful tool (or at least a useful
concept) for a specific task. We have started to implement a tool using the principles
outlined here, and we present some design details. We also introduce the success
factors that we intend to adopt, and that we hope will be more generally useful.

2 The snippet manager problem domain

Knowledge management is defined widely, for example achieving a global sharing of
knowledge within a company [2]. However, our domain of interest is rather more
tightly defined:

“In [my group] we frequently circulate items of interest (such as news articles, soft-
ware tools, links to Web sites, and competitor information). We call them snippets,
or information nuggets, we would like to store, annotate, and share. Email is not the
ideal medium for these tasks; its transient nature means the snippets are effectively
lost over time. Yet the risk from using a more formal process, like a centralized
database, is that it is both cumbersome to use (a barrier to entry) and overly rigid in
its data model (not amenable to storing different types of information). Our need
illustrates what I call decentralized, informal knowledge management…” [3]

248

The point here is that the domain allows us to make some simplifying assumptions.
Firstly, the group is small, often co-located. Members can ‘pop round’ to discuss
ideas or gather for an informal discussion. In the particular group we are designing
for, there are regular, weekly meetings. So we assume that information flow is un-
hindered, and that conflicts or inconsistencies can be quickly ironed out. We need
not rely on snippet manager as the sole conduit for communication. A small group
also makes the job of converging on a domain model much easier. We do not assume
that we will get the model(s) right first time, but the first pass should be good enough
to get general buy-in, and improvements can occur by means of incremental evolu-
tion.

Secondly, the users are technically literate. This means that they are likely to
quickly get to grips with a new tool, and may be motivated to make some small
changes to behaviour for sufficient added value (a good example of this would be the
use of ‘graffiti’ writing on PDAs). However, getting the balance right is not always
easy; we note that in our (internal) semantic wiki, people hardly ever use the sup-
plied wiki syntax to add RDF metadata. This may be due to the lack of instant, direct
reward for adding metadata, a point which we are trying to address in our work.

Finally, the domain of interest is tightly focused, even more so than that envisaged
by Cayzer [3]. Our laboratory is interested in a myriad of semantic web related top-
ics, but the user group for the current incarnation of the snippet manager is specifi-
cally and actively looking at a particular topic, that of enterprise information man-
agement.

2.1 Use cases

What is it, then, that the snippet manager is expected to achieve? We are in the
early stages of this project, but we have engaged the user community and gathered
some initial use cases in order to inform our guiding principles, a few of which are
described here. We reiterate that these principles are relevant for our domain of in-
terest – small group, tightly focused, technically literate researchers. We don’t expect
the principles to necessarily generalize to the whole of knowledge management, or to
the web at large. However, we believe that our problem domain is sufficiently com-
mon for these principles to be of value for the semantic web community.

Easy Capture
“I need a way to collect evidence (web pages, PDFs, emails, forum posts), and to
categorise parts of these so they can be linked together for post-hoc search.”
“I need a way of annotating resources with evidence - 'why have you written this'”
It should be ludicrously simple to collect snippets, using familiar methods such as
bookmarklets or email. Snippet Manager should also pull in snippets from other
sources (eg intranet databases) and handle provenance.

Editable Ontologies

249

I need to create a category or classification for a new area of interest. Now, I need
to add new companies, products, documents or links and tag them with this classifi-
cation. I want to create relationships between these instances - e.g. competitor links.
Our users will certainly want to change the ontologies on the fly. Although this
sounds like a tall order, in our case both the structure of the ontologies (effectively
taxonomies) and the nature of the changes (adding/removing/renaming a node) can
simplify the implementation enormously. Of course the UI for such changes may not
be trivial.

Export
I want a regular alert showing the results of a web search for a topic. [OR I want to
produce a report that shows all relevant products or technologies for a given topic]
From a technical point of view, the ability to export (meta)data in a standard, ma-
chine readable way is a future-proofing mechanism, intended to prevent the portal
becoming yet another information silo. From a user point of view, export in a hu-
man-readable form is equally important.

Web Application
Our experience with the early snippet manager prototype [1] taught us that there is
considerable reluctance to download software, let alone to standardize on it across a
group. In addition, the snippet manager should be integrated into a users’ normal
work pattern. For our group, this suggests a web application such as a portal.

Immediate Feedback
There should be an instant reward for the user who adds metadata. The community
aspect should be (from the user’s point of view) a beneficial side effect.

4 Implementation Details

We have used the semantic portal [4] idea and codebase to provide a browsing inter-
face over the group’s snippets. Essentially, this portal uses the metadata to drive a
facet browser, so that users can find what they are looking for using a variety of
search paths. We are building simple capture modalities such as bookmarklets, mail
processors and web forms; and importers for other systems such as blogs, technical
reports, people databases and the group’s official wiki. For export, we plan RSS
feeds, email alerts, customizable reports and a SPARQL[5] interface for program-
matic access.

4.1 Success Factors

We have previously built several semantic web applications whose primary function
was to demonstrate a particular aspect of the technology. Our focus here is to build a
tool. Therefore the simplest way of assessing its success is to measure its usage:

250

1. At what rate is new content added to the snippet manager?
2. What proportion of the user group use the snippet manager as a day to day

tool
3. How well does the snippet manager integrate with other tools in use?
4. How often is the snippet manager consulted for information or report gen-

eration?
5. What is the satisfaction level of the users?
6. How quickly can new user requirements be integrated into the tool

These measures are largely qualitative in nature. Yet they get to the heart of what of
means to build a semantic web tool for personal, and group, productivity. We intend
to assess our work using these criteria.

5 Related Work

Simile’s Semantic Bank [6] is a snippet repository that lets you persist, share and
publish data collected by individuals, groups or communities. Data capture is accom-
plished using a Firefox extension called Piggy Bank [7], and the information is ac-
cessed using a faceted browser. It is probably the closest system in philosophy to
ours, but there are some important differences. Firstly, Semantic Bank is intended to
be a general purpose, potentially global scale snippet repository. This means that
there are significant research challenges in making the ontologies both sufficiently
compact and understandable. In snippet manager we chose to have a small number
of tightly focused facets. Secondly, our aim is to allow both the gathering of snippets
and the linking of these snippets with data from other sources.

The broader idea of a semantically enabled website is explored in a number of
public portals, notably the Semantic Web Community Portal [8] and MindSwap [9],
both of which use metadata for filtering and querying. As the number of items in-
creases, the value of our faceted browsing approach becomes more apparent. There
are other public portals such as Ontaria [10] and SchemaWeb [11], which are pri-
marily intended for browsing ontology data.

Many people use their weblog as a knowledge management tool and we think that
structuring the content of a post by adding some metadata could be useful for a group
of people. But the chronological view that weblog gives to the content not always it
the best solution to let users move through information. Our solution to this, which
we call semantic blogging [3], uses metadata guided views, such as record cards or
tables. A similar approach has been taken by the structured blogging community
[12]. A more subtle point is the information model, in which the blog entry is no
longer the primary object. Rather, the information item (such as web page, report or
person) which is being blogged about takes centre stage. The blog entry is an annota-
tion attached to this item. Armed with this perspective, the semantic blog becomes a
useful personal knowledge management tool, and a source of data for the snippet
manager.

251

Wikis are also interesting tools for collaboratively building knowledge, and there
are examples [13, 14] that use metadata to enhance navigation and to provide multi-
ple views. In some ways the snippet manager idea is similar (although our data entry
mechanism is different); however we integrate information from a number of
sources. Just like blogs, wikis are a valuable source of data for the snippet manager.

6 Conclusion

In this position paper, we have outlined our thoughts on what it would take to build a
snippet manager for small group domain-focused knowledge sharing. We have
shared some design principles which we hope will prove generally useful. We have
also explained how we are going about building a system using these ideas. We have
high hopes that our user-centred approach will function less as an interesting demo
and more as a genuinely useful tool.

References

1. Banks, D., Cayzer, S., Dickinson, I., Reynolds, D. The ePerson Snippet Manager: a Seman-
tic Web Application. Hewlett-Packard Laboratories Technical Report HPL-2002-328
(2002): http://www.hpl.hp.com/techreports/2002/HPL-2002-328.html

2. Davenport, T. H. and Prusak, L. Working Knowledge: How Organizations Manage What
They Know. (1997) Harvard Business School Press.

3. Cayzer, S. Semantic blogging and decentralized knowledge management. Communications
of the ACM 47, 12 (Dec. 2004), 47-52.
DOI= http://doi.acm.org/10.1145/1035134.1035164

4. Reynolds, D., Shabajee, P., Cayzer, S., Steer, D. Semantic Portals Demonstrator - Lessons
Learnt. Sept 2004. http://www.w3.org/2001/sw/Europe/reports/demo_2_report/

5. Prud'hommeaux, E., Seaborne, A. SPARQL Query Language for RDF. W3C Working Draft
21 July 2005 http://www.w3.org/TR/rdf-sparql-query/

6. The Semantic Bank project http://simile.mit.edu/semantic-bank/
7. Huynh, D., Mazzocchi, S., Karger. D. Piggy Bank: Experience the Semantic Web Inside

Your Web Browser. Submitted to 4th International Semantic Web Conference (ISWC 2005)
8. The Semantic Web Community Portal http://beta.semanticweb.org/
9. The MindSwap Group http://www.mindswap.org/
10. The Ontaria project http://www.w3.org/2004/ontaria/
11. SchemaWeb: RDF Schemas directory http://www.schemaweb.info/
12. Structured blogging http://structuredblogging.org/
13. Aumueller, D.Semantic authoring and retrieval within a Wiki. Demonstration track, 2nd

European Semantic Web Conference (ESWC 2005). http://wiki.navigable.info
14. Tazzoli, R., Castagna, P., Campanini, S. E. Towards a Semantic Wiki Wiki Web. 3rd

International Semantic Web Conference, Poster Track (ISWC 2004).
http://platypuswiki.sourceforge.net/

252

HyperSD: a Semantic Desktop as a
 Semantic Web Application

Daniel Schwabe, Daniela Brauner, Demetrius A. Nunes, Guilherme Mamede

Departamento de Informática, PUC-Rio, Brazil,
 { dschwabe, dani, mamede}@inf.puc-rio.br

demetrius@interface-ti.com.br

Abstract. In this paper, we show how one can leverage a Semantic Web appli-
cation development environment to define an application that is a Semantic
Desktop browser called HyperSD. In addition, special wrappers have been de-
fined to allow importing regular desktop objects, such as files, person records,
calendar entries, etc… into the semantic desktop accessed through HyperSD.

Introduction

With the emergence of the Semantic Web, it has been quickly recognized the desir-
ability of applying its technologies to enhance the everyday desktop on which users
work everyday. By exploiting the semantically richer (meta)data available for relevant
items, it should be possible to provide more useful ways to access and process infor-
mation stored in desktop items, such as files containing data, music, video, images;
information about persons; information about events; etc…There have been several
proposals on how to achieve this, notably Gnowsis (http://www.gnowsis.org) and
Haystack (http://haystack.lcs.mit.edu/), among others.

The availability of metadata describing desktop items, especially using Semantic
Web technologies, immediately suggests that it should be possible to access it as a
hypermedia application, allowing the user to navigate from one item to its semanti-
cally related items. This paper shows how we have taken a development environment
for hypermedia applications in the Semantic Web, called HyperDE, and generated a
Semantic Desktop browser called HyperSD, which allows accessing desktop informa-
tion in hypermedia fashion.

A brief summary of SHDM and HyperDE

The HyperDE environment allows the implementation of web applications de-
signed using the SHDM method [1,2]. SHDM is a model-driven approach to design
web applications using five different steps: Requirements Gathering, Conceptual De-
sign, Navigational Design, Abstract Interface Design and Implementation. Each phase

253

focuses on a particular aspect and produces artifacts detailing the application to be run
on the web.

In SHDM we define a Semantic Web application as a navigational view over some
ontology which describes the problem domain (see [4] for a more extensive discus-
sion). We profit from being able to represent both data itself and its schema (meta-
data) using the same formalism, since the fact that the schema can be manipulated just
like any other kind of data brings greater expressiveness and conciseness to the speci-
fications.

The HyperDE (http://server2.tecweb.inf.puc-rio.br:8000/projects/hyperde/trac.cgi/)
environment is based on the MVC framework, and allows the designer to input
SHDM navigational models (the “model” in the MVC framework), and interface
definitions (the “view” in the MCV framework), and generates complete applications
adherent to the specification. It also provides an interface to create and edit instance
data, although, strictly speaking, this should actually be part of the generated applica-
tion. In HyperDE. SHDM meta-models, user defined navigation models, as well as
the application instance data, are all stored as RDF data.

The Semantic Desktop as a Hypermedia application

A Semantic Desktop can be seen as a meta-data enriched set of information items ac-
cessible through the user’s desktop. Typical item are of different types, such as vari-
ous file contents, such as text, mp3s, videos, programs, etc….; information about per-
sons; and information about events. Fig. 1 shows a simple schema for these
information types. It should be noted that the properties and some relations in this
schema are the same as in popular existing ontologies for existing ontologies for simi-
lar concepts, e.g., FOAF for describing persons and relations, RDFCal for events,
etc…

 SD_Artifact

SD_Music
artist
album
total Tracks
total CDs
rating
release Year

SD_Image
format
resolution
author

SD_Document
subject
keywords
pages
word count
author

SD_Event
subject
summary
status
location
dtstart
dtend
duration
organization

SD_File
title
publisher
category
size
creationDate
location SD_Person

name
firstname
surname
mbox
seeAlso

Creates <related to>

Uses

Participates
In

Appears In

Fig. 1. A simple vocabulary for HyperSD.

254

Given the set of information items, a Semantic Desktop browser can be seen as an
application that allows navigation among these items, as well as the ability to process
them.

Following SHDM, we have defined a simple navigation schema for such an appli-
cation, which was implemented in HyperDE; the resulting application is called Hy-
perSD.

File Types

Files

Person

Main menu

Person

Files by Type

Files

by Type

by Person

Alphabetical

by <<relation>>

Event

by Event

Event

Chronological

By Person

Fig. 2. Navigation Schema for HyperSD.

In Fig. 2, we show an initial navigation context diagram for HyperSD. In this dia-
gram, dashed boxes are indices, and solid boxes are contexts (sets of items whose
type is shown in the grey area). From the main menu, one can access a hierarchical
index of files by file type, an alphabetical index of persons, and a chronological index
of events. From a file, it is possible to navigate to the persons related to it. From a per-
son, it is possible to navigate to the related persons according to each possible type of
relation defined, to the files and to the events associated with that person. From an
event, it is possible to navigate to the persons associated with this event.

It is important to stress that we do not claim that this is the only possible, relevant
or meaningful way to navigate among items, but rather the fact that, having an envi-
ronment such as HyperDE, it is very straightforward to implement whatever naviga-
tion topology is desired, and evolve it over time.

The Semantic Desktop implementation in HyperDE

Given the models described earlier, we implemented them in HyperDE, running as a
web application local to the user machine. Fig. 3 shows the details of an Event in the
context “Events in Chronological Order”. Clicking on a attendee of the event, one
navigates to the person’s details, shown in Fig. 4.

255

Fig. 3. An event (in the context Events in Chronological Order), in HyperSD.

Fig. 4. Details of a Person in HyperSD.

The HyperDE environment provides contextual navigation automatically, accord-
ing to the model specification. In this case, there is an index to all elements, shown in
the left column of the screen, and sequential navigation in the Persons by Event,
which generates “>>” anchor, next to the name of the next item in the context. Notice,
in the example, that it is also possible to import a FOAF description to instantiate a
new SD_Person. Notice also that there is an index of Relation Types (e.g., FriendOf,
ApprenticeTo, etc…) associated with a person; this index is generated by a meta-
query (i.e., a query to the model definition) extracting all defined relation types be-
tween SD_Person and itself.

HyperDE has a full fledged view definition mechanism allowing the customization
of presentation templates, although it also possible to use a default presentation tem-
plate that is built into the environment itself. In addition to defining views, the Hy-
perDE enviroment also has facilities for the definition of all SHDM primitives (navi-
gational classes, indexes, links, contexts). Fig. 5 shows an example of the interface
for defining a navigation context, “Persons by Event”, which retrieves all triples of
type “SD_Person” that “Attends” an event which is passed as a parameter (the “?” in
the query). Notice that we have extended RQL with an “Order by” clause.

256

Fig. 5. The definition page in the model editor, for context Persons by Event.

Conclusions

We have defined and implemented HyperSD as a Semantic Web application that ma-
nipulates information items typical in a desktop, using the HyperDE environment.
Current and future work being pursued includes

• Developing a richer set of wrappers;
• Providing a more sophisticated navigation structure, include also the pos-

sibility of allowing the user to customize it;
• Providing a more amicable interface look and feel;
• HyperSD currently runs as a local web application. We are investigating

ways of integrating distributed HyperSD, running in individual machines

Acknowledgements. Daniel Schwabe is partially supported by a grant from CNPq, Brazil.

References

1. Lima, F.; Schwabe, D.: Modeling Applications for the Semantic Web. Proceedings of the
3rd Int. Conference on Web Engineering (ICWE 2003), Oviedo, Spain, July 2003. LNCS
2722, Springer Verlag, Heidelberg, 2003. pp 417-426. ISBN 3-540-40522-4.

2. Lima, F.; Schwabe, D.: Application Modeling for the Semantic Web. Proceedings of LA-
Web 2003, Santiago, Chile, Nov. 2003. IEEE Press, pp. 93-102, ISBN (available at
http://www.la-web.org).

3. Nunes, D.; “HyperDE - a Framework and an Ontology-driven Development Environment
for Hypermedia Applications”, MSc Thesis, Dept. of Informatics, PUC-Rio, Brazil, Feb.
2005.

4. Rossi, G., Schwabe, D. and Lyardet, F.: Web Application Models Are More than Concep-
tual Models. Proceedings of the ER'99, Paris, France, November 1999, Springer, 239-252.

257

Keywords and RDF Fragments: Integrating
Metadata and Full-Text Search in Beagle++

Tereza Iofciu, Christian Kohlschütter, Wolfgang Nejdl, Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1

30539 Hanover, Germany
{iofciu,kohlschuetter,nejdl,paiu}@l3s.de

1 Introduction

Full-text search engines and metadata repositories have so far investigated very
different approaches to search, mainly due to their separate and different storage
systems for information and data. As we have argued in previous papers, though,
integrating full-text and metadata search capabilities is crucial for powerful se-
mantic desktop search systems [3]. Semantic metadata is able to represent im-
portant contextual information on the desktop and provide both more research
results (better recall) as well as more sophisticated ranking (better precision)
compared to simple full-text search.

Recently, integrating databases and information retrieval technologies has
been discussed by different research groups. [1] motivates the need for sys-
tems which integrate DB and IR querying capabilities, especially in the case
of searching in libraries, where librarians are forced to switch between full-text
and database search functionalities. An interesting approach to querying semi-
structured data such as XML has been presented in [2], which introduces the
notion of XML fragments to be used as parts of queries, inspiring part of the
work described in the current paper. A system building on RDF is Magnet, which
is presented in [4]. It supports näıve-user navigation of structured information
via a domain-independent search framework and user interface. Magnet can be
used both for browsing RDF as well as XML collections of data.

In our context we want to achieve integrated full-text and metadata search
on the desktop including two important functionalities present in current search
engines or IR systems, namely the possibility to return results which only par-
tially match the query and to rank results accordingly. In contrast to this, usual
database queries return all results as an unranked set of hits.

2 Searching with RDF Fragments

2.1 The Vector Space Model

For conducting full-text search, it is common to use the well-known Vector Space
Model (VSM). An important aspect of this model is that documents and queries

258

2

have the same structure. This means that, when searching full-text document col-
lections, the queries are compared to full-text documents, just as two documents
are. The results are then ranked according to the similarity of the documents
with the query. The relevance of a document d for a specific query q is computed
by using a similarity function such as the cosine measure:

ρ(q, d) =

∑
t∈q∩d wq(t) ∗ wd(t)

‖q‖ ∗ ‖d‖
(1)

The similarity ρ(q, d) is computed in a t-dimensional space, t being the num-
ber of different terms appearing in all documents. wx(t) stands for the weight
of term t in x, x representing the document or the query. This can be boolean
(0 = not in document, 1 = contained) or, for instance, defined by the TF·IDF
measure. The latter normalizes the impact of frequent/infrequent words in a doc-
ument per division of a term’s occurrences in a specific document by the number
of overall documents the term is contained in. Looking closer at this similarity
function, the reader can notice that results do not necessarily have to include
all query terms. If they do not include at least one, though, the similarity will
be zero. In contrast to the Euclidean distance, in the cosine similarity function
only those terms influence the similarity value which occur in both vectors.

2.2 Searching both Full-Text and Metadata

How do we generalize the vector space model to a semantic desktop search
scenario? The key idea here is to consider extended documents which consist
both of full-text and of metadata, and allow the user query for these documents
in an integrated way. Figure 1 shows such an extended document, with an RDF
graph representing the metadata associated to the document.

Fig. 1. A searchable document, consisting of full-text and reachable metadata

A query containing full-text and RDF metadata properties can then be
expressed in the same way as a small document, including both keywords and
RDF fragments. This approach offers a very easy-to-use query language. For
example, if we consider the natural-language query: “Return the papers which
I received from Bob via an email attachment, considering RDF indexing”, this
can be expressed by the following RDF fragment query:

259

3

“RDF indexing” /storedFrom/attachedTo/receivedFrom Bob.

If Alice remembers that the paper Bob sent to her has been presented at a
VLDB conference, she can use this additional information to refine her query.
So, the query now is “Return the papers which I received from Bob via email,
considering RDF indexing, and that have been presented at VLDB”, which is
represented as an RDF fragment query as follows:

“RDF indexing” /storedFrom/attachedTo/receivedFrom Bob.
/presentedAt VLDB.

It is useful to support approximate and imprecise metadata queries as well.
For example, in the previous query, Alice could have erred on the name of the
conference. So articles presented at SIGIR, which matched the keyword and
receivedFrom restrictions, should be also returned as hits, though with a smaller
rank. In addition, we should also return appropriate documents if a metadata
path has only been specified incompletely (for example, /receivedFrom Bob).

2.3 Semantics of RDF Fragment Queries

Besides providing an intuitive and integrated way to query for full-text and meta-
data, we also want to be able to efficiently support indexing and searching on
the desktop using a single VSM-based full-text search engine like Lucene. Based
on the vector space model, we will then consider a document a potential result
if it has a non-null similarity with the corresponding query. In addition to the
basic vector space model functionalities, we also support additional restriction
operators commonly used in full-text search engines: MUST, MUST NOT and
PHRASE operators. Just like any other term, a phrase can be prefixed with the
MUST or MUST NOT operator sign (+ or -), to force its appearance/absence,
or be enclosed in double quotes for the PHRASE operator to force a list of key-
words to appear consecutively. If a term/phrase is not signed, its appearance is
desired but not inevitable (i.e. an implicit SHOULD operator).

If we compare these query capabilities to relational query languages, our
query model supports the operators selection and projection, as well as union,
intersection and set difference. The only operator not supported is the join,
which however only precludes queries such as ‘Find papers from authors who
cite themselves’, seldomly thought of by search engine users.

3 Indexing and Querying of Full-text and Metadata

3.1 Background: Lucene and Beagle Indexing

We are building our search infrastructure on Beagle which is a GNOME project
for indexing and searching resources on the desktop. Beagle uses Lucene as
high performance full-text search engine, which is a multi-purpose information

260

4

retrieval library for adding indexing and search capabilities to various applica-
tions. Lucene can index and search any data that can be converted to a textual
representation.

At the core of all full-text search engines is high performance indexing, i.e.
processing the original data into highly efficient cross-reference lookup tables in
order to facilitate rapid searching. A common way of implementing the vector
space model is to store terms in inverted indices, associating them with the
documents they are contained in as well as including the corresponding TF and
IDF values.

3.2 Indexing Metadata to Support RDF Fragment Queries

The default approach to index metadata as used in Beagle is to define one field
per metadata predicate; full-text and document URIs are also stored as fields.
This idea is not suitable for metadata paths. Adding one field per path is not
possible as the paths can contain a lot of different predicates, determined only
at runtime. Furthermore, the ability to rank documents by metadata literals is
lost because the TF·IDF measure used by the vector space model does not span
across fields.

Our approach uses one single “metadata” field for all metadata associated to
a document. For each directly associated statement, we store both predicate and
object of the statement as text in this field. This makes storage independent of
any underlying RDF schema, as the predicates are represented as terms rather
than field names. To describe more complex contexts, we store predicate paths.
These paths represent the properties which are not directly annotated to the
document, but can be reached by following a path in the RDF graph starting
from the document node via subject–predicate–object connections. RDF frag-
ments can be matched using phrase queries on the metadata field, and results are
returned almost instantaneously, as querying reduces to a lookup in the Lucene
index.

4 Experiments

Our test dataset consisted of 150 publications, with metadata extracted from
the CiteSeer database and some additional one regarding email information. We
considered a community of three people, Alice, who has stored and indexed her
publications on her desktop, and Bob and Chris from whom she received some
of them. We have created additional annotations referring to the affiliation of
some authors as well as regarding the source of the documents. We assumed 10
documents received as email attachments from Chris and 21 received from Bob.
Publications are related to each other through citation, and are linked to persons
by authorship or source relations. Paths are materialized up to literals, but not
including other documents.

In our first experiment we searched for a document about Web Communities.
If we search with this phrase only in the full-text, we get as hits the documents

261

5

119, 61 and 41 in this order and with similar rankings. If we add the title re-
strictions to the query we get 61, 119 and 14 with relevant differences in the
ranking values. If we specify that the metadata query is mandatory, with the
MUST operator, we only get document 61, ‘Self Organization and Identification
of Web Communities’.

In the second experiment we search for the phrase “semantic web” in the
text field and get 24 documents. If we want to get documents written by persons
affiliated to MIT we can narrow the search area by adding the keyword “MIT”
to the text query. This approach returns 13 documents. If we add the metadata
query ‘/creator/affiliatedTo MIT.’ or just ‘/affiliatedTo MIT.’, we get only two
documents.

In the third experiment we search for documents received from “Chris Conti”
and we got 10 hits, then we searched for documents received from “Bob Doe”
and we got 21 hits. When we did a cross search, for documents received from
“Chris Doe” we obtained no hits, which is exactly what we wanted to achieve.

In the first experiment, explicit metadata search has a big impact on ranking.
Without the metadata restriction, Lucene TF·IDF scores were between 0.04 and
0.07. After adding the metadata phrase to the query, the first document (the
one containing the keywords in the title) had a ranking of 0.1471. The terms
“web” and “communities” appear less in the text field than in the metadata
field. Together with the fact, that the metadata field is much smaller than the
full-text field, the ranking considers matches in the metadata field much more
important than in the full-text field.

5 Conclusions & Current Work

This paper has presented an integrated approach to indexing and querying full-
text and metadata information which is both intuitive for the user and efficient
to implement. It achieves this by building on top of a common full-text search
engine and by only slightly modifying the usual Google-like search interface to
allow the specification of RDF fragments as part of the query. Additionally,
our approach provides inexact matching of user queries and ranking of results,
evaluating metadata matches the same way as full-text matches, with the ability
to return results even for incomplete and over-constrained metadata queries.

References

1. S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, and G. Weikum. Report
on the DB/IR Panel at SIGMOD 2005. In SIGMOD, June 2005.

2. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching XML
Documents via XML fragments. In SIGIR, New York, USA, 2003.

3. S. Ghita W. Nejdl P. Chirita, R. Gavriloaie and R. Paiu. Activity Based Metadata
for Semantic Desktop Search. In ESWC, Greece, May 2005.

4. V. Sinha and D. R. Karger. Magnet: Supporting Navigation in Semistructured Data
Environments. In SIGMOD, June 2005.

262

Pen-based Acquisition of Real World Annotations for
Semantic Desktops

Markus Sẗaudel1, Bertin Klein2, and Stefan Agne2

1 Fachhochschule Kaiserslautern, Standort Zweibrücken
Amerikastr. 1, 66482 Zweibrücken, Germany
mast0005@student-zw.fh-kl.de

2 German Research Center for Artificial Intelligence (DFKI GmbH)
Postfach 20 80, 67608 Kaiserslautern, Germany

{bertin.klein,stefan.agne}@dfki.de

Abstract. We explain our strategy towards a Semantic Desktop and our research
and prototype. In this paper we complement these with the paradigm of paper —
scribbling, annotating, revising—, an information interface for knowledge work,
which has been well-tried and elaborated over the centuries. Everybodyis highly
trained for it. The combination can instantly improve the conditions of knowl-
edge work. By removing one more felt barrier, it has the potential to enhance a
phenomenon called flow, providing users with efficiency and satisfactionat work.
The implementation is built around a pen transmitting its movements and a state-
of-the-art handwriting recognition.

1 Introduction

The regular (wooden) desktop seems to us theauthoritative archetype for any semantic
desktop. Semantics on the regular desktop is found in structures that are meaningful to
users, and in their creation, change, and maintenance ([15], compare also [2, 4]). Our
approach to new breeds of semantic desktops starts at the concepts and procedures on
regular desktops. [6, 16] Further, our foremost goal is to reduce the users cognitive load
and his mental distraction, because a mind relieved from distractions, draws the best
results from the sensed input and his prior knowledge. [19] Thus we try to sensitively
elicit the real tasks and distractions3 of users and quietly assist these (cf. [4, 9]).

Notwithstanding major achievements in personal computing, reading and writing
demand for paper. In a study aimed at knowledge capturing needs and uses at desktops
Adler et al [1] conclude among other interesting things that: “Reading occurs more fre-
quently in conjunction with writing than it does in isolation. Thus, it appears that writ-
ing (in a variety of forms) is an integral part of workrelatedreading. Designers need
to seriously consider the importance of developing readingdevices which also support
the marking or writing of documents during the reading process.” [1] Other work em-
phasizes the impact of the reading-writing combination on creativity. [13, 14] Notwith-
standing, that creativity is a well-understood issue lately, there is also a much more

3 Any minimal, intermediate, even unconscious goal or indirection which requires a microsec-
ond of conscious attention.

263

profane view on the topic: even on such simple tasks as dragging and moving, users
perform better with a stylus (on some canvas) than with a trackball or a mouse. [12]

We conclude that users should be enabled to print and work with paper. TabletPCs
are an approach, however, with the same OCR software and only40 Euros of hardware,
we additionally get the high resolution of paper and the freedom to skim over and
spread pages. While scribbling and annotating, the strokes are captured and sent to the
electronic desktop. Plug-in modules can edit the electronic version of the document.
The plug-in module actually first completed, is a Microsoft handwriting recognition,
the output of which is used to automatically place comments at any position into the
original electronic document.

2 The Whole Approach: Semantics, Users, Desktops

Writing desks exist for two reasons. First, they are needed asa space for documents and
reminder notes, while forging ahead in constructing their semantics, as long as their
meaning has not been fully incorporated into the mind of the user. Second, computer
desktops lack important, useful elements. — Supporting users in the first by improving
the latter, we have the goal to deliverflow: It happens that one starts a day in the office
at ones writing desk and suddenly one kind of wakes up, and it is two hours later. One
has achieved a lot, but cannot easily tell what in detail one has done. This phenomenon
is called ”flow”. It enhances individual work, especially where creativity is involved,
and yields to the efficiency and satisfaction of individualsin their work. [3]

Fig. 1. A regular writing desk it the archetype of a Semantic Desktop. The right side conveys an
idea of the visualization elements (comprising 3D) with which we are experimenting.

2.1 In Support of the Semantics of a Document Collection

With books, folders, reports, notes, a calendar, todo-lists —i.e. a collection of documents—
people organize their knowledge or information, in order tofulfill their daily work. Se-
mantics here is that what such collection of documents mean to their owner, comprising
the topics, statements, conclusions, interrelations, andimplications discovered by the

264

owner in these documents. We like the iterative flavor of “Keeping found things found”
from the University of Washington, which we consider an important aspect of the so-
calledhermeneutic circle, i.e. the laborious and time consuming integration of every
new document into the other knowledge known by a person. The expert might notice,
that we conceive of semantics for a user as something like RDFor equally Topic Maps,
in the brain of the user. [5]

Our implementation and research is based on the idea that thinking involves the
senses, e.g. the visual. Figure 1 on the left shows a design sketch of our semantic desk-
top. On the right it shows a real screen and a mockup of the (really running) 3D screen.
The left image comprises not yet completely implemented visual elements like docu-
ment viewers, document stacks, Post-Its, meta-information (links), and a calendar tool
with enhanced fisheye view, and active links to documents. The right side shows our
visualization equipment, trying to tap the 3rd dimension. The monitor pair is actually
used like that, as it was found to be more efficient to complement 3D viewing with a
regular 2D view. We also experiment with a powerwall.

2.2 Virtual Desktops are Lightweight and Semantic

With all my paper documents from my writing desk as PDF documents on a USB stick I
can carry them with me at all times. A near future smart USB stick will be pluggable to
displays — perhaps a futuristic projector or my stylish glasses — and allow me to spend
a few seconds or longer at my writing desk. Note, that all my todo-lists, my calendar,
my notes, my documents, are there, my entire writing desk.

The instant advantage of a virtual, semantic desktop can be sketched with electronic
“Post-Its”: Electronic “Post-Its” can be retrieved, e.g.,by its creation time, “this morn-
ing”, and with a mouse click one finds the document to which it refers. “Post-Its” can
also refer to several documents and thus establish commented links. They can also in-
clude links to appointments, todo-lists, etc. It is also possible to let popup a required
document at a specific time and at a desired text position depending on automatically
extracted information about the document. Paper “Post-Its”, on the other hand, lack
these features.

3 Gaining from Paper Editing

Imagine I am asked to do a review of an article, enclosed as a PDF. I print it, put the
paper into a clamp and start commenting. The pen transmits its movements to the clamp.
On my screen I have opened the PDF version of the document and all the comments
I write on the paper appear synchronously in the PDF, nicely in Times Font. When I
physically turn a page I tip into the lower right corner of thepage, and the editor turns
page too. When I finish, I just save the document and mail it back.

Paper is an input catalyst.Many projects to overcome the boundedness of paper
failed miserably. [15] Field research has elicited that a couple of tasks are done ex-
clusively or with high tendency with paper, like revising another’s person text [15],
collaborative authoring, telephone activities or at planning and thinking. [16] It is pos-
sible to navigate quickly, apply annotations, underline important words or passages,

265

read through again and the like. This is not comparably possible on today computer
desktops. [13] Sure, only as an exception it is easier to actually edit with paper.

Fig. 2. Annotating a printed dokument and the result on the screen.

A stylus, a clamp, and our Gesture Port can do the job.The 40 Euro of hardware
needed comprises a stylus and a clamp. The stylus is equippedwith a transmitter, which
sends coordinates (plus some events like PENUP, PENDOWN, PENMOVE, ...) wire-
lessly to a receiver embedded in the clamp and further to the desktop software (usually
vie USB). The Gesture Port interfaces input devices to our Desktop framework. An in-
termediate unit converts the movements received into meaningful gestures. Here, we
started with a (rather good) pre-release Microsoft handwriting recognition. Further, we
committed (without loss of generality of the approach) to a PDF editor, as the (fixed)
target application.

A special set of stylus gestures changes the interpretationmode, so that the interpre-
tation unit then sends commands to the target or changes the target. This allows to serve
different stylus based activities, as drawing (movements cause lines to appear), text
editing (characters are recognized and inserted, strikingthrough deletes text), text for-
matting (underlining, italicizing, ...), layout editing (paragraphs are cut, merged, moved
...), annotating (textual annotations and links are edited/inserted, the visible document
text remains unaltered). Currently, only positioning and editing of comments are wholly
implemented. In general, the Gesture Port can also interface the data glove visible in
Figure 1. However, for writing we found the data glove ratherinconvenient.

4 Related Work

Recently, there wasthe assortment of related work with respect to Semantic Desk-
tops made meet under the label of “Personal Information Management”. [7] Certainly,
www.gnowsis.org remains to be added. A couple of approachesare specificly rele-
vant to our paper philosophy: DigitalDesk [20], VideoMosaic [10], Ariel [11], Inter-
activeDesk [17], EnhancedDesk [8], MetaDesk [18]. Most of these Desk Systems try
to or actually use input devices like cameras and scanners. Some articulate goals very
similar to ours, but the approaches differ astoundingly. E.g. instead of a working space

266

on the desk to read and write, displays are embedded into the surface. Our specific task
of annotating documents is not addressed at all.

References

1. A. Adler, A. Gujar, B. Harrison, K. OHara, and A. Sellen. A diary study of work-related
reading: Design implications for digital reading devices. InProceedings of CHI 98, 1998.

2. T. Berners-Lee. Design issues – architectural and philosophical points, October 1998.
3. M. Csikszentmihalyi and I. Csikszentmihalyi.Optimal Experience : Psychological Studies

of Flow in Consciousness. Cambridge University Press, 1988.
4. M. Eldridge, A. Sellen, and D. Bekerian. Memory problems at work:Their range frequency,

and severity. Technical Report EPC-1992-129, RXRC Cambridge Technical Report, 1992.
5. V. Gallese and T. Metzinger. Motor ontology: The representational reality of goals, actions,

and selves.Philosophical Psychology, 13(3), 2003.
6. R. Harper, A. Munro, H. Hook, and D. Benyon. Information that counts: A sociological view

of information navigation. InSocial Navigation of Information Space, 1999.
7. W. Jones, H. Bruce, N. Belkin, V. Bellotti, S. Dumais, J. Grudin, J. Gwizdka, A. Halevy,

D. Karger, D. Levy, M. Perez-Quinones, and J. Raskin. The pim workshop — an nsf-
sponsored invitational workshop on personal information management, January 2005.

8. H. Koike, Y. Sato, and Y. Kobayashi. Integrating paper and digital information on enhaced-
desk: a method for real-time finger tracking on augmented desk system.ACM Trans. on
Computer-Human Interaction, 8, 2001.

9. M. Lamming, P. Brown, K. Carter, M. Eldridge, M. Flynn, G. Louie, P. Robinson, and
A. Sellen. The design of a human memory prosthesis.Computer Journal, Vol. 37(3), 1994.

10. W. Mackay. Augmented reality: linking real and virtual worlds. InIn Proceedings of ACM
Conference on Advanced Visual Interfaces, AVI ’98, 1998.

11. W. Mackay, D. S. Pagani, L. Faber, B. Inwood, P. Launiainen, L. Brenta, and V. Pouzol. Ariel:
augmenting paper engineering drawings. InCHI ’95: Conference companion on Human
factors in computing systems, 1995.

12. I. S. MacKenzie, A. J. Sellen, and W. Buxton. A comparison of input devices in elemental
pointing and dragging tasks. InProceedings of SIGCHI 91, 1991.

13. K. O’Hara and A. Sellen. A comparison of reading on-line and paper documents. InPro-
ceedings of CHI 97, 1997.

14. K. O’Hara, A. Taylor, W. Newman, and A. Sellen. Understanding the materiality of writing
from multiple sources.International Journal of Human-Computer Studies, Vol. 56(3), 2002.

15. A. Sellen and R. . Harper.The Myth of the Paperless Office. MIT Press, 2003.
16. A. Sellen and R. Harper. Paper as an analytic resource for the design of new technologies.

In Proceedings of CHI 97, 1997.
17. A. Toshifumi, M. Kimiyoshi, K. Soshiro, and H. Shojima. Interactivedesk: a computer-

augmented desk which responds to operations on real objects. InConference companion on
Human factors in computing systems, 1995.

18. B. Ullmer and H. Ishii. The metadesk: models and prototypes for tangible user interfaces. In
Proceedings of UIST ’97, 1997.

19. J. Waterworth and E. Waterworth. Affective creative spaces: theinteractive tent and the
illusion of being. InProc. of The Int. Conf. on Affective Human Factors Design, 2001.

20. P. Wellner. Interacting with paper on the digitaldesk.Communications of the ACM, 36(7),
1993.

267

Semantic Pen - A Personal Information

Management System for Pen Based Devices

(Extended Abstract)

Akila Varadarajan, Nilesh Patel and William Grosky

The University of Michigan - Dearborn, Dept. of Computer Science,
4901, Evergreen Road, Dearborn, MI 48080, USA

{akilav, patelnv, wgrosky }@umich.edu

Abstract. The Onset of Semantic Web technology have promised a new
vision of Personal Information Management (PIM). With the advent of
Pen-based computing, PIM faces new challenges: usability and flexibility
are important constraints in the pen based environment. We present our
system of Semantic Pen - an augmented pen based PIM system that
merges the efficiency of semantic web with the usability of pen based
devices. The architecture consists of an intuitive user interface which can
capture digital ink, a Hidden Markov model (HMM) to extract personal
information and a data model of Resource Description Framework(RDF)
for flexible organization and semantic querying of data.

1 Introduction

Personal Information Managers (PIM) have become increasingly common these
days. The usage model of PIM systems have gone beyond scheduling reminders
and simple record maintenance. Semantic Web, through the introduction of on-
tological reasoning by means of Resource Description Framework(RDF)[1] have
proven to be an efficient solution for PIM . The Haystack Project [2] is well known
for applying semantic web technologies to create a fully flexible and customiz-
able PIM portal for organizing the germane information. The Gnowsis Semantic
desktop [3] targets data integration including data from 3rd party applications.
Semex[4] focuses on personalized desktop search. Chandler[5] is an Interpersonal
Information Manager that supports data sharing besides managing email, calen-
dar and other general information. Retsina Calendar Agent[6], is a distributed
meeting scheduling agent which works in conjunction with Microsoft Outlook
2000 and Semantic Web.

While most of the research in PIM using Semantic Web is centered around
desktop and notebooks, there is a need to extend such concepts in context of pen-
based computing. The pen-based systems have empowered users by providing the
most natural form of input modality known as Digital Ink. Since its introduction,
researchers have shown increased interest to ease the user interface centric tasks.
Wilcox et al. designed a system Dynomite [7] for organizing telephone numbers
and other tasks by applying properties for ink words. Scribbler [8] is another tool

268

2 Akila Varadarajan, Nilesh Patel, William Grosky

that enables searching ink words, symbols or simple sketches by matching raw
strokes instead of recognized text. Marquee [9]is a logging tool where users can
correlate their personal notes and keywords with a videotape during recording.
Microsoft’s products One Note 2003 and Journal helps to capture, customize
and organize ink documents suitably.

We present Semantic Pen that aims to combine the efficacy of semantic
web with the usability of pen based devices to provide a next generation highly
intuitive and intelligent PIM system.

2 Semantic Pen

Fig. 1. Architecture of Semantic-Pen

Semantic Pen has a simple and attractive user interface comparable to leading
note taking tools. In addition, our system is composed of two core modules; (1)
an Automatic Data Extraction (ADE) wizard and (2) an Association wizard.
The system Architecture of Semantic Pen is shown in figure.1. ADE is the heart
of the system which extracts the data via Hidden Markov Models(HMM)[10].
Additional details such as name of a person for an extracted email address can
be semi-automatically included through the ADE wizard. This wizard displays
a smart name/place list generated by our intelligent noun filter algorithm. The
user can either choose a name from the list or enter his own. This extracted
personal information is then automatically stored in the commercial information
management tool such as Microsoft Outlook. Once the personal information is
extracted, an Association Wizard helps associating the data with the existing
data repository items. Our approach uses the popular RDF framework Jena [11]
to store and retrieve the data.

269

Semantic Pen 3

2.1 Automatic Information Extraction using Hidden Markov

Model(HMM)

HMM is a finite state automation that implements stochastic state transitions
and symbol emissions. We use the model of Freitag and MacCallum [12, 10] to
extract personal data from the ink notes. Once the states for the HMM (Prefix,
Target,Suffix and Background states) is decided, the document is parsed and
taxonomized to obtain the emission vocabulary of the HMM. We generate a set
of intuitive term by feature pairs t, f where t is the intuitive term and f is an
identified feature that creates the appropriate intuition on that term [13].

The possible formats and constraints for the Intuitive term features such as
Email ID, Phone No, Date, Proper Noun are identified and defined in a database.
Then we calculate WFM to classify the intuitive terms. For a term t, WMF (t)
is computed as follows:

WFM(t) =
Nc(t)

Nc(f)

Where, Nc(f) represents the total number of constraints for the word feature
f . For example, the ’@ ’symbol and a domain name are some constraints for an
email address. Nc(t) is defined as:

Nc(f)∑

x=0

M(t, cx)

where M(t, cx), the matching function, equals 1 if the term t contains a
matching constraint cx

WFM(t) is calculated by varying f in Nc(f). If WFM(t) equals 1 for some
value of f in Nc(f), it means the term t is of the suspected word feature type
f . If WFM(t) is less than 1 for all values of f in Nc(f), it means the term is
not of any type of suspected word feature.

Table.1 describes how we define the emission vocabulary for the HMM by
means of WFM and Bikel’s classification of word features [13].

Table 1. Emission vocabulary for HMM

Intuitive Word Feature Example formats

Email ID bob@umich.edu, bob@yahoo.com, bob@xyz.org

Phone No. (586)-779-6320, 586-779-6320, 779-6320

Date 09/01/06, 09-01-06, 09/01/2006,Sep-1-06

Time 12.30 pm, 12:30 a.m, 12.30 AM

Proper Noun(Name or Place) Bob, Michigan

URL www.umich.edu

270

4 Akila Varadarajan, Nilesh Patel, William Grosky

Once the emission vocabulary by means of the intuitive word features is
obtained, the Viterbi algorithm [12] is used to accurately identify the most likely
state sequences of a particular document. Finally, the HMM outputs the strings
which are likely to be the personal data that need to be stored.

2.2 Personal Information Association using RDF

The next step is to create suitable associations of the new data with the existing
elements in the database. We are currently in the development stage of this
algorithm. In this, we define two components namely instances and associations.
The instances are the actual objects that need to be associated such as email
address of Bob or web page of an institution “XYZ”. The associations are the
relationship that might exist between two instances. Consider, “Bob works at
XYZ”. In this case works at is an association that exists between instances Bob
and XYZ that binds them together. Similarly there might be another association
existing such as “Steve works at XYZ”. Now an automatic link gets associated
between Bob and Steve. However, the user is prompted to obtain a suitable
association between these two instances.

Initially all possible instances such as contact information, task list and web
page links will be extracted by the system. Associations among these instances
will be obtained semi-automatically by running the association wizard. The in-
stances and associations are then stored in a separate database and represented
by means of Ontolgies using Resource Description Framework (RDF). The RDF
framework Jena [11] is chosen to store and retrieve the RDF data. Also, when a
new item is added to the database externally, our system will alert the user to
run the association wizard to form suitable associations.

Our interface will identify the associated instances by querying the RDF
database and generate associations such as;(i) a calendar entry is related with a
file which is modified at that date and time,(ii) a book marked web page consists
of information about a workshop in the task item, (iii) a contact is the author of
a particular document. The user will be allowed to choose an association from
an existing list or to define his own.

3 Experimental Results

A NEC Versa Lite Pad Tablet was used to test our system. The note taking
interface is developed using Agilix infinotes [14] .NET component. To test our
Automatic Data Extraction (ADE) wizard, we collected meeting notes from 25
people. Each collected note was about 250-500 words in length, containing a
mixture of email address, phone number, date-time information, proper nouns,
and hyper-links. The data extraction results were analyzed off-line via the Auto-
matic Data Extraction(ADE) wizard. Our application uses the recognized ASCII
text from the meeting notes for all manipulations. The built-in Microsoft Hand
Writing Recognizer that comes with the tablet is used to translate ink data to

271

Semantic Pen 5

the ASCII text. Since the Association Wizard is still under development, the
experimental results pertaining to only ADE is presented in this paper.

The ink to text recognition accuracy plays a major role in performance of
ADE wizard. In past, due to its least individuality the numbers have been re-
ported with higher recognition accuracy [15]. Our analysis also supports the
previous research in this regard. The recognition rate of numbers in our experi-
ment, was found to be as good as 88.9% compared to the recognition rate of the
letters which was found to be just 58.8%. Similarly, we also found that the non-
cursive handwriting had the highest recognition rate of 82.2% compared to the
cursive handwriting recognition rate of about 73.2%. The printed handwriting
had the worst recognition rate of 21.1%.

In addition to the recognizer’s inaccuracy, we also found that the emission
vocabulary symbols failed to get identified due to unnecessary white spaces in-
serted by the recognizer. Our system intelligently handles these white spaces to
improve an overall precision of the data extraction system.

The results of our phase I activity in extracting key personal information
using HMM is measured using standard precision and recall measures, defined
as:

Precision = R

R+Ri

∗ 100; Recall = R

R+Rm

∗ 100
where, R=Relevant records retrieved, Ri= Irrelevant records retrieved and Rm=Missed
relevant records.

Table 2. Precision Vs Recall for automatic data extraction

Data Extracted Precision Recall

Email address 90.15 89.34

Phone Number 96.57 96.87

Schedule Information (Date and Time) 88.26 89.75

URL 91.12 92.34

Proper Noun(Name or place) 93.23 89.23

References

1. Guha, R., Brickley., D.: Rdf vocabulary description language 1.0: Rdf schema.
W3C recommendation 10 february 2004. (2004)

2. Quan, D., Huynh, D., Karger, D.R.: Haystack: A platform for authoring end user
semantic web applications. (ISWC 2003) 738753

3. Sauermann, L.: The gnowsis semantic desktop for information integration. (Pro-
ceedings of WM 2005)

4. Cai, Y., Dong, X.L., Halevy, A., Liu, J.M., Madhavan, J.: Personal information
management with semex, Baltimore, Maryland USA, ACM (2005)

5. OSAF: Chandler. ”http://www.osafoundation.org/Chandler Compellin Vision.htm”
(2004)

272

6 Akila Varadarajan, Nilesh Patel, William Grosky

6. Payne, T.R., Singh, R., Sycara, K.: Calendar agents on the semantic web. IEEE
INTELLIGENT SYSTEMS. (2002) 84–86

7. D.Wilcox, L., N.Schilit, B., Sawhney, N.: Dynomite: A dynamically organized ink
and audio notebook. SIGCHI 1997, (ACM) 186–193

8. poon, A., Weber, K., Cass, T.: Scribbler: A tool for searching digital ink. CHI ’95,
ACM Press (1995) 252–253

9. Weber, K., Poon, A.: Marquee: a tool for real-time video logging. SIGCHI’ 94,
ACM (1994) 58–64

10. Taghva, K., Coombs, J., Pereda, R., Nartker, T.: Address extraction using hidden
markov models. IS&TSPIE 2005 (January 2005)

11. Jena: A semantic web framework for java. (http://jena.sourceforge.net)
12. Freitag, D., McCallum, A.: Information extraction with hmm structures learning

by stochastic optimization. 17th National Conference AI (2000) 584–589
13. Bikel, D., Miller, S., , Weischedel, R.: Nymble: a high-performance learning name-

fnder. ANLP-97 (1997) 194–201
14. Agilix: Infinotes. (http://www.agilix.com/www/notecontrol.aspx?pid=14.)
15. Zhan, B., Sargur.N.Srihari, Lee, S.: Individuality of handwritten characters. IC-

DAR 2003, IEEE (2003)

273

Semantics-based Publication Management using RSS and FOAF

Peter Mika and Michel Klein and Radu Serban
Department of Computer Science, Vrije Universiteit Amsterdam

[pmika|mcaklein|serbanr]@cs.vu.nl

Abstract
Listing references to scientific publications on per-
sonal or group homepages is a common practice.
Doing this in a consistent and structured manner
either requires a lot of discipline or a centralized
database. Scientific publication, however, is a dis-
tributed activity by nature. We present a com-
pletely distributed and RDF-based implementation
for disseminating references to scientific publica-
tions. Our application only uses existing informa-
tion sources and allows for different output formats,
e.g. HTML, RSS and RDF.

1 Collecting and Publishing References
Information about scientific publications is often maintained
by individual people. To present this distributed information
in different selections and in different formats at different lo-
cations usually requires a lot of manual work. We demon-
strate an application that performs this task using Semantic
Web based techniques.

Our application collects several sources of information
from several locations, in particular information about pub-
lications of authors from their homepage, information about
group-membership from the department website and infor-
mation about people by crawling FOAF-profiles. All sources
are—if not yet in this format—translated to RDF and up-
loaded to an RDF store, in our case Sesame[Broekstraet al.,
2002].

In the repository we apply several unification and reason-
ing steps to link the different data sources, to derive additional
facts and to remove redundant information. In addition, a sep-
arate web service can be used to query for publications based
on specific criteria and to produce a variety of output formats,
including BuRST (a compatible extension of RSS 1.0) and
HTML.

Figure 1 presents a schematic representation of the ap-
proach, which is introduced in detail in the following section.

groupsgroupsdepartments
groupsgroupsdepartments

publicationspublicationspublications
publicationspublicationspublications

personal infopersonal infopersonal info
personal infopersonal infopersonal info

RDF
store

inference &
unification

webservice

upload

query

browser

RSS
client

HTML
request / data

RSS request /
data

data

Figure 1: A schematic representation of the approach.

2 Sources of Information
For information about publications, we rely on the common
BibTeX format. We ask authors to include a BibTeX file
with their own publications on a publicly accessible part of
their website. For many authors this does not require addi-
tional work, as they already maintain such a file themselves.
A simple crawler collects all files from thewww.few.vu.nl
domain. The BibTeX files are translated to RDF using the
BibTeX-2-RDF service,1 which creates instance data for the
“Semantic Web Research Community” (SWRC) ontology.2

Personal information is collected via the web as well, us-
ing the FOAF profiles[Brickley and Miller, 2005] that people
linked from their homepage. The FOAF files contain RDF
statements describing personal information such as the in-
dividual’s homepage, workplace, image and relationships to
other people.

To know which researchers are member of which depart-
ment, we have implemented a web service that translates the
content of the department mailing lists to a FOAF format with
statements about group membership. We do not reveal the
email addresses of people, but use a hash of the email address
as identifier. By using the mailing lists as a source for the
group membership information, we do not have to maintain
this information ourselves, but rely on the existing infrastruc-
ture in the department (i.e. the computer system adminstra-
tion).

3 Aggregation
Mapping Schemas
Using distributed, web-based knowledge technologies, we
have to deal with the arising semantic heterogeneity of our
information sources. Heterogeneity effects both the schema
and instance levels.

As the schemas used are stable, lightweight web on-
tologies, mappings on the class level cause little problem:
such mappings are static and can be manually inserted into
the knowledge base. An example of such a mapping is
the subclass relationship between theswrc:Person and
foaf:Person classes or the subproperty relationship be-
tweenswrc:name andfoaf:name .

Although we used existing RDF schemas for describing the
instance data, a simple extension of the SWRC ontology was
necessary to preserve the sequence of authors of publications.
To this end we defined theauthorList and editorList
properties, which haverdf:Seq as range, comprising an or-
dered list of authors..

1Seehttp://www.cs.vu.nl/˜mcaklein/bib2rdf/ .
2Seehttp://ontoware.org/projects/swrc/ .

274

Unifying Instances

Heterogeneity on the instance level arises from using differ-
ent identifiers in the sources for denoting the same real world
objects. This effects FOAF data (where typically each per-
sonal profile also contains partial descriptions of the friends),
but also publication information, as the same author may be
referenced in a number of BibTeX sources.

The solution is provided by instance reasoning (smushing)
using ontological features. The FOAF ontology defines a
number of inverse-functional properties of the Person class
which can be used to determine whether two instances of Per-
son are the same. (Functional properties, on the other hand,
can be used to prove that two instances are not the same.)
For example, if two Persons have the same value for the
mbox-sha1sum (hash of the email address), we can conclude
that both instances are the same. In this way, we can relate
the statements from the FOAF files to the statements about the
mailinglist-membership. Besides the inverse-functional prop-
erties, we also apply fuzzy string matching to compare person
names, following a step of normalization (e.g. to be able to
compare ’Harmelen, F.’ and ’Frank van Harmelen’). Simi-
larly, publications are matched based on an exact match of
the date of the publication and a tight fuzzy match of the title.
Matching publications based on author similarity is among
the future work.

The matches that we find are recorded in the RDF store
using the owl:sameAs property. Since Sesame doesn’t na-
tively support OWL semantics at the moment, we expanded
the semantics of this single property using Sesame’s custom
rule language. These rules express the reflexive, symmetric
and transitive nature of the property as well as the intended
meaning, namely the equality of property values. The rules
add several statements to give all the equivalent resources the
same the set of properties. These rules are executed by the
custom inferencer during uploads, which means that queries
are fast to execute. (On the downside, the size of the reposi-
tory greatly increases.)

4 Presentation

After the information has been merged, the triple store can be
queried to produce publications lists according to a variety of
criteria, including persons, groups and publication facets. An
online form helps users to build such queries against the de-
partmental publication repository. The queries are processed
by another web-based component, the Publication webser-
vice.

This tool takes the location of the repository, the query,
the properties of the resulting RSS channel and optional style
instructions as parameters. In a single step, it queries the
repository and generates an RSS channel with the publica-
tions matching the query. This RSS channel follows the
BuRST specification3 for mixing in publication metadata into
the RSS channel. The resulting channel appears as a RSS 1.0
channel for compatible tools while preserving RDF metadata.

The presentation service can also add XSL stylesheet in-
formation to the RSS feed, which allows to generate different
HTML layouts (tables, short citation lists or longer descrip-
tions with metadata). The HTML output can be viewed with
any XSLT capable browser and it can be tailored even further
by adding a custom CSS stylesheet.

3
http://www.cs.vu.nl/˜pmika/research/burst/BuRST.html

5 Use Cases
Our system for semantics-based bibliography management
can be used by individuals and groups alike in a variety of
modes. It can be used to provide a search interface to pub-
lication collections on personal homepages or departmental
websites such as the homepages of the AI and BI groups of
the VUA (information pull).

More interestingly, the use of RSS technology allows oth-
ers to be notified of changes to these collections (informa-
tion push) by subscribing to publication feeds. A number of
generic tools are available for reading and aggregating RSS
information, including browser extensions, online aggrega-
tors, news clients and desktop readers for a variety of plat-
forms. While these software are not aware of the SWRC and
FOAF schemas, they are still able to process BuRST feeds by
ignoring the information they do not understand. (This be-
haviour is mandated by the RSS specification and is the basis
of modularization in RSS.) Mozilla FireFox also natively sup-
ports RSS feeds as the basis for creating dynamic bookmark
folders. These folders refresh their contents from an RSS feed
whenever the user opens them.

The reliance on RDF and lightweight, widely used web
ontologies also makes it possible to access personal profiles
and publication information by generic RDF tools such as the
Piggy Bank browser extension. Piggy Bank allows users to
collect RDF statements linked to Web pages while browsing
through the Web and to save them for later use. FOAF infor-
mation can be processed by a growing number of tools, while
the SWRC data can be easily converted back to BibTeX to
complete the knowledge cycle.

6 Discussion
In summary, we presented a semantic-based system for pub-
lication management that builds on web technology, well-
known ontologies and by reusing existing information re-
quires no additional effort from the individual. In compari-
son to centralized approaches, our system leaves the control
over publication management and presentation in the hands
of the individual researcher, while still allowing for informa-
tion push. On the other hand, our system is more lightweight
than P2P networks that require users to install and run spe-
cific software on their computers. The Java object models
for the FOAF, RSS and BuRST formats as well as the tools
for crawling and smushing FOAF data have been made avail-
able as part of the open source Elmo API for Sesame. Elmo
can be downloaded fromwww.openrdf.org . The interface
to the tools themselves and some examples can be found at
http://prauw.cs.vu.nl:8080/burst/ .

References
[Brickley and Miller, 2005] Dan Brickley and Libby Miller.

FOAF vocabulary specification. Namespace document,
June 3, 2005.

[Broekstraet al., 2002] Jeen Broekstra, Arjohn Kampman,
and Frank van Harmelen. Sesame: An architecture for
storing and querying RDF and RDF Schema. In Ian
Horrocks and James A. Hendler, editors,Proceedings of
the First International Semantic Web Conference (ISWC
2002), volume 2342 ofLecture Notes in Computer Sci-
ence, pages 54–68, Sardinia, Italy, June, 9–12, 2002.
Springer-Verlag.

275

Smarter Groups – Reasoning on Qualitative
Information from Your Desktop

Sebastian Böhm, Marko Luther, and Matthias Wagner

DoCoMo Euro-Labs, Landsbergerstr. 312, 80687 Munich, Germany
<lastname>@docomolab-euro.com

Abstract. This paper explores the possibilities and core technologies of the ongo-
ing development towards the Semantic Web for desktop application enhancement.
It demonstrates how an ontology-based software can provide refined support for
personal information organization. The Web Ontology Language and reasoning
mechanisms based on Description Logics (DL) are analyzed as enabler technolo-
gies for semantic enrichments. We report on our prototype that realizes the en-
hancement of Apple’s Address Book application by DL-based smart groups.

1 Introduction

The communication environment we find today dramatically changed the way we work
and interact with other people. Access to common knowledge sources like the World
Wide Web and means of communication like E-Mail have long become ubiquitous and
intensified the need for more efficient and intelligent knowledge management mecha-
nisms. In this respect, creating new approaches for an integrated information manage-
ment and distribution is one key task the IT industry and the computer science commu-
nity are currently dealing with. Therefore, a lot of effort is put into the development
towards the Semantic Web [1] to provide a machine readable and meaningful descrip-
tion of the elements of the World Wide Web. Certainly, desktop applications could also
profit exceedingly of well-founded logical annotations, which enable adequate tech-
niques for handling distributed data more efficiently. Based on semantic descriptions,
such applications would comprise additional reasoning mechanisms and therefore out-
match ordinary database driven approaches. In this context, we discuss an experimental
approach for information management by establishing a link to technologies of the Se-
mantic Web. To achieve this, a custom built set of ontologies as well as a prototype for
ontology-based desktop application enhancement will be introduced.

2 Ontologies

Realizing interoperability between different knowledge representations, a set of core
ontologies written in the Web Ontology Language (OWL) has been developed to model
a concrete use case for application enhancement while at the same time providing a
linkup to common upper context ontologies. The core ontologies altogether consist of
nine components, defining more than 300 concepts and nearly 250 properties. Each of

276

these core ontologies contains a specific vocabulary concerning the representation of
the domain of interest that can be used for further domain specific deployment.

The agent ontology is informed by the FOAF vocabulary [2] and allows the speci-
fication of relationships between people rather than just describing a person’s contact
information. It covers domain independent facts about agents and provides a common
vocabulary to express relationships between people in more detail. The hierarchical
structure of the T-Box constitutes the framework for describing persons, groups and or-
ganizations. Social relationships between instances can be expressed by using a variety
of properties, which are themselves structured in a hierarchical order with respect to
source and domain restrictions.

Complementary to the agent.owl ontology the calendar.owl ontology has been mod-
elled to consider additional facets for ontology-based information management through
the description of events. Those descriptions basically consist of the date and time when
the event takes place and the people attending it. The fundamental design of the T-Box
differentiates between a calendar for private events, and a second one for business pur-
poses. Further distinctions in the structure of the ontology are made according to spatial,
temporal and social circumstances of events.

3 Qualitative Reasoning

Having developed appropriate core ontologies, knowledge retrieval and information
management are key areas of application that profit from knowledge sharing through
seamless interoperability as well as profound reasoning support. With reference to
databases of personal contacts, for instance, several other facts and assumptions can
be derived by making use of ontology-based knowledge management and inference.

Thanks to the logical coherence of ontologies, specific information can be derived
based on the transitivity and reflexivity of certain entities and general classification.
This additional information is consequently used to complete missing data in contact
databases. Figure 1 illustrates some of the social relationships of a person called Daw-
son Campbell. It should be noted that even if the relationship between Helen Buchanan
and Dawson Campbell has not been explicitly defined, it is possible to draw the con-
clusion that Helen is Dawson’s mother in law: Helen, in contrast to Dawson, is female
(because she has been defined as Marks’s wife) and has the daughter Madeleine which
is herself the spouse of Michael. So, an additional and formerly unknown relationship
between two entities can be established within the ontology based on the explicit rep-
resented information. The necessary reasoning steps make use of the world knowledge
encoded in the ontology. The concepts relevant to the derivation described above are
defined as follows.

Mother_in_law ≡ Parents_in_law u Women
Parents_in_law ≡ Person u ∃ child.Spouse

Woman ≡ Person u female ∈ gender
Spouse ≡ Person u ∃ spouse.Myself

DL- based reasoning of the kind just sketched is rather limited. For example, it does not
allow to draw the conclusion that Laurie and Michael are siblings. A concept defining
siblings would need to use variables which are not part of the OWL DL. However, by
using a rule language on top of OWL, such as SWRL [3], properties such as sibling can
be defined easily.

277

Dawson Campbell

Davie Robertson

Laurie CampbellMichael Campbell

Madeleine Campbell

son

supervisor

wife/husband

daughter

daughtermother

Anne Campbellson

Allan Keithcolleague

Fraser Anderson
friend

colleague

Mark Buchanan Helen Buchanan
father child

wife

Fig. 1. Social Relations

(x child z) ∧ (y child z) ∧ (x 6= y) ⇒ (x sibling y)

By feeding a rule inference engine with rules that describe properties by property chain-
ing, such as grandchild, uncle or the sibling property stated above, additional facts can
be derived. In doing so, implicit knowledge is again used to derive explicit information
which might trigger further derivations using the standard DL-based mechanisms.
Despite rather social relationships, concepts can moreover be described using a variety
of different qualitative attributes.

Adult ≡ Grandparent t (Person u (∃ child (Student t Employee)) t
(∃ degree Degree) t (∃ employer Person) t (∃ head Organization))

The information gained through the design of concepts like Adult allows for manifold
usage in different areas of applications. To give an example, an ordinary desktop ap-
plication like an email client could take advantage of the information made available
in adjusting the composition of email messages with respect to the recipient. Thus, the
application is able to differentiate between your 16-year old son and your business part-
ners to adjust a variety of predefined settings.

4 Introducing McAnt

McAnt is our first prototype, which has been developed to demonstrate the use of ontol-
ogy reasoning support for desktop applications. McAnt retrieves qualitative information
from standard personal management applications bundled with Apple’s Mac OS X, the
Address Book and iCal. This information entails knowledge that can be derived through
ontology-based reasoning mechanisms and in that respect serves as the basis for further
application enhancements.

4.1 Components

The McAnt system consists of a number of linked components (cf. Figure 2). The
McAnt application itself, which has been developed as a Java application with a na-
tive Mac OS Cocoa interface, the OWL reasoning engine Racer [4], Apple’s Address
Book and iCal as well as the set of core ontologies described above, providing relevant
concept descriptions including the definitions of agents, spatial and temporal entities.

278

Address Book

McAnt

Racer

J
R
a
c
e
r query

result

A
p
p
le
S
c
ri
p
t

iCal

import

enhance

import

enhance

Fig. 2. McAnt Architecture

Serving as a bridge between the different components by relying on inter-application
communication, McAnt accesses the Address Book database and translates it into ap-
propriate Racer commands. The reasoning engine is accessed via JRacer, a TCP socket-
based Java client for the RACER system.

4.2 Retrieving qualitative information

The retrieval of the Address Book entries has been implemented using AppleScript, a
scripting language developed by Apple, which provides automation support for various
complex tasks, including inter-process communication. The information stored in the
Address Book comprises not only a contact database, but additionally offers the possi-
bility to define labels describing relationships among entries including the owner.

Based on the relationship definitions, individuals that are linked with object proper-
ties are created. This enables instance reasoning support through RACER, resulting in
an automatic classification within the T-Box. Thereupon the contacts have been classi-
fied and assigned to the appropriate concepts like Family or Colleague.

Furthermore, McAnt also makes use of the personal information managed with iCal.
Similar to the Address Book imports, an AppleScript accesses the iCal database and
translates it into appropriate RACER commands. This time the high level information
retrieved consists of events, which can be associated with people attending this event
and the location where it takes place. According to the concepts defined in the calendar
ontology, the reasoning system classifies these event instances with respect to their prop-
erties – based on the kind of event (is it a business or private event?), its attendees as
well as recurrence settings. So in case, the supervisor of the owner attends the meeting,
it is therefore categorized as an important event.

4.3 Application Enhancement

Apart from organizing personal information in a taxonomic structure within the T-box,
ontology-based reasoning in fact derives entailed knowledge. The entailed information
can then be used to enrich applications, which in this case originally provided the data
beforehand. McAnt avails this fact in the form of even “smarter” groups.

279

To achieve this, McAnt recursively retrieves all sub-concepts of the concept Per-
son defined in the agent ontology and finally creates appropriate groups in the Address
Book. Afterwards the groups are populated according to the classification results ob-
tained from the reasoner. These “intelligent” groups help to navigate through the ad-
dress book database by classifying the contacts with respect to their relationship with
the owner. Unlike the rather limited possibilities of group definitions in the Address
Book the ontology-based approach provides the full expressiveness of OWL DL. Lat-
ter makes use of the social relationships between the entities defined in the Address
Book and therefore provides more sophisticated possibilities for creating smart fold-
ers. Furthermore, the logical consistency of the folder definitions is maintained, since
conflicting definitions can be detected through the reasoner.

5 Discussion

In this work we presented our initial ideas to support Desktop Applications by rich
semantic representations and reasoning mechanisms. In using extensive background
knowledge formalized in ontological structures using the expressive OWL language,
we were able to achieve knowledge integration across Apple’s personal information
management components, the Address Book and the iCal application. Furthermore, we
highlighted how the functionality of those components can be enhanced by making use
of ontology-based formalization and reasoning.

Taking advantage of the full strength of the OWL DL language, the smart groups
mechanism implemented in Apple’s Address Book application can be tremendously im-
proved. The specification of smart folders in Apple’s current implementation is limited
to simple sequences of either conjunctions or disjunctions of predefined literals not cov-
ering the given social links between entries nor incorporating hierarchical groups. A
further drawback of Apple’s approach is the lack of any logical reasoning support. Not
even simple consistency checks on the represented data are made. Therefore it easily
happens that a smart group is given an unsatisfiable description.

The work reported here is very much in line with the idea of a Social Semantic
Desktop [5]. A rich modeling of world knowledge (such as the framework of social re-
lations in our agent ontology) is an essential prerequisite for standardizing, linking and
wrapping information on the desktop. However, in contrast to other approaches that are
based on simple RDF representations, we decided to apply the richer ontology language
OWL, originally developed for the Semantic Web, and DL-based logical reasoning.

References

1. Berner-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284 (2001)
34–43

2. RDFWeb: The FOAF project (2005) <http://xmlns.com/foaf/0.1/>.
3. Horrocks, I., Patel-Schneider, P.: A proposal for an OWL rules language. In: Proceedings of

the Thirteenth International World Wide Web Conference (WWW’04), ACM (2004) 723–731
4. Haarslev, V., Möller, R.: Racer system description. In: International Joint Conference on

Automated Reasoning (IJCAR’01), June 18–23, 2001, Siena, Italy, Springer (2001)
5. Decker, S., Frank, M.: The Social Semantic Desktop. Technical Report DERI-TR-2004-05-02,

Digital Enterprise Research Institute (DERI), Insbruck (2004)

280

WonderDesk – A Semantic Desktop for Resource
Sharing and Management

Xiang Zhang, Wennan Shen, Yuzhong Qu

Department of Computer Science and Engineering, Southeast University,
Nanjing 210096, P. R. China

{xzhang,wnshen,yzqu}@seu.edu.cn

Abstract. We present our approach in building WonderDesk - a semantic
desktop for resource sharing and management, which is a component of our
WonderSpace application and designed to be an e-Science tool. We propose a
desktop architecture for resource sharing and management using semantic-
enriched RSS model and P2P technology. To enable fine-grained metadata for
e-Science, an ontology about resource is presented as basic vocabulary to be
used in constructing resource metadata along with RSS. Further, group-specific
discipline ontology is proposed to enhance the semantic description of
information resource within user group.

1 Introduction

Nowadays there are many ways for resource sharing. It will be beneficial to the
resource consumers if resources are provided with richer metadata. Some efforts have
been made on centralized resource sharing with rich metadata, such as Forum Nokia1.
Other conspicuous efforts are made on desktop, such as Haystack [1, 2], Chandler [3]
and Gnowsis [4].

In literature [5], Decker remarks on how to build a distributed desktop, and use it
for online social networking. This paper presents our primary attempt – WonderDesk,
as a vision that the Semantic Web and P2P technology can be used in building a
semantic-enriched and distributed desktop for resource sharing and management.

WonderDesk is designed to be an e-Science tool and mostly concern about
nontrivial resources that are important for research. Born as an e-Science tool,
WonderDesk is strongly affected by the visionary prescribed by Vannevar Bush in his
“As We May Think” [6]. Researchers often feel eager to record their fleeting
inspiration for reviewing in aftertime, or exchange thoughts with neighbor researchers
for a corporate brainstorm. Sometimes after reading a classical or state-of-the-art
paper, the first thing a researcher want to do is to share it with colleagues
immediately. The same thing happens when someone saw a presentation of a stunning
technology. WonderDesk is focusing on making these activities of e-Science feasible
and efficient. WonderDesk deems these objects of e-Science, e.g. paper and
presentation, as resources. We design an ontology about resource as basic vocabulary

1 http://www.forum.nokia.com/

281

to construct fine-grained resource metadata. We can also add metadata about topic
information to an e-Science resource. Since topics of resource differ a lot, it is hard to
design a comprehensive topics category. An ontology about group-specific discipline
is proposed to enhance the semantic description of information resource within user
group, and each topic of a resource can be point to a class in the ontology. Different
groups may use different discipline ontologies, which entirely depend on their
research areas.

2 WonderSpace

WonderDesk is a component of WonderSpace, which is a Semantic Web application
developed in our Lab2. Its potential users are researcher groups.

WonderSpace is still under development, of which WonderDesk and
WonderServer are two important components. WonderDesk is a desktop tool focusing
on resource sharing and management, while WonderServer acts as an information
integrator for all the WonderDesk peers in a group and undertake some computation
extensive tasks. It affords some web services and P2P services like indexing service
simultaneously. The reason we design in this way is that: when we are trying to obtain
scalability, we still want to utilize some server technology to handle issues like
concurrent requests and gain high performance.

The typical scenario of WonderDesk is a combined usage with a WonderServer
within a research group. We named it a stand-alone WonderSpace application.

3 WonderDesk

In WonderDesk, RSS3 model is used as the model of resource sharing, and we use
RSS 1.0 specification as the syntax to describe resources metadata. This idea is from
Blog (or Weblog) systems. In WonderDesk, we enrich RSS 1.0 Vocabulary to
represent specific metadata of various kinds of resources.

WonderDesk is developed basing on an open source RSS Aggregator – RSSOwl4
(The “Owl” here has no relation with the Web Ontology Language), We extended its
RSS parser and equipped it with ontologies to make our vocabularies in RSS file
comprehensible to the computer. More details about RSS and our ontologies will be
discussed in following sections.

WonderDesk peer has the following functionalities:
• Presents an user interface to let desktop users annotate their resources;
• Shares the annotated resource with the members in a group;
• Present an enhanced query interface to help desktop user search for the shared

annotated resources within a group;
• Requests and retrieves resources from other peers.

2 http://xobjects.seu.edu.cn
3 http://rss.userland.com
4 http://www.rssowl.org

282

It is typical but not required to use WonderDesk peers combined with
WonderServer. We can behold the typical scenario as an implementation of hybrid
P2P architecture [7], in which WonderServer acts as a super node. Comparing to a
pure P2P architecture, we think the hybrid one offers more manageability and
facilities for resource query.

UI P2P Listener

Controller Policy
Maker

JXTA/CMS

P2P ServiceSesameExtended
RSS Parser

Metadata
Generator

Policy
Checker

RDF Storage

User Profile
Manager

Policy Storage

Web Service Client

Fig. 1. WonderDesk Architecture

As presented in Fig. 1, we use Sesame5 as the RDF framework, which has been
proved to be efficient in large OWL application [8]. SeRQL6 is a powerful RDF query
language implemented in Sesame.

Some modules in the architecture are based on a java reference implementation
provided by JXTA, which is a set of open protocols that allows any connected device
on the network communicates and collaborates in a P2P manner [9].

4 Ontology

We have built ontology of resource, which defines terms to be used in constructing
resource metadata along with other modules in RSS 1.0 specification. The other is
group-specific discipline ontology describing the topic of resources.

4.1 Resource Ontology

Fig. 2 depicts part of the resource ontology model we designed. A hierarchy of
“Resource” class defines different kinds of resources and their diverse properties.
Although only “Information Resource ” is most concerned sharable e-Science

5 http://openrdf.org
6 http://openrdf.org/doc/sesame/users/ch06.html

283

resources with WonderDesk at present, this kind of hierarchy concerning more
general resources provides scalability for potential extension by any third-party.

Resource Media
Format

Book

Document

Note

Information
Resource

Data
Resource

Software
Package

Computational
Resource

Presentation Paper

^^xsd:String

creator

^^xsd:String

publisher

format

^^xsd:String

author

^^xsd:Stringabstract

^^xsd:String

content

^^xsd:String identifier

^^xsd:String ^^xsd:String

creatingDate pr
ov

ide
Da

te

^̂ xsd:String

keyword

^^xsd:String

description

^^xsd:String

isbn

topic

^^xsd:String

generalTerms

Group-specific
Discipline Ontology

Fig. 2. Resource Model

4.2 Group-specific Discipline Ontology

As mentioned before, topics of shared resources vary within different research groups.
And in most cases, a certain group concerns about limited number of research area.

We build an ontology presenting a simple and incomprehensive classification of
Computer Science research areas, where each area corresponds to a node in ACM
CCS7. Each topic of a certain resource shared within our group can be linked to an
area in this ontology.

It is nature that each stand-alone WonderSpace application will share a unified
group-specific discipline ontology. We prefer the ontology to be small and specialized
than huge and general for the sake of efficiency.

5 Conclusions and Future Work

We have demonstrated our approach in build WonderDesk - a semantic desktop for
resource sharing and management, which is a component of our WonderSpace
application. We design it to be an e-Science tool and benefit a lot from the
experiences of previous research, including Haystack, Chandler and Gnowsis.

Among other semantic desktops, WonderDesk mainly contributes to the following
aspects: first, we originally propose a desktop architecture for resource sharing and

7 http://www.acm.org/class/1998

284

managing using RSS model and P2P technology; second, to enable fine-grained
metadata for e-Science, a resource ontology is presented as basic vocabulary to be
used in constructing resource metadata along with RSS. Further, group-specific
discipline ontology is proposed to enhance the semantic description of information
resource within user group. These ideas have been illustrated to be feasible in our
primary implementation.

Our research is just an initial attempt in building Semantic Desktop. A lot of issues
are still under consideration. In the future work, we will focus on the semi-automatic
or automatic annotation for resources, which will bring great facility to WonderDesk
users as discussed in foregoing sections. We will also focus on the connection and
collaboration of different stand-alone WonderSpace applications, and model a social
researcher network. Trust and reputation issues will be addressed to help users
making decision in their researching collaborations.

6 Acknowledgments

The work is supported in part by National Key Basic Research and Development
Program of China under Grant 2003CB317004, and in part by the NSF of Jiangsu
Province, China, under Grant BK2003001, and in part by Hwa-Ying Culture and
Education Foundation. We would like to thank Dr. Zhiqiang Gao, Dr. Yuqing Zhai,
Prof. Jianming Deng and Dr. Yanbing Wang for their suggestions.

Reference

1. R. Karger, D., Bakshi, K., Huynh D., Quan, D., and Sinha, V.: Haystack: A General
Purpose Information Management Tool for End Users of Semistructured Data. CIDR 2005:
13-26.

2. Quan, D., Huynh, D., and R. Karger, D.: Haystack: A Platform for Authoring End User
Semantic Web Applications. International Semantic Web Conference 2003: 738-753

3. The Chandler Project: http://www.osafoundation.org/
4. Sauermann, L.: The Gnowsis Semantic Desktop for Information Integration. Wissens

management 2005: 39-42
5. Decker, S. and Frank, M.: The Social Semantic Desktop. DERI Technical Report. 2004.
6. Bush, V.: As We May Think. The Atlantic Monthly 176(1): 101-108 (1945)
7. Yang, B. and Garcia-Molina, H.: Comparing Hybrid Peer-to-Peer Systems. VLDB 2001:

561-570
8. Yuanbo G., Zhengxiang P. and Jeff H.: An Evaluation of Knowledge Base Systems for

Large OWL Datasets. International Semantic Web Conference 2004: 274-288
9. Groth, T.: Project JXTA. Peer-to-Peer: Ökonomische, technische und juristische

Perspektiven 2002: 201-208

285

	104_17_park_iris_final.pdf
	IRIS – Share

	105_29_moeller_semiblogsemdesk_final.pdf
	Harvesting Desktop Data for Semantic Blogging
	Knud Möller cl@@auth, Stefan Decker

	108_27_oren_semperwiki_final.pdf
	SemperWiki: a semantic personal Wiki
	Eyal Oren eyal.oren@deri.org

	110_34_witte_engineeringsd_final.pdf
	Engineering a Semantic Desktop for Building Historians and Architects
	René Witte (Universität Karlsruhe), Christopher J.O. Baker (Concordia University)

	111_21_Rohmer_Semanticdesktop_final.pdf
	ABSTRACT
	HISTORY
	MAIN DESIGN PRINCIPLES
	APPLICATIONS / MARKET SEGMENTS
	USERS ACCEPTANCE
	IMPLEMENTATION
	ROLE VISA VIS A VIS THE SEMANTIC WEB
	CONCLUSION : TOWARDS « Intelligence Amplifiers »
	At the end, Semantic Desktops will become « Intelligence Am

	REFERENCES ABOUT IDELIANCE

	232_12_boehm_smartergroups-poster.pdf
	Smarter Groups -- Reasoning on Qualitative Information from Your Desktop
	 Sebastian Böhm, Marko Luther, Matthias Wagner

