
Matrix Clustering Algorithms 
for Vertical Partitioning Problem: 

an Initial Performance Study 

© Viacheslav Galaktionov1

viacheslav.galaktionov@gmail.com , 
© George Chernishev1,2 

g.chernyshev@spbu.ru,
© Boris Novikov1 

b.novikov@spbu.ru ,
© Dmitry A. Grigoriev1 

d.a.grigoriev@spbu.ru

1Saint-Petersburg State University, Saint-Petersburg, Russia 
2JetBrains Research, Saint-Petersburg, Russia 

Abstract 

Matrix clustering algorithms are among the oldest 
approaches to the vertical partitioning problem. They can 
be summarized as follows: (1) given a workload, 
construct an Attribute Usage Matrix (AUM), (2) apply 
some kind of a row and column permutation algorithm 
and (3) extract the resulting clusters which define the 
required fragments. 
This naive approach holds some promise for a number of 
contemporary applications: (1) dynamization of vertical 
partitioning (2) big data applications and other cases of 
resource constraints (3) tuning of multistores. 
In this paper we examine a number of existing matrix 
clustering algorithms used for vertical partitioning. We 
study these algorithms and assess the quality of the 
solutions. The experiments are run on the TPC-H 
workload using the PostgreSQL DBMS. 

1 Introduction 

The vertical partitioning problem [5] is one of the oldest 
problems in the database domain. There are dozens or 
even hundreds of studies available on the subject. It is a 
subproblem of the general database physical structure 
selection problem.  It can be described as follows [9]: 
find a configuration (a set of vertical fragments) which 
would satisfy the given constraints and which will 
provide the best performance. There are two major 
classes of approaches to this problem: 

 Cost-based approach [3, 16, 21, 33]. Studies
that follow this approach construct a cost
model, which is used to predict the performance
of a workload for any given configuration.
Next, an algorithm enumerating the
configuration space is used.

 Procedural approach [29, 32, 35]. These studies
do not use the notion of configuration cost.
Instead, they propose some kind of a procedure
which will result in a “good” configuration.
Usually, these studies provide some intuitive
explanation why the ensuing configuration
would be “good”.

The abundance of studies is justified by the following 
considerations: 

 It was proved that the problem of vertical
partitioning is an NP-Hard problem [4, 29, 37],
just like many other physical design problems
[6, 22, 37].

 Estimation errors related to both the system
parameters and workload parameters. System
parameters (hardware and software) in some
cases cannot be measured precisely. Workload
parameters can also be imprecise, e.g. not all
queries are known in advance, or some of the
known queries are not run. All these errors can
cause the performance of the solution to
deteriorate.

The procedural approach was very popular in the ’80s 
and ’90s because of the lack of computational resources. 
Nowadays, the interest for it has largely declined, and the 
majority of contemporary studies follows the cost-based 
one. This approach produces more accurate 
recommendations by incorporating additional 
information into the selection process. However, 
procedural approach has a number of promising 
applications: 

 Dynamization of vertical partitioning [24, 28,
34, 36]. All of the previous vertical partitioning
studies considered the problem in a static
context, i.e. a configuration is selected once. In
case of changes in the workload or the data the
algorithm has to be re-run. In the new
formulation the goal is to adapt the partitioning
scheme to a constantly changing workload. The
straightforward technique of the repeated re-run
of a cost-based algorithm is not applicable due
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to its formidable costs of operation. Otherwise, 
its application will result in query processing 
stalls which should be avoided at all costs in this 
formulation. However, the procedural approach 
is not so computationally demanding as the 
cost-based one. Thus, low-quality solutions are 
acceptable as long as they provide improvement 
over the previous configuration and help us 
avoid queryprocessing stalls. 

 Big data applications or any other cases
featuring constrained resources.

 Tuning of multistores [27] or any other case
when no details or only inaccurate estimates of
physical parameters are known. It was already
noted in the ’80s [31] that the procedural
approach is well-suited for such cases. A
multistore system is a database system which
consists of several distinct data stores, e.g. a
Hadoop’s HDFS and an RDBMS. This kind of
a system is a modern example of the case where
not every physical parameter of underlying data
stores is known.

In this paper we evaluate a particular subclass of 
procedural vertical partitioning algorithms – the matrix 
clustering algorithms.  

To the best of our knowledge, this study is the first 
one to evaluate this class of algorithms using a real 
DBMS and a real workload [1].  

2 Related Work 

2.1 Classification 
The vertical partitioning problem is one of the oldest 
problems in the database domain. There are several 
dozens of studies on this topic, and most of them concern 
various algorithms. Several surveys can be found in the 
references [14, 15]. Vertical partitioning algorithms can 
be classified into two major groups: cost-based and 
procedural, where the latter employs three types of 
approaches: 

 Attribute affinity and matrix clustering
approaches [10, 11, 13, 19, 23]. In affinity-
based approaches, closeness between every two
attributes is first calculated, and then it is used
to define the borders of the resulting fragments.
This closeness is called attribute affinity. At the
first step a workload is used to create an AUM,
then an Attribute Affinity Matrix (AAM) is
constructed using a paper-specific
transformation procedure. Finally, a row and
column permutation algorithm is applied.
Matrix clustering approaches operate on the
AUM and start with the permutation part.

 Graph approaches [12, 17. 29, 32, 39]. Most of
the graph approaches treat the AAM as an
adjacency matrix of an undirected weighted
graph. In this graph nodes denote attributes and

edges represent a bound’s strength. Then a 
template is sought by various means, e.g. 
kruskal-like algorithms or hamiltonian way cut. 
The resulting templates are used to construct 
partitions. 

 Data mining approaches [8, 20, 35]. This is a
relatively new vertical partitioning technique
that uses association rules to derive vertical
fragments. Most of these works mine a
workload (a transaction set) for rules which use
sets of attributes as items. In these studies
existing algorithms for association rule search
are used to uncover relations between attributes.
In particular, an adapted Apriori [2] algorithm
is a very popular choice.

Let us review the matrix clustering approach in 
detail. 

2.2 Matrix Clustering Approach 

The general scheme of this approach is the following: 
 Construct an Attribute Usage Matrix (AUM)

from the workload. The matrix is constructed as
follows:

Mij = 
 { 1, query i uses attribute j 

0, otherwise 

 Cluster the AUM by permuting its rows and
columns to obtain a block diagonal matrix.

 Extract these blocks and use them to define the
resulting partitions.

Some approaches do not operate on a 0-1 matrix. 
Instead they modify matrix values to account for 
additional information like query frequency, attribute 
size and so on. 

Let us consider an example. Suppose that we have six 
queries accessing six attributes: 

q1: SELECT a FROM T WHERE a > 10; 
q2: SELECT b, f FROM T; 
q3: SELECT a, c FROM T WHERE a = c; 
q4: SELECT a FROM T WHERE a < 10; 
q5: SELECT e FROM T; 
q6: SELECT d, e FROM T WHERE d + e > 0; 
The next step is the creation of an AUM using this 

workload. The resulting matrix is shown on Figure 1a. 
Having applied a matrix clustering algorithm, we acquire 
the reordered AUM (Figure 1b). The resulting fragments 
are the following: (a, b), (b, f), (d, e). 

However, not all matrices are fully decomposable. 
Consider the matrix presented on Figure 2. The first 
column obstructs the perfect decomposition into several 
clusters. In this case, the algorithm should produce a 
decomposition which would minimally harm query 
processing and would result in an overall performance 
improvement. Matrix clustering algorithms employ 
different strategies to select such a decomposition. 
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a b c d e f a b c d e f 
q1 1 0 0 0 0 0  q1 1 0 0 0 0 0 
q2 0 1 0 0 0 1  q3 1 1 0 0 0 0 
q3 1 0 1 0 0 0  q4 1 0 0 0 0 0 
q4 1 0 0 0 0 0  q2 0 0 1 1 0 0 
q5 0 0 0 0 1 0  q6 0 0 0 0 1 1 
q6 0 0 0 1 1 0  q5 0 0 0 0 0 1 

(a) AUM (b) Reordered AUM
Figure 1 Matrix clustering algorithm 

2.3 Matrix Clustering Approach 
The first study to introduce matrix clustering to vertical 
partitioning was the work of Hoffer [23]. The idea is to 
store together (in one file) attributes possessing identical 
retrieval patterns. The patterns are expressed through the 
notion of attribute cohesion, which shows how attributes 
in a pair are related to each other. The author proposes a 
pairwise attribute similarity measure to capture this 
cohesion. 

The proposed measure relies on three parameters: co-
access frequency of a pair of attributes, attribute length 
and relative importance of the query. This measure was 
designed having the following properties in mind: it is 
non-decreasing by co-access frequency, non-decreasing 
by both attribute lengths (individually) and the function 
is non-increasing in the combined length of attributes. 

Finally, having an attribute affinity matrix, an 
existing clustering algorithm (Bond Energy Algorithm, 
BEA) [30] is used. It permutes rows and columns to 
maximize nearest neighbour bond strengths. The author 
was motivated in his choice by the following: this 
algorithm is insensitive to the order in which items are 
presented, it has a low computation time, etc. However, 
this algorithm has a disadvantage: it requires human 
attention for cluster selection. 

a b c d e f 
1 1 1 0 0 0 
1 1 1 0 0 0 
1 1 1 0 0 0 
1 0 0 1 1 0 
1 0 0 1 1 0 
1 0 0 0 0 1 

Figure 2 Non-decomposable matrix 

BEA is not the only existing matrix clustering 
algorithm. Another permutation algorithm was proposed 
in the reference [38]. Similarly to BEA, it permutes rows 
and columns, but tries to minimize the spanning path of 
the graph represented by the original matrix. The 
improvement of these two algorithms is presented in the 
reference [7]. This algorithm is called the matching 
algorithm and it uses Hamming distance to produce 
clusters. According to the reference [10], the study [25] 
presents the Rank Order algorithm. Its idea is to sort rows 
and columns of the original matrix in descending order 
of their binary weight. The Cluster Identification (CI) 
algorithm by Kusiak and Chow [26] is an algorithm for 
clustering 0-1 matrices. The proposed approach is to 

detect clusters one by one using a special procedure. This 
procedure resembles the search of a transitive closure for 
rows and columns. It is an optimal algorithm that can 
solve the problem when the matrix is perfectly separable, 
e.g. when clusters do not intersect (there is no attribute
sharing).

All of the aforementioned algorithms (except BEA) 
are generic matrix clustering algorithms. They do not 
address the vertical partitioning problem and do not even 
bear any database specifics. The next studies by Chun-
Hung Cheng [10, 11, 13] attempt to apply matrix 
clustering approach to the database domain. Several new 
vertical partitioning algorithms were developed in his 
works. Let us consider them. 

Chun-Hung Cheng criticizes existing matrix 
clustering algorithms [10, 11]: 
 They do not always produce a solution matrix in a

diagonal submatrix structure. Thus, these algorithms
may require additional computation to extract them;

 These algorithms may require decision of database
administrator to identify inter-submatrix attributes
[10].

The first study [10] extends the original CI [26]
algorithm to non-decomposable matrices. The proposed 
approach is to remove columns obstructing the 
decomposition (inter-submatrix attributes). 

The author considered the following problem 
formulation P1 [10]: remove columns to decompose a 
matrix into separable submatrices with the maximum 
number of “1” entries retained in submatrices subject to 
the following constraints: 
 C1: A submatrix must contain at least one row;
 C2: The number of rows in a submatrix cannot

exceed upper limit, b;
 C3: A submatrix must contain at least one column.

In order to solve the problem, the branch and bound
approach was used. This approach uses an objective 
function which maximizes the number of “1” entries in 
the resulting submatrices. During the tree traversal, 
upper and lower bounds are calculated and used to guide 
the enumeration process. 

However, the basic approach required traversal of too 
many nodes, so the author augmented it with the 
following heuristic. A so-called blocking measure is 
calculated for each column. It estimates the likelihood of 
a column being an obstacle to the further decomposition 
of the matrix. Basically, it is the number of columns that 
would be involved in all queries which use the given  
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Figure 3 The architecture of our approach 

attribute. Next, the columns are ordered by their 
respective values and the ones with the highest values are 
checked. 

The study [11] also extends the original CI algorithm. 
The author adopts the same branch and bound approach 
as in his previous paper [10]. However, instead of the 
blocking measure a new void measure is developed. It 
has the same purpose, which is the estimation of the 
likelihood of a column being an inter-submatrix column. 
Essentially, this measure is the calculated “free space” to 
the left and to the right of the candidate cluster. 

The next study of the author [13] addresses several 
shortcomings of his previous works: 
 The problem of the parameter b. While this

parameter helps prevent the formation of the huge
clusters, it does not guarantee any quality of the
resulting clusters. Also, the problem will have to be
reformulated if several clusters of different sizes are
needed.

 The dangling transaction problem. Applying the
previous algorithm [11] a transaction not belonging
to any cluster may be acquired: all of its attributes
would be removed. Two examples are presented in
the original paper.

 The previous work did not include such an important
parameter as the access frequency of the
transactions.

Thus, a new formulation P3 is proposed [13]: remove
a minimal number of “1” entries to decompose a 
transaction-attribute access matrix into separable 
submatrices subject to the following constraints: 
 C7: Transactions with all “0” entries in a submatrix

are not allowed.
 C8: Attributes with all “0” entries in a submatrix are

not allowed.
 C9: The cohesion measure of a submatrix is more

than or equal to a threshold, δ.
Cohesion measure of a submatrix is the ratio of “1”

elements to “0” elements. This new measure is used to 
ensure the quality of a cluster. 

The problem is also solved with the branch and bound 
approach, again, the void measure is used to guide the 
order of node traversal. 

Furthermore, in this work the author shows why 
dangling transactions should be avoided: an example is 
provided showing a case where it is possible to lose 
information regarding a cluster. Finally, the author 

extended his CI framework to consider query 
frequencies. This P4 formulation is the same as P3, but 
features a weighted sum of accesses [13]: minimize the 
loss of total accesses (∑i∑j aij × freqi) due to the removal 
of aij for decomposing a transaction-attribute matrix into 
separable submatrices subject to the same constraints 
C7–C9. 

In this paper we study the approaches described in the 
references [10, 11, 13]. 

3 System Architecture 

We have developed a program for experimental 
evaluation of the considered algorithms. Its architecture 
is presented on Figure 3. It consists of the following 
modules: 
 The parser reads the workload from a file. It extracts

the queries and passes them to the executor, so that
their execution times can be measured. It also
constructs the AUM, which serves as input for the
selected algorithm.

 The algorithm identifies clusters and passes that
information to the partitioner to create
corresponding temporary tables.

 The query rewriter also receives this information. It
replaces the name of the original table with the ones
that were generated by the partitioner. It can handle
subqueries; view support is not implemented yet.

 The partitioner generates new names and sends
partitioning commands to the database. The exact
commands are SELECT INTO and ALTER
TABLE. The latter lets it transfer primary keys.

 The executor accepts queries and sends them to
PostgreSQL to measure the time of execution.

4 Parallelization 

Having implemented this system, we noticed 
unacceptable run times even for relatively small 
matrices. The author of these algorithms states that this 
is not a problem because the algorithm finds a good 
solution quickly and spends the major portion of its time 
just by checking the rest of the tree. 

However, we decided to parallelize all of the 
algorithms. We managed to achieve this in a generic 
fashion, i.e. we applied a generic parallelization scheme 
for all of the branch and bound algorithms. In order to  

vpart 

workload 
PostgreSQL 

parser 

algorithm 

rewriter 

executor

partitioner
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Type Q1 Q6 Q14 Q19 Type Q6 Q14 Q19 
Original 11694 1365 1412 1663 Original 1439 1405 1673 
partitioned 31558 1602 1379 1797 Partitioned 1343 1093 2731 
Figure 4 Scenario 1 – A09, QS1, 0.7 Figure 6 Scenario 2 – A09, QS2, 0.7 

1 2 3 4 5 6 7 8 9 10 1 3 9 10 2 4 5 6 7 8 
Q1 0 1 1 1 1 1 1 1 0 0 Q1 0 * 0 0 1 1 1 1 1 1 
Q6 0 1 1 1 0 0 0 1 0 0 Q6 0 * 0 0 1 1 0 0 0 1 
Q14 1 0 1 1 0 0 0 1 0 0 Q14 1 1 0 0 0 * 0 0 0 *
Q19 1 1 1 1 0 0 0 0 1 1 Q19 1 1 1 1 * * 0 0 0 0

(a) Original (b) Result
Figure 5 Scenario 1 – A09, QS1, 0.7 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 
Q6 0 1 1 1 1 0 0 Q6 0 1 1 1 1 0 0 
Q14 1 0 1 1 1 0 0 Q14 1 0 1 1 1 0 0 
Q19 1 1 1 1 0 1 1 Q19 * * * * 0 1 1 

(a) Original (b) Result
Figure 7 Scenario 2 – A09, QS2, 0.7 

type Q6 Q14 type Q6 Q14 Q19 
original 1555 1395 original 1385 1409 1648 
partitioned 1421 1062 partitioned 2201 1377 1855 

Figure 8 Scenario 3 – A09, QS3, 0.7 Figure 10 Scenario 5 – A09, QS2, 0.9 

type Q6 Q14 Q19 Type Q1 Q6 Q14 Q19 
original 1438 1360 1685 original 11515 1367 1608 
partitioned 1405 1148 1704 partitioned 31173 934 1479 1989 

Figure 9 Scenario 4 – A09, QS2, 0.5 Figure 12 Scenario 6 – A95, QS1, 2 

implement it we employed the Threading Building 
Blocks (TBB)1. 

Using these primitives, our already existing 
sequential implementation was parallelized with 
minimal effort. We replaced the explicit stack used in 
sequential depth-first traversal with TBB constructs2. 
Thus, we kept the node inspection code unchanged. 

For the detailed information regarding the 
parallelization method and the results see the original 
paper [18]. 

5 Experiments 

We have implemented three recent matrix clustering 
algorithms [10, 11, 13] (A94, A95, A09) and used 
PostgreSQL DBMS to evaluate them. Our experiments 
were conducted using the standard benchmark – TPC-H 
with scale factor 1. We measured the run times for 
original and partitioned configurations. 

5.1 Hardware and Software Setups 

In our experiments the following setup was used: 
 PostgreSQL 9.5.2,
 Gentoo Linux (kernel 4.1.12),
 Intel® Core™ i7-3630QM (4 physical cores,

hyper-threading enabled)

1 https://www.threadingbuildingblocks.org/ 
2 https://www.threadingbuildingblocks.org/ 

 8GB (DDR3) RAM,
 GCC 4.9.3.
The database was placed in the main memory of the

machine. In order to accomplish this, the PostgreSQL 
data directory was put on tmpfs, created with standard 
GNU/Linux utilities.  

To ensure the reproducibility of our results we used 
sequential versions of algorithms for all comparisons. All 
of the workloads were executed sequentially. 

5.2 Data Setup 

For our evaluation we have chosen the LINEITEM and 
PART tables. Based on these tables we have formulated 
the following query setups: 

 Query Setup 1 (QS1): Q1, Q6, Q14, Q19;
 Query Setup 2 (QS2): Q6, Q14, Q19;
 Query Setup 3 (QS3): Q6, Q14.

This is the initial series of experiments, so we tried to
use simple scenarios. In these experiments we assume 
uniform distribution of query frequencies.  

The author of the studied algorithms indicated that 
there are three possible strategies for dealing with inter-
submatrix attributes: forming a separate cluster for all 
inter-submatrix attributes, duplicating them to every 
subrelation and keeping them in the relation which uses 
them more often. He argues that the decision which 

docs/help/reference/task_scheduler.htm 
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strategy to apply is usually left to database administrator. 
In this study we employ the first strategy. 

5.3 Scenario 1 

In this experiment we used the most recent algorithm 
from the reference [13] (A09). The cohesion parameter 

was set to 0.7 and QS1 was used. Table 4 contains the 
performance for this scenario. 

As we can see, only run time for Q14 improved and 
the overall time significantly increased. The query Q1 
can be characterized by a large number of aggregates and 
read attributes. This is the possible reason for such 
performance deterioration. The partitioning scheme is 
presented in Table 5. 

5.4 Scenario 2 

This experiment also addresses the A09 algorithm with 
the same cohesion parameter. However, we decided to 
discard Q1 from the workload to check whether that 
would improve the overall performance. The results are 
presented in Table 6. While Q6 and Q14 performance 
improved, the Q19 performance has greatly deteriorated. 
The net gain is also negative in this case. The 
corresponding partitioning scheme is presented in Table 
7. 

5.5 Scenario 3 

In this scenario we examined A09 on the QS3. The 
results are shown in Table 8. We do not demonstrate the 
original and partitioned matrices due to the space 
constraints and due to the fact that the algorithm returned 
only one cluster, which was identical to the input one. 
Thus, overall improvement was achieved via transfer of 
all of untouched attributes to a separate cluster. 

5.6 Scenario 4 

In this experiment we again considered A09 on QS2, but 
lowered the cohesion value to 0.5. Similarly, we  
obtained a positive net gain (see Table 9). Unfortunately, 
input and output matrices indicate that the reason for this 
improvement is the same as in Scenario 3. 

5.7 Scenario 5 

Here we evaluate the behavior of A09 with QS2 and 
cohesion value of 0.9. Results are presented in Tables 10 
and 11. There is also negative overall gain. 

5.8 Scenario 6 

In this experiment we tried a different algorithm – A95 
on QS1 with the maximum number of rows being 2. The 
outcome is presented in Tables 12, 13. 

5.9 Other Scenarios and Results 

We have also conducted a number of other experiments, 
but unfortunately, we are limited by the space available. 
Here is a brief summary of our findings: 
 If we select a lot of attributes in one query of the

workload, these algorithms will perform poorly;
 These algorithms perform well on workloads which

have several columns consisting of “0” entirely
(containing no accesses in the workload);

 It may be beneficial to set a low cohesion value in
order to achieve better performance. This is
accomplished by eliminating additional joins;

 Algorithms A95, A94 and Optimal exhibit the
similar behavior during our tests;

 There are cases when any of the algorithms
(Optimal, A94, A95) can return no solution;

 In order to obtain a non-trivial solution cohesion
parameter should be higher than one of the original
matrix.

6 Conclusions 

In this paper we have studied three newer matrix 
clustering algorithms [10, 11, 13]. We have implemented 
these algorithms and used PostgreSQL with TPC-H 
workload to evaluate them. In our experiments we 
employed one of several inter-cluster attribute handling 
strategies. Preliminary results suggest that all of these 
algorithms perform poorly in this environment, often 
yielding partitioning schemes worse than the original 
one. 

1 2 3 4 5 6 7 1 2 6 7 3 4 5 
Q6 0 1 1 1 1 0 0 Q6 0 * 0 0 1 1 1 
Q14 1 0 1 1 1 0 0 Q14 * 0 0 0 1 1 1 
Q19 1 1 1 1 0 1 1 Q19 1 1 1 1 * * 0

(a) Original (b) Result
Figure 11 Scenario 5 – A09, QS2, 0.9 

1 2 3 4 5 6 7 8 9 10 1 9 10 5 6 7 2 3 4 8 
Q1 0 1 1 1 1 1 1 1 0 0 Q1 0 0 0 1 1 1 1 1 1 1 
Q6 0 1 1 1 0 0 0 1 0 0 Q6 0 0 0 0 0 0 1 1 1 1 
Q14 1 0 1 1 0 0 0 1 0 0 Q14 1 0 0 0 0 0 0 1 1 1 
Q19 1 1 1 1 0 0 0 0 1 1 Q19 1 1 1 0 0 0 1 1 1 0 

(a) Original (b) Result
Figure 13 Scenario 6 – A95, QS1, 2 
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