
Matrix Clustering Algorithms
for Vertical Partitioning Problem:

an Initial Performance Study

© Viacheslav Galaktionov1

viacheslav.galaktionov@gmail.com ,
© George Chernishev1,2

g.chernyshev@spbu.ru,
© Boris Novikov1

b.novikov@spbu.ru ,
© Dmitry A. Grigoriev1

d.a.grigoriev@spbu.ru

1Saint-Petersburg State University, Saint-Petersburg, Russia
2JetBrains Research, Saint-Petersburg, Russia

Abstract

Matrix clustering algorithms are among the oldest
approaches to the vertical partitioning problem. They can
be summarized as follows: (1) given a workload,
construct an Attribute Usage Matrix (AUM), (2) apply
some kind of a row and column permutation algorithm
and (3) extract the resulting clusters which define the
required fragments.
This naive approach holds some promise for a number of
contemporary applications: (1) dynamization of vertical
partitioning (2) big data applications and other cases of
resource constraints (3) tuning of multistores.
In this paper we examine a number of existing matrix
clustering algorithms used for vertical partitioning. We
study these algorithms and assess the quality of the
solutions. The experiments are run on the TPC-H
workload using the PostgreSQL DBMS.

1 Introduction

The vertical partitioning problem [5] is one of the oldest
problems in the database domain. There are dozens or
even hundreds of studies available on the subject. It is a
subproblem of the general database physical structure
selection problem. It can be described as follows [9]:
find a configuration (a set of vertical fragments) which
would satisfy the given constraints and which will
provide the best performance. There are two major
classes of approaches to this problem:

 Cost-based approach [3, 16, 21, 33]. Studies
that follow this approach construct a cost
model, which is used to predict the performance
of a workload for any given configuration.
Next, an algorithm enumerating the
configuration space is used.

 Procedural approach [29, 32, 35]. These studies
do not use the notion of configuration cost.
Instead, they propose some kind of a procedure
which will result in a “good” configuration.
Usually, these studies provide some intuitive
explanation why the ensuing configuration
would be “good”.

The abundance of studies is justified by the following
considerations:

 It was proved that the problem of vertical
partitioning is an NP-Hard problem [4, 29, 37],
just like many other physical design problems
[6, 22, 37].

 Estimation errors related to both the system
parameters and workload parameters. System
parameters (hardware and software) in some
cases cannot be measured precisely. Workload
parameters can also be imprecise, e.g. not all
queries are known in advance, or some of the
known queries are not run. All these errors can
cause the performance of the solution to
deteriorate.

The procedural approach was very popular in the ’80s
and ’90s because of the lack of computational resources.
Nowadays, the interest for it has largely declined, and the
majority of contemporary studies follows the cost-based
one. This approach produces more accurate
recommendations by incorporating additional
information into the selection process. However,
procedural approach has a number of promising
applications:

 Dynamization of vertical partitioning [24, 28,
34, 36]. All of the previous vertical partitioning
studies considered the problem in a static
context, i.e. a configuration is selected once. In
case of changes in the workload or the data the
algorithm has to be re-run. In the new
formulation the goal is to adapt the partitioning
scheme to a constantly changing workload. The
straightforward technique of the repeated re-run
of a cost-based algorithm is not applicable due

Proceedings of the XVIII International Conference
«Data Analytics and Management in Data Intensive
Domains» (DAMDID/RCDL’2016), Ershovo, Russia,
October 11 - 14, 2016

24

to its formidable costs of operation. Otherwise,
its application will result in query processing
stalls which should be avoided at all costs in this
formulation. However, the procedural approach
is not so computationally demanding as the
cost-based one. Thus, low-quality solutions are
acceptable as long as they provide improvement
over the previous configuration and help us
avoid queryprocessing stalls.

 Big data applications or any other cases
featuring constrained resources.

 Tuning of multistores [27] or any other case
when no details or only inaccurate estimates of
physical parameters are known. It was already
noted in the ’80s [31] that the procedural
approach is well-suited for such cases. A
multistore system is a database system which
consists of several distinct data stores, e.g. a
Hadoop’s HDFS and an RDBMS. This kind of
a system is a modern example of the case where
not every physical parameter of underlying data
stores is known.

In this paper we evaluate a particular subclass of
procedural vertical partitioning algorithms – the matrix
clustering algorithms.

To the best of our knowledge, this study is the first
one to evaluate this class of algorithms using a real
DBMS and a real workload [1].

2 Related Work

2.1 Classification
The vertical partitioning problem is one of the oldest
problems in the database domain. There are several
dozens of studies on this topic, and most of them concern
various algorithms. Several surveys can be found in the
references [14, 15]. Vertical partitioning algorithms can
be classified into two major groups: cost-based and
procedural, where the latter employs three types of
approaches:

 Attribute affinity and matrix clustering
approaches [10, 11, 13, 19, 23]. In affinity-
based approaches, closeness between every two
attributes is first calculated, and then it is used
to define the borders of the resulting fragments.
This closeness is called attribute affinity. At the
first step a workload is used to create an AUM,
then an Attribute Affinity Matrix (AAM) is
constructed using a paper-specific
transformation procedure. Finally, a row and
column permutation algorithm is applied.
Matrix clustering approaches operate on the
AUM and start with the permutation part.

 Graph approaches [12, 17. 29, 32, 39]. Most of
the graph approaches treat the AAM as an
adjacency matrix of an undirected weighted
graph. In this graph nodes denote attributes and

edges represent a bound’s strength. Then a
template is sought by various means, e.g.
kruskal-like algorithms or hamiltonian way cut.
The resulting templates are used to construct
partitions.

 Data mining approaches [8, 20, 35]. This is a
relatively new vertical partitioning technique
that uses association rules to derive vertical
fragments. Most of these works mine a
workload (a transaction set) for rules which use
sets of attributes as items. In these studies
existing algorithms for association rule search
are used to uncover relations between attributes.
In particular, an adapted Apriori [2] algorithm
is a very popular choice.

Let us review the matrix clustering approach in
detail.

2.2 Matrix Clustering Approach

The general scheme of this approach is the following:
 Construct an Attribute Usage Matrix (AUM)

from the workload. The matrix is constructed as
follows:

Mij =
 { 1, query i uses attribute j

0, otherwise

 Cluster the AUM by permuting its rows and
columns to obtain a block diagonal matrix.

 Extract these blocks and use them to define the
resulting partitions.

Some approaches do not operate on a 0-1 matrix.
Instead they modify matrix values to account for
additional information like query frequency, attribute
size and so on.

Let us consider an example. Suppose that we have six
queries accessing six attributes:

q1: SELECT a FROM T WHERE a > 10;
q2: SELECT b, f FROM T;
q3: SELECT a, c FROM T WHERE a = c;
q4: SELECT a FROM T WHERE a < 10;
q5: SELECT e FROM T;
q6: SELECT d, e FROM T WHERE d + e > 0;
The next step is the creation of an AUM using this

workload. The resulting matrix is shown on Figure 1a.
Having applied a matrix clustering algorithm, we acquire
the reordered AUM (Figure 1b). The resulting fragments
are the following: (a, b), (b, f), (d, e).

However, not all matrices are fully decomposable.
Consider the matrix presented on Figure 2. The first
column obstructs the perfect decomposition into several
clusters. In this case, the algorithm should produce a
decomposition which would minimally harm query
processing and would result in an overall performance
improvement. Matrix clustering algorithms employ
different strategies to select such a decomposition.

25

a b c d e f a b c d e f
q1 1 0 0 0 0 0 q1 1 0 0 0 0 0
q2 0 1 0 0 0 1 q3 1 1 0 0 0 0
q3 1 0 1 0 0 0 q4 1 0 0 0 0 0
q4 1 0 0 0 0 0 q2 0 0 1 1 0 0
q5 0 0 0 0 1 0 q6 0 0 0 0 1 1
q6 0 0 0 1 1 0 q5 0 0 0 0 0 1

(a) AUM (b) Reordered AUM
Figure 1 Matrix clustering algorithm

2.3 Matrix Clustering Approach
The first study to introduce matrix clustering to vertical
partitioning was the work of Hoffer [23]. The idea is to
store together (in one file) attributes possessing identical
retrieval patterns. The patterns are expressed through the
notion of attribute cohesion, which shows how attributes
in a pair are related to each other. The author proposes a
pairwise attribute similarity measure to capture this
cohesion.

The proposed measure relies on three parameters: co-
access frequency of a pair of attributes, attribute length
and relative importance of the query. This measure was
designed having the following properties in mind: it is
non-decreasing by co-access frequency, non-decreasing
by both attribute lengths (individually) and the function
is non-increasing in the combined length of attributes.

Finally, having an attribute affinity matrix, an
existing clustering algorithm (Bond Energy Algorithm,
BEA) [30] is used. It permutes rows and columns to
maximize nearest neighbour bond strengths. The author
was motivated in his choice by the following: this
algorithm is insensitive to the order in which items are
presented, it has a low computation time, etc. However,
this algorithm has a disadvantage: it requires human
attention for cluster selection.

a b c d e f
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 0 0 1 1 0
1 0 0 1 1 0
1 0 0 0 0 1

Figure 2 Non-decomposable matrix

BEA is not the only existing matrix clustering
algorithm. Another permutation algorithm was proposed
in the reference [38]. Similarly to BEA, it permutes rows
and columns, but tries to minimize the spanning path of
the graph represented by the original matrix. The
improvement of these two algorithms is presented in the
reference [7]. This algorithm is called the matching
algorithm and it uses Hamming distance to produce
clusters. According to the reference [10], the study [25]
presents the Rank Order algorithm. Its idea is to sort rows
and columns of the original matrix in descending order
of their binary weight. The Cluster Identification (CI)
algorithm by Kusiak and Chow [26] is an algorithm for
clustering 0-1 matrices. The proposed approach is to

detect clusters one by one using a special procedure. This
procedure resembles the search of a transitive closure for
rows and columns. It is an optimal algorithm that can
solve the problem when the matrix is perfectly separable,
e.g. when clusters do not intersect (there is no attribute
sharing).

All of the aforementioned algorithms (except BEA)
are generic matrix clustering algorithms. They do not
address the vertical partitioning problem and do not even
bear any database specifics. The next studies by Chun-
Hung Cheng [10, 11, 13] attempt to apply matrix
clustering approach to the database domain. Several new
vertical partitioning algorithms were developed in his
works. Let us consider them.

Chun-Hung Cheng criticizes existing matrix
clustering algorithms [10, 11]:
 They do not always produce a solution matrix in a

diagonal submatrix structure. Thus, these algorithms
may require additional computation to extract them;

 These algorithms may require decision of database
administrator to identify inter-submatrix attributes
[10].

The first study [10] extends the original CI [26]
algorithm to non-decomposable matrices. The proposed
approach is to remove columns obstructing the
decomposition (inter-submatrix attributes).

The author considered the following problem
formulation P1 [10]: remove columns to decompose a
matrix into separable submatrices with the maximum
number of “1” entries retained in submatrices subject to
the following constraints:
 C1: A submatrix must contain at least one row;
 C2: The number of rows in a submatrix cannot

exceed upper limit, b;
 C3: A submatrix must contain at least one column.

In order to solve the problem, the branch and bound
approach was used. This approach uses an objective
function which maximizes the number of “1” entries in
the resulting submatrices. During the tree traversal,
upper and lower bounds are calculated and used to guide
the enumeration process.

However, the basic approach required traversal of too
many nodes, so the author augmented it with the
following heuristic. A so-called blocking measure is
calculated for each column. It estimates the likelihood of
a column being an obstacle to the further decomposition
of the matrix. Basically, it is the number of columns that
would be involved in all queries which use the given

26

Figure 3 The architecture of our approach

attribute. Next, the columns are ordered by their
respective values and the ones with the highest values are
checked.

The study [11] also extends the original CI algorithm.
The author adopts the same branch and bound approach
as in his previous paper [10]. However, instead of the
blocking measure a new void measure is developed. It
has the same purpose, which is the estimation of the
likelihood of a column being an inter-submatrix column.
Essentially, this measure is the calculated “free space” to
the left and to the right of the candidate cluster.

The next study of the author [13] addresses several
shortcomings of his previous works:
 The problem of the parameter b. While this

parameter helps prevent the formation of the huge
clusters, it does not guarantee any quality of the
resulting clusters. Also, the problem will have to be
reformulated if several clusters of different sizes are
needed.

 The dangling transaction problem. Applying the
previous algorithm [11] a transaction not belonging
to any cluster may be acquired: all of its attributes
would be removed. Two examples are presented in
the original paper.

 The previous work did not include such an important
parameter as the access frequency of the
transactions.

Thus, a new formulation P3 is proposed [13]: remove
a minimal number of “1” entries to decompose a
transaction-attribute access matrix into separable
submatrices subject to the following constraints:
 C7: Transactions with all “0” entries in a submatrix

are not allowed.
 C8: Attributes with all “0” entries in a submatrix are

not allowed.
 C9: The cohesion measure of a submatrix is more

than or equal to a threshold, δ.
Cohesion measure of a submatrix is the ratio of “1”

elements to “0” elements. This new measure is used to
ensure the quality of a cluster.

The problem is also solved with the branch and bound
approach, again, the void measure is used to guide the
order of node traversal.

Furthermore, in this work the author shows why
dangling transactions should be avoided: an example is
provided showing a case where it is possible to lose
information regarding a cluster. Finally, the author

extended his CI framework to consider query
frequencies. This P4 formulation is the same as P3, but
features a weighted sum of accesses [13]: minimize the
loss of total accesses (∑i∑j aij × freqi) due to the removal
of aij for decomposing a transaction-attribute matrix into
separable submatrices subject to the same constraints
C7–C9.

In this paper we study the approaches described in the
references [10, 11, 13].

3 System Architecture

We have developed a program for experimental
evaluation of the considered algorithms. Its architecture
is presented on Figure 3. It consists of the following
modules:
 The parser reads the workload from a file. It extracts

the queries and passes them to the executor, so that
their execution times can be measured. It also
constructs the AUM, which serves as input for the
selected algorithm.

 The algorithm identifies clusters and passes that
information to the partitioner to create
corresponding temporary tables.

 The query rewriter also receives this information. It
replaces the name of the original table with the ones
that were generated by the partitioner. It can handle
subqueries; view support is not implemented yet.

 The partitioner generates new names and sends
partitioning commands to the database. The exact
commands are SELECT INTO and ALTER
TABLE. The latter lets it transfer primary keys.

 The executor accepts queries and sends them to
PostgreSQL to measure the time of execution.

4 Parallelization

Having implemented this system, we noticed
unacceptable run times even for relatively small
matrices. The author of these algorithms states that this
is not a problem because the algorithm finds a good
solution quickly and spends the major portion of its time
just by checking the rest of the tree.

However, we decided to parallelize all of the
algorithms. We managed to achieve this in a generic
fashion, i.e. we applied a generic parallelization scheme
for all of the branch and bound algorithms. In order to

vpart

workload
PostgreSQL

parser

algorithm

rewriter

executor

partitioner

27

Type Q1 Q6 Q14 Q19 Type Q6 Q14 Q19
Original 11694 1365 1412 1663 Original 1439 1405 1673
partitioned 31558 1602 1379 1797 Partitioned 1343 1093 2731
Figure 4 Scenario 1 – A09, QS1, 0.7 Figure 6 Scenario 2 – A09, QS2, 0.7

1 2 3 4 5 6 7 8 9 10 1 3 9 10 2 4 5 6 7 8
Q1 0 1 1 1 1 1 1 1 0 0 Q1 0 * 0 0 1 1 1 1 1 1
Q6 0 1 1 1 0 0 0 1 0 0 Q6 0 * 0 0 1 1 0 0 0 1
Q14 1 0 1 1 0 0 0 1 0 0 Q14 1 1 0 0 0 * 0 0 0 *
Q19 1 1 1 1 0 0 0 0 1 1 Q19 1 1 1 1 * * 0 0 0 0

(a) Original (b) Result
Figure 5 Scenario 1 – A09, QS1, 0.7

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Q6 0 1 1 1 1 0 0 Q6 0 1 1 1 1 0 0
Q14 1 0 1 1 1 0 0 Q14 1 0 1 1 1 0 0
Q19 1 1 1 1 0 1 1 Q19 * * * * 0 1 1

(a) Original (b) Result
Figure 7 Scenario 2 – A09, QS2, 0.7

type Q6 Q14 type Q6 Q14 Q19
original 1555 1395 original 1385 1409 1648
partitioned 1421 1062 partitioned 2201 1377 1855

Figure 8 Scenario 3 – A09, QS3, 0.7 Figure 10 Scenario 5 – A09, QS2, 0.9

type Q6 Q14 Q19 Type Q1 Q6 Q14 Q19
original 1438 1360 1685 original 11515 1367 1608
partitioned 1405 1148 1704 partitioned 31173 934 1479 1989

Figure 9 Scenario 4 – A09, QS2, 0.5 Figure 12 Scenario 6 – A95, QS1, 2

implement it we employed the Threading Building
Blocks (TBB)1.

Using these primitives, our already existing
sequential implementation was parallelized with
minimal effort. We replaced the explicit stack used in
sequential depth-first traversal with TBB constructs2.
Thus, we kept the node inspection code unchanged.

For the detailed information regarding the
parallelization method and the results see the original
paper [18].

5 Experiments

We have implemented three recent matrix clustering
algorithms [10, 11, 13] (A94, A95, A09) and used
PostgreSQL DBMS to evaluate them. Our experiments
were conducted using the standard benchmark – TPC-H
with scale factor 1. We measured the run times for
original and partitioned configurations.

5.1 Hardware and Software Setups

In our experiments the following setup was used:
 PostgreSQL 9.5.2,
 Gentoo Linux (kernel 4.1.12),
 Intel® Core™ i7-3630QM (4 physical cores,

hyper-threading enabled)

1 https://www.threadingbuildingblocks.org/
2 https://www.threadingbuildingblocks.org/

 8GB (DDR3) RAM,
 GCC 4.9.3.
The database was placed in the main memory of the

machine. In order to accomplish this, the PostgreSQL
data directory was put on tmpfs, created with standard
GNU/Linux utilities.

To ensure the reproducibility of our results we used
sequential versions of algorithms for all comparisons. All
of the workloads were executed sequentially.

5.2 Data Setup

For our evaluation we have chosen the LINEITEM and
PART tables. Based on these tables we have formulated
the following query setups:

 Query Setup 1 (QS1): Q1, Q6, Q14, Q19;
 Query Setup 2 (QS2): Q6, Q14, Q19;
 Query Setup 3 (QS3): Q6, Q14.

This is the initial series of experiments, so we tried to
use simple scenarios. In these experiments we assume
uniform distribution of query frequencies.

The author of the studied algorithms indicated that
there are three possible strategies for dealing with inter-
submatrix attributes: forming a separate cluster for all
inter-submatrix attributes, duplicating them to every
subrelation and keeping them in the relation which uses
them more often. He argues that the decision which

docs/help/reference/task_scheduler.htm

28

strategy to apply is usually left to database administrator.
In this study we employ the first strategy.

5.3 Scenario 1

In this experiment we used the most recent algorithm
from the reference [13] (A09). The cohesion parameter

was set to 0.7 and QS1 was used. Table 4 contains the
performance for this scenario.

As we can see, only run time for Q14 improved and
the overall time significantly increased. The query Q1
can be characterized by a large number of aggregates and
read attributes. This is the possible reason for such
performance deterioration. The partitioning scheme is
presented in Table 5.

5.4 Scenario 2

This experiment also addresses the A09 algorithm with
the same cohesion parameter. However, we decided to
discard Q1 from the workload to check whether that
would improve the overall performance. The results are
presented in Table 6. While Q6 and Q14 performance
improved, the Q19 performance has greatly deteriorated.
The net gain is also negative in this case. The
corresponding partitioning scheme is presented in Table
7.

5.5 Scenario 3

In this scenario we examined A09 on the QS3. The
results are shown in Table 8. We do not demonstrate the
original and partitioned matrices due to the space
constraints and due to the fact that the algorithm returned
only one cluster, which was identical to the input one.
Thus, overall improvement was achieved via transfer of
all of untouched attributes to a separate cluster.

5.6 Scenario 4

In this experiment we again considered A09 on QS2, but
lowered the cohesion value to 0.5. Similarly, we
obtained a positive net gain (see Table 9). Unfortunately,
input and output matrices indicate that the reason for this
improvement is the same as in Scenario 3.

5.7 Scenario 5

Here we evaluate the behavior of A09 with QS2 and
cohesion value of 0.9. Results are presented in Tables 10
and 11. There is also negative overall gain.

5.8 Scenario 6

In this experiment we tried a different algorithm – A95
on QS1 with the maximum number of rows being 2. The
outcome is presented in Tables 12, 13.

5.9 Other Scenarios and Results

We have also conducted a number of other experiments,
but unfortunately, we are limited by the space available.
Here is a brief summary of our findings:
 If we select a lot of attributes in one query of the

workload, these algorithms will perform poorly;
 These algorithms perform well on workloads which

have several columns consisting of “0” entirely
(containing no accesses in the workload);

 It may be beneficial to set a low cohesion value in
order to achieve better performance. This is
accomplished by eliminating additional joins;

 Algorithms A95, A94 and Optimal exhibit the
similar behavior during our tests;

 There are cases when any of the algorithms
(Optimal, A94, A95) can return no solution;

 In order to obtain a non-trivial solution cohesion
parameter should be higher than one of the original
matrix.

6 Conclusions

In this paper we have studied three newer matrix
clustering algorithms [10, 11, 13]. We have implemented
these algorithms and used PostgreSQL with TPC-H
workload to evaluate them. In our experiments we
employed one of several inter-cluster attribute handling
strategies. Preliminary results suggest that all of these
algorithms perform poorly in this environment, often
yielding partitioning schemes worse than the original
one.

1 2 3 4 5 6 7 1 2 6 7 3 4 5
Q6 0 1 1 1 1 0 0 Q6 0 * 0 0 1 1 1
Q14 1 0 1 1 1 0 0 Q14 * 0 0 0 1 1 1
Q19 1 1 1 1 0 1 1 Q19 1 1 1 1 * * 0

(a) Original (b) Result
Figure 11 Scenario 5 – A09, QS2, 0.9

1 2 3 4 5 6 7 8 9 10 1 9 10 5 6 7 2 3 4 8
Q1 0 1 1 1 1 1 1 1 0 0 Q1 0 0 0 1 1 1 1 1 1 1
Q6 0 1 1 1 0 0 0 1 0 0 Q6 0 0 0 0 0 0 1 1 1 1
Q14 1 0 1 1 0 0 0 1 0 0 Q14 1 0 0 0 0 0 0 1 1 1
Q19 1 1 1 1 0 0 0 0 1 1 Q19 1 1 1 0 0 0 1 1 1 0

(a) Original (b) Result
Figure 13 Scenario 6 – A95, QS1, 2

29

References

[1] TPC Benchmark H. Decision Support. Version
2.17.1. http://www.tpc.org/tpch [Accessed: 2016 01
08]

[2] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules in large databases. In
Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, pages 487–499,
San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[3] S. Agrawal, V. Narasayya, and B. Yang. Integrating
vertical and horizontal partitioning into automated
physical database design. In Proceedings of the 2004
ACM SIGMOD international conference on
Management of data, SIGMOD ’04, pages 359–370,
New York, NY, USA, 2004. ACM.

[4] P. M. G. Apers. Data allocation in distributed
database systems. ACM Trans. Database Syst.,
13:263–304, 1988.

[5] L. Bellatreche. Optimization and tuning in data
warehouses. In L. LIU and M. ÖZSU, editors,
Encyclopedia of Database Systems, pages 1995–
2003. Springer US, 2009.

[6] L. Bellatreche, K. Boukhalfa, and P. Richard. Data
partitioning in data warehouses: Hardness study,
heuristics and oracle validation. In I.-Y. Song, J.
Eder, and T. Nguyen, editors, Data Warehousing
and Knowledge Discovery, volume 5182 of Lecture
Notes in Computer Science, pages 87–96. Springer
Berlin / Heidelberg, 2008. 10.1007/978-3-540-
85836-2_9.

[7] M. V. Bhat and A. Haupt. An efficient clustering
algorithm. Systems, Man and Cybernetics, IEEE
Transactions on, SMC-6(1):61–64, 1976.

[8] M. Bouakkaz, Y. Ouinten, and B. Ziani. Vertical
fragmentation of data warehouses using the FP-Max
algorithm. In Innovations in Information
Technology (IIT), 2012 International Conference
on, pages 273–276, march 2012.

[9] S. Chaudhuri and G. Weikum. Self-management
technology in databases. In L. Liu and M. Özsu,
editors, Encyclopedia of Database Systems, pages
2550–2555. Springer US, 2009.

[10] C. Cheng. Algorithms for vertical partitioning in
database physical design. Omega, 22(3):291–303,
1994.

[11] C.-H. Cheng. A branch and bound clustering
algorithm. Systems, Man and Cybernetics, IEEE
Transactions on, 25(5):895–898, 1995.

[12] C.-H. Cheng, W.-K. Lee, and K.-F. Wong. A genetic
algorithm-based clustering approach for database
partitioning. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on,
32(3):215–230, 2002.

[13] C.-H. Cheng and J. Motwani. An examination of
cluster identification-based algorithms for vertical
partitions. Int. J. Bus. Inf. Syst., 4(6):622–638, 2009.

[14] G. Chernishev. Towards self-management in a
distributed column-store system. In T. Morzy, P.
Valduriez, and L. Bellatreche, editors, New Trends
in Databases and Information Systems, volume 539
of Communications in Computer and Information
Science, pages 97–107. Springer International
Publishing, 2015.

[15] G. Chernishev. Vertical Partitioning in Relational
DBMS. Talk at the Moscow ACM SIGMOD
chapter meeting; slides and video:
http://synthesis.ipi.ac.ru/sigmod/seminar/s2015043
0 30 4 2015 [Accessed: 2016 01 08].

[16] W. Chu and I. Ieong. A transaction-based approach
to vertical partitioning for relational database
systems. Software Engineering, IEEE Transactions
on, 19(8):804–812, 1993.

[17] J. Du, K. Barker, and R. Alhajj. Attraction — a
global affinity measure for database vertical
partitioning. In ICWI, pages 538–548. IADIS, 2003.

[18] V. Galaktionov. Parallelization of matrix clustering
algorithms (accepted). In Proceedings of the Sixth
International Conference on Informatics Problems
(SPISOK 2016), 2016.

[19] N. Gorla and W. J. Boe. Database operating
efficiency in fragmented databases in mainframe,
mini, and micro system environments. Data &
Knowledge Engineering, 5(1):1–19, 1990.

[20] N. Gorla and B. P. W. Yan. Vertical fragmentation
in databases using data-mining technique. In J.
Erickson, editor, Database Technologies: Concepts,
Methodologies, Tools, and Applications, pages
2543–2563. IGI Global, 2009.

[21] M. Hammer and B. Niamir. A heuristic approach to
attribute partitioning. In Proceedings of the 1979
ACM SIGMOD international conference on
Management of data, SIGMOD ’79, pages 93–101,
New York, NY, USA, 1979. ACM.

[22] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In Proceedings
of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD’96,
pages 205–216, New York, NY, USA, 1996. ACM.

[23] J. A. Hoffer and D. G. Severance. The use of cluster
analysis in physical data base design. In Proceedings
of the 1st International Conference on Very Large
Data Bases, VLDB ’75, pages 69–86, New York,
NY, USA, 1975. ACM.

[24] Jindal and J. Dittrich. Relax and let the database do
the partitioning online. In M. Castellanos, U. Dayal,
and W. Lehner, editors, Enabling Real-Time
Business Intelligence, volume 126 of Lecture Notes
in Business Information Processing, pages 65–80.
Springer Berlin Heidelberg, 2012.

[25] J.R. King Machine-component grouping in
production flow analysis: an approach using a rank
order clustering algorithm. Int. J. Prod. Res.,
18(2):213–232, 1980.

[26] Kusiak and W. Chow. An efficient cluster
identification algorithm. Systems, Man and

30

Cybernetics, IEEE Transactions on, SMC-
17(4):696–699, 1987.

[27] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J.
Tatemura, N. Polyzotis, and M. J. Carey. MISO:
Souping up big data query processing with a
multistore system. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’14, pages 1591–1602, New
York, NY, USA, 2014. ACM.

[28] L. Li and L. Gruenwald. Self-managing online
partitioner for databases (SMOPD): A vertical
database partitioning system with a fully automatic
online approach. In Proceedings of the 17th
International Database Engineering & Applications
Symposium, IDEAS ’13, pages 168–173, New
York, NY, USA, 2013. ACM.

[29] X. Lin, M. Orlowska, and Y. Zhang. A graph based
cluster approach for vertical partitioning in database
design. Data & Knowledge Engineering, 11(2):151–
169, 1993.

[30] W. McCormick, P. Schweitzer, and W. White.
Problem decomposition and data reorganization by
a clustering technique. Oper. Res., 20(5):993–1009,
1972.

[31] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou.
Vertical partitioning algorithms for database design.
ACM Trans. Database Syst., 9:680–710, 1984.

[32] S. B. Navathe and M. Ra. Vertical partitioning for
database design: a graphical algorithm. In
Proceedings of the 1989 ACM SIGMOD
international conference on Management of data,
SIGMOD ’89, pages 440–450, New York, NY,
USA, 1989. ACM.

[33] S. Papadomanolakis and A. Ailamaki. An integer
linear programming approach to database design. In
Proceedings of the 2007 IEEE 23rd International
Conference on Data Engineering Workshop,
ICDEW ’07, pages 442–449, Washington, DC,
USA, 2007. IEEE Computer Society.

[34] L. Rodrìguez and X. Li. A dynamic vertical
partitioning approach for distributed database
system. In Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on, pages
1853–1858, 2011.

[35] L. Rodrìguez and X. Li. A support-based vertical
partitioning method for database design. In
Electrical Engineering Computing Science and
Automatic Control (CCE), 2011 8th International
Conference on, pages 1–6, oct. 2011.

[36] L. Rodrìguez, X. Li, and P. Mejìa-Alvarez. An
active system for dynamic vertical partitioning of
relational databases. In I. Batyrshin and G. Sidorov,
editors, Advances in Soft Computing, volume 7095
of Lecture Notes in Computer Science, pages 273–
284. Springer Berlin Heidelberg, 2011.

[37] D. Sacca and G. Wiederhold. Database partitioning
in a cluster of processors. ACM Trans. Database
Syst., 10:29–56, 1985.

[38] J. R. Slagle, C. L. Chang, and S. R. Heller. A
clustering and data-reorganizing algorithm.
Systems, Man and Cybernetics, IEEE Transactions
on, SMC-5(1):125–128, Jan 1975.

[39] J. H. Son and M.-H. Kim. α-partitioning algorithm:
Vertical partitioning based on the fuzzy graph. In
Proceedings of the 12th International Conference on
Database and Expert Systems Applications,
DEXA ’01, pages 537–546, London, UK, UK, 2001.
Springer-Verlag.

31

