
53

Towards Efficient model for Automatic Text
Summarization

Yetunde O. Folajimi
Department of Computer Science

University of Ibadan.
+2348056648530

yetundeofolajimi@gmail.com

Tijesuni I. Obereke
Department of Computer Science

University of Ibadan.
+2348137462256

tobereke@gmail.com

ABSTRACT

Automatic text summarization aims at producing summary from a

document or a set of documents. It has become a widely explored

area of research as the need for immediate access to relevant and

precise information that can effectively represent huge amount of

information. Because relevant information is scattered across a

given document, every user is faced with the problem of going

through a large amount of information to get to the main gist of a

text. This calls for the need to be able to view a smaller portion of

large documents without necessarily losing the important aspect

of the information contained therein. This paper provides an

overview of current technologies, techniques and challenges in

automatic text summarization. Consequently, we discuss our

efforts at providing an efficient model for compact and concise

documents summarization using sentence scoring algorithm and a

sentence reduction algorithm. Based on comparison with the well-

known Copernic summarizer and the FreeSummarizer, our system

showed that the summarized sentences contain more relevant

information such that selected sentences are relevant to the query

posed by the user

CS Concepts

• Computing methodologies ➝Artificial intelligence ➝Natural

language processing ➝Information extraction • Information

Systems ➝Information Retrieval ➝Retrieval tasks and goals

➝Summarization

Keywords

Automatic text summarization, extractive summary, sentence

scoring, sentence reduction, query-based summarization.

1. INTRODUCTION
The area of automatic text summarization has become a widely

explored area of research because of the need for immediate

access to information at this age where the amount of information

on the World Wide Web is voluminous. The problem is not the

availability of information but users have access to more than

enough information than they need, they are also faced with the

problem of digging through that large amount of information to

get what they really need.

Automatic text summarization is a process whereby a computer

program takes in a text and outputs a short version of the text

retaining the important parts only. The essence of text

summarization is to bring out the salient parts of a text.

The method used for automatic text summarization can either be

extractive or abstractive. Extractive summarization method

involves picking important sentences from a document while

abstractive method of summarization involves the use of linguistic

methods to analyze and interpret a document, the system then

looks for another way to portray the content of the document in a

short form and still pass across the main gist of the document.

Also the input of a text summarization system can either be single

or multiple. Single document summarization involves

summarizing a single text while Multi-document summarization

involves summarizing from more than one source text.

Automatic text summarization is one of the many applications of

Natural Language Processing. It can be used for question and

answering, information retrieval among other things. Earlier

methods of text summarization used statistical methods that

assigned scores to sentences or words in a sentence, and these

methods are inefficient because they didn’t consider the context of

words, which made the resulting summaries, incoherent. More

research unveiled approaches that do not score sentences for

extraction, but merged lots of knowledge bases to enable them

know the part of speech of words in a sentence but do not

consider keywords identification to identify important parts of

documents..

Automatic text summarization system helps saves time and effort

that one would have used to scan a whole document, it also helps

increase productivity and with the amount of research that has

been done in automatic text summarization, summaries are

available in different languages [1].

This paper presents the current technologies and techniques as

well as prevailing challenges in automatic text summarization,

consequently, we propose a model for improving text

summarization by using a method that combines sentence scoring

algorithm with sentence reduction.

2. SENTENCE EXTRACTION METHODS

FOR TEXT SUMMARIZATION
 A system that scans a document in machine-readable form then

selects from the sentences in the Article the ones that carry

important information was proposed in [2]. The significance

factor of a sentence is derived from an analysis of its words,

whereby the frequency of words occurrence is a useful

measurement of word significance and that the relative position of

words within a sentence having given values of significance

furnishes a useful measurement for determining the significance

of sentences. In [2], a justification was made about measure of

significance based on how frequent some words occurred by

CoRI’16, Sept 7–9, 2016, Ibadan, Nigeria.

mailto:yetundeofolajimi@gmail.com
mailto:tobereke@gmail.com

54

pointing out that an author when trying to express his thoughts on

a subject repeats some words.

Another research in IBM pointed out that the position of a

sentence can be used to find areas of a document containing

important information [3]. There, it was shown that sentences that

occur in the initial or final parts of a paragraph contain important

information. By analyzing a sample of 200 paragraphs, it was

discovered that in most paragraphs the headings came first and in

few it came last.

Unlike the method used in [2], which used only the frequency of

word occurrence to produce extracts, [4] analyzed using cue

words, title and heading words, sentence location and key method

individually and together. The justification of using cue method is

that sentences containing words like “most importantly”, “in this

paper” indicate sentence importance. For key method, scores were

assigned to frequently occurring words in the document. For title

method, sentences are scored based on how much of the title or

heading words it contains and for the sentence location, the

importance of a sentence is determined using position as criteria

like words at the beginning of a paragraph are considered

important. His results showed that the best match between

automatic and human-written abstracts was accomplished when

sentence location, cue words and title words are considered.

2.1 Beyond Sentence Extraction

A method that involved the removal of irrelevant phrases from

sentences extracted for summary was introduced in [5]. The first

step involves the generation of a parse tree, followed by grammar

checking so as to know which of the nodes of the tree can be

deleted, it then checks the parts of the sentences that contains

information relating to the main topic. After doing all the above it

then removes the unnecessary parts of the sentences leaving

behind a concise and coherent summary.

Motivated by the fact that automatic summarizers cannot always

identify where the main gist of a document lies and the way text is

generated is poor, [6] introduced a cut and paste method which

involved six operations:

I. Sentence reduction, where unnecessary phrases are

removed from the sentences,

II. Sentence combination, where sentences are combined

together,

III. Syntactic transformation, involves rearrangement of

words or phrases,

IV. Lexical paraphrasing, phrases are substituted with

paraphrases,

V. Generalization and specification, substituting phrases

with general/specific description,

VI. Reordering, rearrangement of the sentences extracted

for summary.

3. MACHINE LEARNING METHODS

Various machine learning techniques have been exploited in

automatic text summarization. Some of the techniques used

include: Naïve-Bayes method, Rich Features and Decision Trees

method, Hidden Markov model, Log-linear models and Neural

Networks and Third Party Features.

3.1 Naïve-Bayes Method

Naïve-Bayes method was first used in [7] by using Bayesian

classifier to determine if a sentence should be extracted or not.

The system was able to learn from data. Some features used by

their system include the presence of uppercase words, length of

sentence, structure of phrase and position of words. The author

assumed the following:

s = a certain sentence, S = the sentences in the summary, and F1, ,

Fk = the features.

-- (1)

In equation 1, Sentences are scored based on these features and

the formula is used to calculate the score, the highest ranking

sentences are extracted.

Th naïve-bayes classifier was also used in DimSum [8], which

used term frequency (tf) which is the number of times that a word

appears in a sentences and inverse document frequency (idf)

which is the number of sentences in which a word occurs, to know

words that hold point at the key concepts of a document.

3.2 Rich Features and Decision Trees

Decision trees are powerful and popular tools for classification

and prediction. It is a classifier in the form of a tree structure. The

following nodes make up the tree:

 Decision node: specifies a test on a single attribute,

 Leaf node: indicates the value of the target attribute,

 Arc/edge: split of one attribute,

 Path: a disjunction of test to make the final decision

In [9], the authors concentrated on text position by making an

effort to determine how sentence position affects the selection of

sentences. The justification for the focus on position method is

that texts are in a particular discourse structure, and that sentences

containing ideas related to the topic of a document are always in

specifiable locations (e.g. title, abstracts, etc). They also

mentioned that discourse structure significantly varies over

domains, so therefore the position method cannot be easily

defined.

A sentence reduction algorithm that is based on decision tree was

introduced in [10]. The algorithm proposed used semantic

information to aid the process of sentence reduction and decision

tree to handle the fact that the orders of original sentences change

after they are reduced. They extended Knight and Marcu’s

sentence compression algorithm [11], which was also based on

decision tree by adding semantic information to theirs. To achieve

this, they used a Parser to parse the original sentences and by

using WordNet, they enhanced the syntax tree gotten with

semantic information.

3.3 Hidden Markov Models

A hidden Markov model is a tool for denoting probability

distributions over sequences of observations. If we represent the

observation at time t by the variable Yt, we assume that the

observation are sampled at discrete, equally-spaced time intervals,

so t can be an integer-valued time index. The two defining

properties of hidden Markov model are: the assumption that the

observation at time t was generated by some process whose state

St is hidden from the observer and the assumption that the state of

the hidden process satisfies the Markov property i.e. given the

value of St-1, the current state St is independent of all the states

prior to t-1 [12].

55

Two sentence reduction algorithms were proposed in [13]. Both

were template-translation based which means that they don’t need

syntactic parser to represent the original sentences for reduction.

One was founded on example-based machine-translation which

does a good job of in the area of sentence reduction. On the other

hand in specific cases, the computational complexity can be

exponential. While the second one was an addition to the

template-translation algorithm through the application of Hidden

Markov model, the model employs the set of template rules that

was learned from examples to overcome the problem of

computational complexity.

2.4.4 Log-Linear Models

Log-Linear models are generally used in Natural Language

processing. The flexibility of this model is its major benefit; it

allows the use of rich set of features.

In [14], log-linear models were used to bring to null the

assumption that existing systems were feature independent.

Consequently, it was also showeshown empirically that using

log-linear models produced better extracts than naïve-bayes

model. The conditional log-linear model used by the author can be

stated as follow:

 …………..(2)

Let c = label, s = item we want to label, fi = i-th feature, λi = the

corresponding feature weight and Z (s) = ∑c exp (∑i λi fi (c,s)).

3.4 Neural Networks and Third Party Features

The automatic text summarization system developed in [15] had

learning ability. This was done through combination of a

statistical approach, extraction of keywords, neural network and

unsupervised learning. The process used involved three steps: step

one involved removal of stop words like “a” and stemming which

is done by removing suffixes and prefixes to convert a word to its

stem. Step two involves keywords are extracted by computing the

matrix of the term frequency against the inverse document

frequency, the most frequent terms listed are the keywords to be

extracted for the summary. For the final step, the model checks

for stop words again to be sure that no stop word is selected as

keyword after which it selects sentences containing keywords to

be added to the summary.

NetSum [16] was the first to use neural network ranking algorithm

and third-party datasets for automatic text summarization. The

authors trained a system that learned from a train set containing

labels of best sentences from which features are extracted. From

the train set, the system learns how features are distributed in the

best sentences and it gives a result of ranked sentences for each

document, the ranking is done using RAnkNet [17]

3. SENTENCE SCORING AND SENTENCE

REDUCTION MODELS
Sentence score is a value that determines the sentences that are

relevant to the input text. As shown in Figure 1, in our

architecture, the input to the system is a single document.

Sentence scoring occurs at the first stage; significant sentences are

identified and extracted. The second stage involves the sentence

reduction module; the extracted sentences from the sentence

scoring module are processed, grammar checking and removal of

target structures is done.

Figure 1: Text summarizer Architecture

3.1 Sentence Scoring Module

Figure 2: Sentence scoring module

In the sentence scoring module, there are two major steps

involved:

1. Preprocessing:

This step involves the removal of stop-word and tokenization;

stop-words are extremely common words (e.g. a, the, for). For this

part, a stoplist which is a list of stop-words is used. Tokenization

involves breaking the input document into sentences.

2. Sentence scoring: after the document has been broken into

group of sentences. As seen in Figure 1 above, sentences

are extracted based on three important features; sentence

resemblance to query, cue phrases and word frequency.

 Sentence resemblance to query: This is modelled after

sentence resemblance to title which calculates a score based

on the similarity between a sentence and the title of a

document. So sentence resemblance to query calculates a

score based on the similarity between a sentence and the

user query which means that any sentence that is similar to

the query or includes words in the query are considered

important. And the score will be calculated using the

following formula:

Score =

----(1)

Where nQW = number of words in query

 Cue Phrases: the justification of using this feature is

that the presence of some words likes “significantly”,

“Since” point to important gist in a document and a

score is assigned to such sentences. The score is

computed using:

Score =

----------(2)

 Word frequency, is a useful measurement of significance

because it is revealed in [2] that an author tend to repeat

certain words when trying to get a point across. So sentences

that contain frequently occurring words are considered to be

significant. The algorithm involves:

User Input Sentence

Extraction

 Sentence

resemblance to

query

 Cue Phrases

 Word frequency

Extracted

Sentences

56

I. Breaking sentence into tokens

II. For each token, if the token already exists in array,

 Increment its count,

 Else add token to array and

 Set initial count to 1.

The boolean formula below is used to decide the sentences to be

selected for further processing:

(SrqScore >= 0.5 || (CpScore >= 0.1 && WfScore >=3) ---(3)

Where SrqScore is Sentence resemblance to query Score, CpScore

is Cue phrase score and WfScore is Word Frequency score.

3.2 Sentence Reduction Module

Figure 3: Sentence reduction module

In the sentence scoring module, the original document and the

extracted sentences from the sentence scoring module is processed

so as to remove irrelevant phrases from the document to make the

summary concise, the sentence reduction algorithm is described in

details in [18]. The processing involves:

Syntactic Parsing
Stanford parser, a syntactic parser is used to analyze the structure

of the sentences in the document and a sentence parse tree is

produced. The other stages involved in the sentence reduction

module add more information to the parse tree, these information

aids the final decision to be made.

Grammar checking
We go back and forth on the sentence parse tree, node by node to

identify parts of the sentence are important and must not be

removed to make the sentence grammatically correct. For

example, in a sentence, the main verb, the subject, and the

object(s) are essential if they exist.

Removal of Target Structures

For this research work we will be using the main clause algorithm

for sentence reduction. In this algorithm, the main clause of a

sentence is obtained and in that main clause we identify the target

structures which are the structures to be removed and they are

adjectives, adverbs, appositions, parenthetical phrase, and relative

clauses. A reduced sentence is gotten after the targeted structures

has been identified and removed from the sentence parse tree.

Summary Construction
We once again go back and forth on the sentence parse tree and

see if the reduced sentences are grammatically correct. The

reduced sentences are then merged together to give the final

summary.

After the sentence reduction module carries out all four steps, a

concise and coherent summary is expected as output.

4. IMPLEMENTATION
The system allows a user to input a document; which is then

prepossessed and the sentences ranked. The high ranked sentences

are then extracted for further processing. The result is then viewed

by the user. As shown in figure 3, the flow of activities includes

uploading of input file, preprocessing, assignment of scores,

syntactic parsing, grammar checking, removal of target structures

and display of output.

Figure 3: Activity Flow

4.1 Implementation Resources
The following resources were used for the implementation of our

summarization system:

 Java: it was considered a good choice for developing

the summarization system because it makes more

efficient use of memory needed for a system of this

nature, it is faster and more effective, and also provides

more data structures to handle the different data types

used in the implementation of the proposed algorithm.

 Stanford Parser: The Stanford parser was used as the

tagging tool in the sentence reduction module of our

implementation. The Stanford parser analyses the

sentences and provides us with the parts of speech of the

words in a sentence, as well as the class e.g. adverbial

phrase, adjectival phrases, etc., different parts of the

sentence belongs to.

 Gate (General Architecture for Text Engineering):

We used GATE in the development our algorithm to

integrate the Stanford parser and its other modules such

as the sentence splitter and tokenizer which properly

handles complexities that may occur in long articles

than ordinary tokenizers cannot handle properly. The

integration of the parser and this other modules was

used to create an application pipeline which was then

used as a plugin in the implementation and development

of our summarisation system.

5. RESULTS AND DISCUSSION
To test our summarisation system, we obtained random articles

online from Wikipedia to use as our input document. The article is

then saved in a text (.txt) file to be used in our system. Wikipedia

references are disregarded during our extraction and not included

in the content of the article to use as input document for our

summarisation system, as they do not provide any value of

importance to the overall article and the summary we want to

generate. For this task, we selected an article about Web 2.0,

57

however, it is important to note that any article could be selected

and used.

Figure 4: GUI interface of our summarization system.

We evaluated our summarization system using 3 standard

parameters; (1) precision (the fraction of the returned summary

that is relevant to the query posed by the user); (2) recall (the

fraction of the relevant information contained in the document

that was returned by the summarization system); and (3) F-

measure (the weighted harmonic mean of precision and recall).

We had a human subject read two articles, one was the web 2.0

article and the other was a Blackberry passport review.

The web 2.0 article had 179 sentences, the summary presented by

the subject contained 110 sentences and our system produced a

summary containing 112 sentences. 92 sentences were present in

both the summary made by the subject and the summary made by

our system.

The second document, a blackberry passport review contained

129 sentences. In the summary presented by the subject we had 40

sentences and our summarizers’ summary, we had 57 sentences.

27 sentences were present in both the summary made by the

subject and the summary made by our system. Based on

comparison with the well-known Copernic summarizer which

produces summary based on statistical and linguistic methods and

the FreeSummarizer that produces summary based on specified

number of sentences, our system gave high recall values of 83.6%

and 67.5% respectively; an indication that the sentences in our

system’s summary contain more relevant information such that

selected sentences are relevant to the query pos. ed by the user.

In conclusion, this work can be extended to multi-document

summarization whereby the source text is more than one; the

resulting summary may contain a larger amount of information

when compared to a single document summarization. Also, it can

be extended to other languages apart from English language.

7. REFERENCES
[1] Wells, M. (2009). Advantages of automatic text

summarization, http://ezinearticles.com/?3-Advantages-of-

Automatic-Text-Summarization&id=3465270 downloaded

on 11 September, 2014.

[2] Luhn, H. P. (1958). The automatic creation of literature

abstracts, IBM Journal of research and development, Vol. 2,

No. 2, pp. 159-165.

[3] Baxendale, P. (1958). Machine-made index for technical

literature - an experiment. IBM Journal of Research

Development, 2(4):354–361

[4] Edmundson, H. P. (1969). New methods in automatic

extracting. Journal of the ACM, 16(2):264–285. [2, 3, 4]

[5] Jing, H. (2000). Sentence Reduction for Automatic Text

Summarization, In Proceedings of the Sixth Applied

Natural Language Processing Conference, pp. 310-315.

Association for Computational Linguistics.

[6] Jing, H. and McKeown, K.R. (2000). Cut and Paste Based

Text Summarization, In Proceedings of the 1st Meeting of

the North American Chapter of the Association for

Computational Linguistics, pp. 178-185. Association for

Computational Linguistics.

[7] Kupiec, J., Pedersen, J., and Chen, F. (1995). A trainable

document summarizer, In Proceedings of the 18th annual

international ACM SIGIR conference on Research and

development in information retrieval, pp. 68-73. ACM.

[8] Larsen, B. (1999). A trainable summarizer with knowledge

acquired from robust NLP techniques. Advances in

Automatic Text Summarization, pp. 71.

[9] Lin, C. Y., and Hovy, E. (1997). Identifying topics by

position, In Proceedings of the fifth conference on Applied

natural language processing, pp. 283-290. Association for

Computational Linguistics

[10] Le, N. M., & Horiguchi, S. (2003). A new sentence reduction

based on decision tree model, In Proceedings of the 17th

Pacific Asia Conference on Language, Information and

Computation, pp. 290-297.

[11] Knight, K., and Marcu, D. (2002). Summarization beyond

sentence extraction: A probabilistic approach to sentence

compression, Artificial Intelligence, Vol. 139, No. 1, pp. 91-

107.

[12] Ghahramani, Z. (2001). An Introduction to Hidden Markov

Models and Bayesian Networks, International Journal of

Pattern Recognition and Artificial Intelligence, Vol 15, No.

1, pp. 9-42.

[13] Nguyen, M. L., Horiguchi, S., Shimazu, A., & Ho, B. T.

(2004). Example-based sentence reduction using the hidden

markov model, ACM Transactions on Asian Language

Information Processing (TALIP), Vol. 3, No. 2, pp. 146-158.

[14] Osborne, M. (2002). Using maximum entropy for sentence

extraction, In Proceedings of the ACL-02 Workshop on

Automatic Summarization, Vol. 4, pp. 1-8. Association for

Computational Linguistics.

[15] Yong, S. P., Abidin, A. I., & Chen, Y. Y. (2005). A Neural

Based Text Summarization System, In Proceedings of the 6th

International Conference of DATA MINING, pp. 45-50

[16] Svore, K. M., Vanderwende, L., & Burges, C. J. (2007).

Enhancing Single-Document Summarization by Combining

RankNet and Third-Party Sources, In EMNLP-CoNLL, pp

448–457.

[17] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,

Hamilton, N., & Hullender, G. (2005). Learning to rank

using gradient descent. In Proceedings of the 22nd

international conference on Machine learning (pp. 89-96).

ACM.

[18] Silveira, S. B., and Branco, A. (2014). Sentence Reduction

Algorithms to Improve Multi-document

http://ezinearticles.com/?3-Advantages-of-Automatic-Text-Summarization&id=3465270
http://ezinearticles.com/?3-Advantages-of-Automatic-Text-Summarization&id=3465270

