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ABSTRACT 

Automatic text summarization aims at producing summary from a 

document or a set of documents. It has become a widely explored 

area of research as the need for immediate access to relevant and 

precise information that can effectively represent huge amount of 

information. Because relevant information is scattered across a 

given document, every user is faced with the problem of going 

through a large amount of information to get to the main gist of a 

text. This calls for the need to be able to view a smaller portion of 

large documents without necessarily losing the important aspect 

of the information contained therein. This paper provides an 

overview of current technologies, techniques and challenges in 

automatic text summarization. Consequently, we discuss our 

efforts at providing an  efficient model for compact and concise 

documents summarization using sentence scoring algorithm and a 

sentence reduction algorithm. Based on comparison with the well-

known Copernic summarizer and the FreeSummarizer, our system 

showed  that the summarized sentences contain more relevant 

information such that selected sentences are relevant to the query 

posed by the user 
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1. INTRODUCTION 
The area of automatic text summarization has become a widely 

explored area of research because of the need for immediate 

access to information at this age where the amount of information 

on the World Wide Web is voluminous. The problem is not the 

availability of information but users have access to more than 

enough information than they need, they are also faced with the 

problem of digging through that large amount of information to 

get what they really need. 

Automatic text summarization is a process whereby a computer 

program takes in a text and outputs a short version of the text 

retaining the important parts only. The essence of text 

summarization is to bring out the salient parts of a text.   

The method used for automatic text summarization can either be 

extractive or abstractive. Extractive summarization method 

involves picking important sentences from a document while 

abstractive method of summarization involves the use of linguistic 

methods to analyze and interpret a document, the system then 

looks for another way to portray the content of the document in a 

short form and still pass across the main gist of the document. 

Also the input of a text summarization system can either be single 

or multiple. Single document summarization involves 

summarizing a single text while Multi-document summarization 

involves summarizing from more than one source text. 

Automatic text summarization is one of the many applications of 

Natural Language Processing. It can be used for question and 

answering, information retrieval among other things. Earlier 

methods of text summarization used statistical methods that 

assigned scores to sentences or words in a sentence, and these 

methods are inefficient because they didn’t consider the context of 

words, which made the resulting summaries, incoherent. More 

research unveiled approaches that do not score sentences for 

extraction, but merged lots of knowledge bases to enable them 

know the part of speech of words in a sentence but do not 

consider keywords identification to identify important parts of 

documents..  

Automatic text summarization system helps saves time and effort 

that one would have used to scan a whole document, it also helps 

increase productivity and with the amount of research that has 

been done in automatic text summarization, summaries are 

available in different languages [1]. 

This paper presents the current technologies and techniques as 

well as prevailing challenges in automatic text summarization, 

consequently, we propose a model for improving text 

summarization  by using a method that combines sentence scoring 

algorithm with sentence reduction.  

 

2. SENTENCE EXTRACTION METHODS 

FOR TEXT SUMMARIZATION 
 A system that scans a document in machine-readable form then 

selects from the sentences in the Article the ones that carry 

important information was proposed in [2]. The significance 

factor of a sentence is derived from an analysis of its words, 

whereby the frequency of words occurrence is a useful 

measurement of word significance and that the relative position of 

words within a sentence having given values of significance 

furnishes a useful measurement for determining the significance 

of sentences. In [2], a justification was made about measure of 

significance based on how frequent some words occurred by 
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pointing out that an author when trying to express his thoughts on 

a subject repeats some words. 

Another research in IBM pointed out that the position of a 

sentence can be used to find areas of a document containing 

important information [3]. There, it was shown that sentences that 

occur in the initial or final parts of a paragraph contain important 

information. By analyzing a sample of 200 paragraphs, it was 

discovered that in most paragraphs the headings came first and in 

few it came last.  

Unlike the method used in [2], which used only the frequency of 

word occurrence to produce extracts, [4] analyzed using cue 

words, title and heading words, sentence location and key method 

individually and together. The justification of using cue method is 

that sentences containing words like “most importantly”, “in this 

paper” indicate sentence importance. For key method, scores were 

assigned to frequently occurring words in the document. For title 

method, sentences are scored based on how much of the title or 

heading words it contains and for the sentence location, the 

importance of a sentence is determined using position as criteria 

like words at the beginning of a paragraph are considered 

important. His results showed that the best match between 

automatic and human-written abstracts was accomplished when 

sentence location, cue words and title words are considered. 

2.1 Beyond Sentence Extraction 

A method that involved the removal of irrelevant phrases from 

sentences extracted for summary was introduced in [5]. The first 

step involves the generation of a parse tree, followed by grammar 

checking so as to know which of the nodes of the tree can be 

deleted, it then checks the parts of the sentences that contains 

information relating to the main topic. After doing all the above it 

then removes the unnecessary parts of the sentences leaving 

behind a concise and coherent summary. 

Motivated by the fact that automatic summarizers cannot always 

identify where the main gist of a document lies and the way text is 

generated is poor, [6] introduced a cut and paste method which 

involved six operations: 

I. Sentence reduction, where unnecessary phrases are 

removed from the sentences, 

II. Sentence combination, where sentences are combined 

together, 

III. Syntactic transformation, involves rearrangement of 

words or phrases, 

IV. Lexical paraphrasing, phrases are substituted with 

paraphrases, 

V. Generalization and specification, substituting phrases 

with general/specific description, 

VI. Reordering, rearrangement of the sentences extracted 

for summary. 

3. MACHINE LEARNING METHODS 

Various machine learning techniques have been exploited in 

automatic text summarization. Some of the techniques used 

include: Naïve-Bayes method, Rich Features and Decision Trees 

method, Hidden Markov model, Log-linear models and Neural 

Networks and Third Party Features.  

3.1 Naïve-Bayes Method 

Naïve-Bayes method was first used in [7] by using Bayesian 

classifier to determine if a sentence should be extracted or not. 

The system was able to learn from data. Some features used by 

their system include the presence of uppercase words, length of 

sentence, structure of phrase and position of words. The author 

assumed the following: 

s = a certain sentence, S = the sentences in the summary, and F1, , 

Fk = the features.  

-- (1) 

In equation 1, Sentences are scored based on these features and 

the formula is used to calculate the score, the highest ranking 

sentences are extracted. 

Th naïve-bayes classifier was also used in DimSum [8], which 

used term frequency (tf) which is the number of times that a word 

appears in a sentences and inverse document frequency (idf) 

which is the number of sentences in which a word occurs, to know 

words that hold point at the key concepts of a document. 

3.2 Rich Features and Decision Trees 

Decision trees are powerful and popular tools for classification 

and prediction. It is a classifier in the form of a tree structure. The 

following nodes make up the tree:   

 Decision node: specifies a test on a single attribute,  

 Leaf node: indicates the value of the target attribute,  

 Arc/edge: split of one attribute,  

 Path: a disjunction of test to make the final decision  

In [9], the authors concentrated on text position by making an 

effort to determine how sentence position affects the selection of 

sentences. The justification for the focus on position method is 

that texts are in a particular discourse structure, and that sentences 

containing ideas related to the topic of a document are always in 

specifiable locations (e.g. title, abstracts, etc). They also 

mentioned that discourse structure significantly varies over 

domains, so therefore the position method cannot be easily 

defined. 

A sentence reduction algorithm that is based on decision tree was 

introduced in [10]. The algorithm proposed used semantic 

information to aid the process of sentence reduction and decision 

tree to handle the fact that the orders of original sentences change 

after they are reduced. They extended Knight and Marcu’s  

sentence compression algorithm [11], which was also based on 

decision tree by adding semantic information to theirs. To achieve 

this, they used a Parser to parse the original sentences and by 

using WordNet, they enhanced the syntax tree gotten with 

semantic information. 

3.3 Hidden Markov Models 

A hidden Markov model is a tool for denoting probability 

distributions over sequences of observations. If we represent the 

observation at time t by the variable Yt, we assume that the 

observation are sampled at discrete, equally-spaced time intervals, 

so t can be an integer-valued time index. The two defining 

properties of hidden Markov model are: the assumption that the 

observation at time t was generated by some process whose state 

St is hidden from the observer and the assumption that the state of 

the hidden process satisfies the Markov property i.e. given the 

value of St-1, the current state St is independent of all the states 

prior to t-1 [12]. 
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Two sentence reduction algorithms were proposed in [13]. Both 

were template-translation based which means that they don’t need 

syntactic parser to represent the original sentences for reduction. 

One was founded on example-based machine-translation which 

does a good job of in the area of sentence reduction. On the other 

hand in specific cases, the computational complexity can be 

exponential. While the second one was an addition to the 

template-translation algorithm through the application of Hidden 

Markov model, the model employs the set of template rules that 

was learned from examples to overcome the problem of 

computational complexity.  

2.4.4 Log-Linear Models 

Log-Linear models are generally used in Natural Language 

processing. The flexibility of this model is its major benefit; it 

allows the use of rich set of features. 

In [14], log-linear models were used to bring to null the 

assumption that existing systems were feature independent. 

Consequently, it was  also showeshown empirically that using 

log-linear models produced better extracts than naïve-bayes 

model. The conditional log-linear model used by the author can be 

stated as follow:  

  …………..(2) 

Let c = label, s = item we want to label, fi = i-th feature, λi = the 

corresponding feature weight and Z (s) = ∑c exp (∑i λi fi (c,s)). 

3.4 Neural Networks and Third Party Features 

The automatic text summarization system developed in [15] had 

learning ability. This was done through combination of a 

statistical approach, extraction of keywords, neural network and 

unsupervised learning. The process used involved three steps: step 

one involved removal of stop words like “a” and stemming which 

is done by removing suffixes and prefixes to convert a word to its 

stem. Step two involves keywords are extracted by computing the 

matrix of the term frequency against the inverse document 

frequency, the most frequent terms listed are the keywords to be 

extracted for the summary. For the final step, the model checks 

for stop words again to be sure that no stop word is selected as 

keyword after which it selects sentences containing keywords to 

be added to the summary. 

NetSum [16] was the first to use neural network ranking algorithm 

and third-party datasets for automatic text summarization. The 

authors trained a system that learned from a train set containing 

labels of best sentences from which features are extracted. From 

the train set, the system learns how features are distributed in the 

best sentences and it gives a result of ranked sentences for each 

document, the ranking is done using RAnkNet [17] 

3. SENTENCE SCORING AND SENTENCE 

REDUCTION MODELS 
Sentence score is a value that determines the sentences that are 

relevant to the input text. As shown in  Figure 1, in  our 

architecture, the input to the system is a single document. 

Sentence scoring occurs at the first stage; significant sentences are 

identified and extracted. The second stage involves the sentence 

reduction module; the extracted sentences from the sentence 

scoring module are processed, grammar checking and removal of 

target structures is done. 
 

 

Figure 1: Text summarizer Architecture 

3.1 Sentence Scoring Module 

 

Figure 2: Sentence scoring module 

In the sentence scoring module, there are two major steps 

involved: 

1. Preprocessing: 

This step involves the removal of stop-word and tokenization; 

stop-words are extremely common words (e.g. a, the, for). For this 

part, a stoplist which is a list of stop-words is used. Tokenization 

involves breaking the input document into sentences. 

2. Sentence scoring: after the document has been broken into 

group of sentences. As seen in Figure 1 above, sentences 

are extracted based on three important features; sentence 

resemblance to query, cue phrases and word frequency. 

 Sentence resemblance to query: This is modelled after 

sentence resemblance to title which calculates a score based 

on the similarity between a sentence and the title of a 

document. So sentence resemblance to query calculates a 

score based on the similarity between a sentence and the 

user query which means that any sentence that is similar to 

the query or includes words in the query are considered 

important. And the score will be calculated using the 

following formula:                                        

Score = 
                        

   
----(1) 

Where  nQW = number of words in query 

 Cue Phrases: the justification of using this feature is 

that the presence of some words likes “significantly”, 

“Since” point to important gist in a document and a 

score is assigned to such sentences. The score is 

computed using: 

Score = 
              

                    
----------(2) 

 Word frequency, is a useful measurement of significance 

because it is revealed in [2] that an author tend to repeat 

certain words when trying to get a point across. So sentences 

that contain frequently occurring words are considered to be 

significant. The algorithm involves: 
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I. Breaking sentence into tokens 

II. For each token, if the token already exists in array, 

  Increment its count, 

  Else add token to array and 

  Set initial count to 1. 

The boolean formula below is used to decide the sentences to be 

selected for further processing: 

(SrqScore >= 0.5 || (CpScore >= 0.1 && WfScore >=3) ---(3) 

Where SrqScore is Sentence resemblance to query Score, CpScore 

is Cue phrase score and WfScore is Word Frequency score. 

3.2 Sentence Reduction Module 

 

Figure 3: Sentence reduction module 

In the sentence scoring module, the original document and the 

extracted sentences from the sentence scoring module is processed 

so as to remove irrelevant phrases from the document to make the 

summary concise, the sentence reduction algorithm is described in 

details in [18].  The processing involves: 

Syntactic Parsing 
Stanford parser, a syntactic parser is used to analyze the structure 

of the sentences in the document and a sentence parse tree is 

produced. The other stages involved in the sentence reduction 

module add more information to the parse tree, these information 

aids the final decision to be made. 

Grammar checking  
We go back and forth on the sentence parse tree, node by node to 

identify parts of the sentence are important and must not be 

removed to make the sentence grammatically correct. For 

example, in a sentence, the main verb, the subject, and the 

object(s) are essential if they exist.  

Removal of Target Structures 

For this research work we will be using the main clause algorithm 

for sentence reduction. In this algorithm, the main clause of a 

sentence is obtained and in that main clause we identify the target 

structures which are the structures to be removed and they are 

adjectives, adverbs, appositions, parenthetical phrase, and relative 

clauses. A reduced sentence is gotten after the targeted structures 

has been identified and removed from the sentence parse tree. 

Summary Construction 
We once again go back and forth on the sentence parse tree and 

see if the reduced sentences are grammatically correct. The 

reduced sentences are then merged together to give the final 

summary. 

After the sentence reduction module carries out all four steps, a 

concise and coherent summary is expected as output. 

4. IMPLEMENTATION 
The system allows a user to input a document; which is then 

prepossessed and the sentences ranked. The high ranked sentences 

are then extracted for further processing. The result is then viewed 

by the user.   As shown in figure 3, the flow of activities includes 

uploading of input file, preprocessing, assignment of scores, 

syntactic parsing, grammar checking, removal of target structures 

and display of output. 

 

Figure 3: Activity Flow 

4.1 Implementation Resources 
The following resources were used for the implementation of our 

summarization system: 

 Java: it was considered a good choice for developing 

the summarization system because it makes more 

efficient use of memory needed for a system of this 

nature, it is faster and more effective, and also provides 

more data structures to handle the different data types 

used in the implementation of the proposed algorithm. 

 Stanford Parser: The Stanford parser was used as the 

tagging tool in the sentence reduction module of our 

implementation. The Stanford parser analyses the 

sentences and provides us with the parts of speech of the 

words in a sentence, as well as the class e.g. adverbial 

phrase, adjectival phrases, etc., different parts of the 

sentence belongs to. 

 Gate (General Architecture for Text Engineering): 

We used GATE in the development our algorithm to 

integrate the Stanford parser and its other modules such 

as the sentence splitter and tokenizer which properly 

handles complexities that may occur in long articles 

than ordinary tokenizers cannot handle properly. The 

integration of the parser and this other modules was 

used to create an application pipeline which was then 

used as a plugin in the implementation and development 

of our summarisation system. 

5. RESULTS AND DISCUSSION 
To test our summarisation system, we obtained random articles 

online from Wikipedia to use as our input document. The article is 

then saved in a text (.txt) file to be used in our system. Wikipedia 

references are disregarded during our extraction and not included 

in the content of the article to use as input document for our 

summarisation system, as they do not provide any value of 

importance to the overall article and the summary we want to 

generate. For this task, we selected an article about Web 2.0, 
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however, it is important to note that any article could be selected 

and used.  

 
Figure 4: GUI interface of our summarization system. 

We evaluated our summarization system using 3 standard 

parameters; (1) precision (the fraction of the returned summary 

that is relevant to the query posed by the user); (2) recall (the 

fraction of the relevant information contained in the document 

that was returned by the summarization system); and (3) F-

measure (the weighted harmonic mean of precision and recall). 

We had a human subject read two articles, one was the web 2.0 

article and the other was a Blackberry passport review.  

The web 2.0 article had 179 sentences, the summary presented by 

the subject contained 110 sentences and our system produced a 

summary containing 112 sentences. 92 sentences were present in 

both the summary made by the subject and the summary made by 

our system. 

The second document, a blackberry passport review contained 

129 sentences. In the summary presented by the subject we had 40 

sentences and our summarizers’ summary, we had 57 sentences. 

27 sentences were present in both the summary made by the 

subject and the summary made by our system. Based on 

comparison with the well-known Copernic summarizer which 

produces summary based on statistical and linguistic methods and 

the FreeSummarizer that produces summary based on specified 

number of sentences, our system gave high recall values of 83.6% 

and 67.5% respectively; an indication  that the sentences in our 

system’s summary contain more relevant information such that 

selected sentences are relevant to the query pos. ed by the user.  

In conclusion, this work can be extended to multi-document 

summarization whereby the source text is more than one; the 

resulting summary may contain a larger amount of information 

when compared to a single document summarization. Also, it can 

be extended to other languages apart from English language. 
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