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Abstract. The Object Constraint Language (OCL) is defined as a side-
effect-free language combining model-oriented and functional features.
Its interpreters are mostly focused on model-oriented features, providing
a direct representation of features like inheritance and properties nav-
igation. However, in the last few years many other functional features
were proposed, e.g. pattern matching, lambda expressions and lazy eval-
uation. In this work we explore the use of Haskell as an alternative for
the functional interpretation of OCL in a direct and clear way. We also
show its feasibility through the development of a case study.
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1 Introduction

The Object Constraint Language (OCL, [1]) plays a central role in the Model-
Driven Architecture (MDA, [2]) approach. The MetaObject Facility (MOF, [3])
is the standard language proposed for metamodeling. A metamodel captures
the syntax and semantics of a modeling language and thus provides the context
needed for expressing well-formed constraints for models (known as the confor-
mance relation). If there are conditions (invariants) that cannot be captured by
the structural rules of this language, the OCL is used to specify them. Moreover,
OCL is used for constraining and computing object values in the definition of
model transformation rules. In other contexts, OCL is also used for the descrip-
tion of pre- and post-conditions on operations, and the specification of guards
in behavioral diagrams, among many other purposes.

The OCL is defined as a side-effect-free language combining model-oriented
and functional features, e.g. type inheritance and functions composition, respec-
tively. This combination is not easily interpreted, since there is a mismatch be-
tween both worlds: a functional programming language use algebraic datatypes
and functions over these datatypes rather than types, inheritance and proper-
ties navigation. In this context, OCL interpreters (e.g. Eclipse OCL [4] and
Dresden OCL [5]) are mostly focused on providing a direct representation of
model-oriented features, which are useful in a wider model-driven environment.

In the last few years, many authors propose the inclusion of functional fea-
tures in the language, e.g. pattern matching [6], lambda expressions [7] and
lazy evaluation [8]. These concepts have a direct representation in functional
programming languages (e.g. Haskell [9]), and could be not easily interpreted
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following a model-oriented approach. Thus, a functional approach comes as a
reasonable alternative for exploiting such features.

In this work we explore the use of Haskell as an interpreter for OCL with
respect to its use for expressing invariant conditions in models. We tackle with
the functional representation of model-oriented features in metamodels, models
and OCL expressions, as well as with the semantic interpretation of many OCL
aspects, e.g. its four-valued logic with the notion of truth, undefinedness and
nullity. We also discuss the practical implications of this approach through the
development of a case study1. This work tends to provide a different perspective
on the interpretation of OCL. In particular, we claim that OCL can be inter-
preted in a direct and clear way, such that the needed functional infrastructure
can be predefined and automatically generated. Moreover, the representation of
OCL as an embedding of the language into Haskell could encourage functional
programmers to get closer to the model-driven approach.

Although some knowledge of (Haskell) functional programming is needed to
fully understand the code presented in this paper, we believe that the main ideas
and solutions we propose can be understood by non-functional experts.

The remainder of the paper is structured as follows. In Section 2 we present
related work on the interpretation of OCL in many semantic domains. In Sec-
tion 3 we provide a brief introduction to some of the Haskell features used in this
paper. In Section 4 we introduce how metamodel and models can be represented
in Haskell. Then, in Section 5 we describe the functional interpretation of the
main aspects of OCL, and in Section 6 we take a step further and introduce how
a functional approach provides a direct and clear interpretation for many ad-
vanced OCL features proposed in the literature. Finally, in Section 7 we present
some conclusions and an outline of future work.

2 Related Work

Some authors propose the inclusion of functional aspects in the syntax and
semantics of OCL, e.g. lazy evaluation [8], pattern matching [6], functions def-
inition [10], and lambda expressions [7]. They are expected to be implemented
in any OCL interpreter, without a specific functional counterpart for its inter-
pretation. In [11] the author proposes the use of monoid calculus (a.k.a. list
comprehension in functional programming languages) for the interpretation of
collection operations. These aspects will be subject of study in Section 6.

There are many proposals defining the semantics of MOF and OCL in terms
of a shallow embedding of the language by providing a syntactic translation into
another one, e.g. rewriting logic [12,13], and first-order logic [14]. These works
are focused on providing semantics and a formal environment for verification.
They neither consider functional aspects nor a functional interpretation of such
aspects.

1 Complete source code of our running example is available at
https://www.fing.edu.uy/inco/grupos/coal/field.php/Research/ANII14
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Haskell was used for the implementation of OCL parsers and type checkers
[15,16]. These works use the functional abstract syntax tree to translate the lan-
guage into others, without giving a functional interpretation of the language.
In [17] we propose the representation of MDA elements using Attribute Gram-
mars which are expressed as Haskell expressions. We addressed the inclusion of
OCL expressions for structural and semantic conformance checking, but we did
not exhaustively study its representation.

The most related work is [18] in which the authors present a formalization
using Isabelle/HOL (which can be considered a functional programming lan-
guage) of a core part of OCL. This work is focused on a formal treatment of
the key elements of the language rather than a complete implementation of it.
It addresses many undesirable formal aspects, as those related with null and
invalid values and provides detailed formal semantics for verification.

3 Haskell Preliminaries

Haskell [9] is a purely functional, lazy and static typed programming language.
In what follows we briefly introduce some basic features used in this paper.

Algebraic Datatypes New types are introduced in Haskel using Algebraic
Datatypes, where the shape of its belonging elements is specified. For example:

data Maybe a = Just a | Nothing

where Maybe is a type representing the existence of an element (Just constructor)
or nothing (Nothing constructor). The constructors can have parameters. In
the example the constructor Nothing has no parameters, while Just receives an
element of type a. We say that a type is polymorphic on the types represented
by the variables occurring on the left-hand side of the definition. Thus, the type
is polymorphic on the type (a) of its elements, and can be instantiated with any
type, e.g.: integers (Maybe Int), and characters (Maybe Char). Constructors are
used in pattern matching; for example a function that states if a maybe type
has something or nothing can be defined using pattern matching as follows:

isJust :: Maybe a → Bool

isJust Nothing = False

isJust (Just ) = True

Type classes In Haskell type classes declare predicates over types, a type ful-
fills such predicate if the methods of the class are supported for this type. For
example, the following definition declares a class Monad , with methods return
and (>>=), being the last one an infix operator.

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b
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Out of the class declaration, the types of the methods include a constraint stating
the membership to the class (i.e. return :: Monad m ⇒ a → m a). When a
function uses a method of a class it inherits its constraints.

myReturn :: Monad m ⇒ a → m a

myReturn x = return x

Monads Monads [19] structure computations in terms of values and sequences
of (sub)computations that use these values. This provides a mechanism to struc-
ture computations in an imperative-style, allowing to incorporate side-effects
and state without loosing the pure nature of the language. Haskell monads fol-
low the interface provided by the class Monad presented before. Provided that
a type constructor m is a monad, then a value of type m a is a monadic compu-
tation that returns a value of type a. The function return is used to construct
a computation from a given value. The bind function for monads (>>=) defines
a sequence of computations, given a computation that returns a value of type a
and a function that creates a computation (m b) given a value of such type.

4 Representation of metamodels and models

The OCL is used as a supplementary language for guaranteeing the conformance
relation between a model and a metamodel. A model needs to satisfy the struc-
tural rules defined by its metamodel and also the OCL invariant conditions to
become a valid (well-formed) instance of the metamodel.

In what follows we introduce how metamodels and models can be represented
in Haskell, providing a functional basis for the interpretation of OCL. The re-
presentation can be automated by means of a model-to-text transformation.

Basically, a metamodel defines classes which can belong to a hierarchical
structure. Some of them may be defined as abstract. Any class has properties
which can be attributes (named elements with an associated type: a primitive
type or a class) and associations (relations between classes in which each class
plays a role within the relation). Every property has a multiplicity constraining
the number of elements that can be related through it, and it can be related
with another (opposite) property if there is a bidirectional association.

Consider the metamodel in Figure 1 which defines UML class diagrams com-
posed by UMLModelElement with a name (property name). Classifiers (classes and
primitive types like integer) are contained in packages (property namespace).
Classes contain attributes (property attr), whilst attributes have a type (prop-
erty typ). A class contains only one or two attributes (multiplicity 1..2), and
the Classifier class is not abstract. We decided to handle these aspects differently
from UML class diagrams in order to have a more complete example.

Classes and hierarchies Each class is represented as a datatype with a con-
structor resulting from the translation of their properties. If the class does not
have a superclass, then its constructor includes a field of type Int representing
an unique identifier of any instance of such class2. Moreover, if the class has

2 This is required since Haskell data values do not have an identity
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Fig. 1. UML class diagrams metamodel

subclasses, the production rule defines a field of type ClassCh, with Class the
name of the class. This field defines one constructor for each subclass with its
corresponding type. If the class is not abstract, then the child is wrapped with
Maybe.

In Figure 2 we show the Haskell representation of the metamodel in Figure 1.
Notice that for each class, there is a constructor for its corresponding properties.
In the case of UMLModelElement at the top of the hierarchy, there is an Int
field representing its identifier. Since Classifer is a class with non-abstract
subclasses, it required the definition of MaybeClassifierCh and ClassifierCh.

Datatypes and enumerations Primitive types as string, boolean and integer
are mapped to their corresponding Haskell types. In the case of user defined
datatypes, they are translated as we do with classes. An enumeration is trans-
lated to a datatype with a choice of constructors corresponding to their values.

Properties and multiplicities Within the context of the constructor corre-
sponding to the class who owns a property, we translate a property typed with
a primitive type as a field of the translated type. Moreover, if the property is
typed with a non-primitive type, we translate the property as a field of type
Int , representing the identifier of the element that must be related through the
property. If the multiplicity accepts many elements, the type of the field is a list
of elements, and if it is 0..1, the type Maybe is used. More narrow multiplicities
can be defined as OCL invariants as explained in Section 5.

In Figure 2 we can notice that within the constructor of UMLModelElement

there are fields for their string properties kind and name, and in the case of
Class, the property atts referencing their attributes is represented as a list of
identifiers of those attributes. Since the multiplicity of atts is 1..2, we need to
define an OCL invariant for checking it.
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-- UMLModelElement(oid:int, kind:String, name:String) + subtypes
data UMLModelElement = UMLModelElement Int String String

UMLModelElementCh

data UMLModelElementCh = UMLMECAtt Attribute

| UMLMECPck Package

| UMLMECCla Classifier

-- Attribute(typ:Classifier, owner:Class)
data Attribute = Attribute Int Int

-- Package(elements:Set(Classifier))
data Package = Package [Int ]

-- Classifier(namespace:Package) + subtypes
data Classifier = Classifier Int MaybeClassifierCh

type MaybeClassifierCh = Maybe ClassifierCh

data ClassifierCh = ClassifierChPri PrimDataType

| ClassifierChCla Class

data PrimDataType = PrimDataType

-- Class(atts:Set(Attribute))
data Class = Class [Int ]

Fig. 2. Haskell representation of the UML class diagrams metamodel

Models A model can be seen as a collection of interrelated elements. For this
purpose we define a root element with a constructor having a field (of type list)
for every other metamodel element on top of a hierarchy (isolated classes and
datatypes are considered hierarchies of one element).

The Haskell value in Figure 3 represents a model which satisfies the structural
rules of the metamodel in Figure 1. It is composed by a persistent class of name
ID within a package of name Package. The class has an attribute of name value

and type String which is a primitive type. The model is represented as a list of
UMLModelElement since it is the only root element in the metamodel.

Navigation and inherited properties The above interpretation does not fo-
cus on navigation through properties (elements are represented with identifiers)
and inherited properties by metamodel elements. Moreover, property names are
ignored in this basic representation. These essential aspects are considered as
part of the OCL interpretation in Section 5.

5 Haskell-based representation of OCL

We consider a basic but powerful subset of OCL serving as a proof of concepts.
It allows representing and user defined types and values, boolean connectives
(e.g. and and or), basic primitive type operators (e.g. < and > for integers),
operators for equality = and inequality <>, if-then-else expressions, the built-in
allInstances, navigation through properties (.) and functions over collections.
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data Model = Model (ListUMLModelElement)

type ListUMLModelElement = [UMLModelElement ]

--

example = Model

[UMLModelElement 1 "Persistent" "Package" (UMLMECPck $ Package [2, 3])

,UMLModelElement 2 "Persistent" "String" (UMLMECCla $ Classifier 1

(Just $ ClassifierChPri PrimDataType))

,UMLModelElement 3 "Persistent" "ID" (UMLMECCla $ Classifier 1

(Just $ ClassifierChCla (Class [4])))

,UMLModelElement 4 "Persistent" "value" (UMLMECAtt $ Attribute 2 3)

]

Fig. 3. Conforming model for the example

-- Inv1

context Class inv:

self.attribute->forAll ( a1 : Attribute; a2 : Attribute |

a1 <> a2 implies a1.name <> a2.name)

-- Inv2

context Class inv:

Class.allInstances()->forAll (c : Class |

c.attribute->iterate ( a:Attribute; result:Boolean=true |

result and a.type.namespace = c.namespace))

-- Inv3

context Classifier inv:

if self.oclIsTypeOf(Class) then

self.oclAsType(Class).attribute->size() > 0

else

True

endif

Fig. 4. OCL invariants

As an example, consider the invariants in Figure 4 over the metamodel in
Figure 1: (Inv1) there cannot be two attributes with the same name within the
same class, (Inv2) a class and its attributes belong to the same package, and
(Inv3) for every classifier, if it is a class it must have at least one attribute
(multiplicity constraint).

In Figure 5 we show how these invariants can be translated into Haskell.
Without delving into details yet, it can be seen that the translation mimics the
structure of the OCL invariants. In fact, it can be automated. This is achieved
due to the functional nature of OCL and the use of Haskell features like higher-
order functions, infix operators, monads and type classes.

In what follows we show the main aspects of a functional OCL library, and
the translation procedure from OCL invariants to our functional settings. The
library is predefined and the OCL invariants can be automatically translated.
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-- Inv1
chk1 = context Class [inv1 ]

inv1 self = ocl self |.| atts |->| forAll (λ(Val (a1 , a2 ))→
(ocl a1 |<>| ocl a2 ) |==>| ((ocl a1 |.| name) |<>| (ocl a2 |.| name))) ◦ cartesian

-- Inv2
chk2 = context Class [inv2 ]

inv2 = ocl Class |.| allInstances |->| forAll (λc →
ocl c |.| atts |->| iterate (λres a →

ocl res |&&| (ocl a |.| typ |.| namespace) |==|

(ocl c |.| namespace))

(Val True))

-- Inv3
chk3 = context Classifier [inv3 ]

inv3 self = oclIf (ocl self |.| oclIsTypeOf Class)

((ocl self |.| oclAsType Class |.| atts |->| size) |>| ocl (Val 0))

(ocl (Val True))

Fig. 5. Invariants in Haskell

We also show how to define the functional infrastructure for accessing properties
and navigating through them, which can also be automated.

5.1 Functional OCL library

Invariants chk1 , chk2 and chk3 have type OCL Model (Val Bool), which can
be read as an OCL expression that applies to a MOF model (represented by
the type Model) and returns a boolean value. The type OCL m a is a Reader
monad, representing computations which read from a shared environment of
type m (e.g. Model), and return a value of type a (e.g. Val Bool). A sequence of
computations describes the navigation through properties and functions, and the
shared environment (which is the model itself) can be used by the computations
to look up the elements referred by others.

type OCL m a = Reader m a

data Val a = Null | Inv | Val a

In order to represent the OCL four-valued logic with the notion of truth,
undefinedness and nullity, we define the type Val a for OCL values. An OCL
value can be null (Null), invalid (Inv) or a value (Val) of some type a. The value
Val a allows both representing a boolean value, and any other typed value which
can be useful for using OCL as a query language.

We define a specialized version of return, called ocl to construct OCL expre-
ssions from values.

ocl :: Val a → OCL m (Val a)

ocl = return
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For example, in the third invariant of Figure 5 this function is used to construct
the boolean and integer sub-expressions ocl (Val True) and ocl (Val 0).

We defined specialized versions of bind for better representing the object
navigation operator (|.|) and the collection navigation operator (|->|).

infixl 8|->|,|.|

(|.|) :: OCL m (Val a)→ (Val a → OCL m (Val b))→ OCL m (Val b)

(|.|) = (>>=)

(|->|) :: OCL m (Val [Val a ])→ (Val [Val a ]→ OCL m (Val b))→ OCL m (Val b)

(|->|) = (>>=)

In the first invariant of Figure 5, the fragment (ocl a1 |.| name) defines an
OCL computation that, having an Attribute a1 and the function name, that
given an Attribute defines an OCL computation that returns the name of such
Attribute, applies name to a1 . Larger sequences can be composed, like this
fragment of the second invariant (ocl a |.| typ |.| namespace), that returns the
namespace of the type of a given attribute. In this example we can notice the
role of the Reader monad. In the representation of the metamodel (Figure 2)
the elements only keep the identifiers of the other elements they are related to
through properties. Then, for example, the function typ needs to access to the
entire model in order to lookup the Classifier referred by the index provided by
the Attribute. The Reader monad “silently” passes the given model through the
sequences of computations.

The iterate OCL operator is almost directly translated to the fold recursion
scheme of Haskell. We represent collections as Haskell lists.

iterate :: (Val b → Val a → OCL m (Val b))→ Val b → Val [Val a ]→ OCL m (Val b)

iterate f b = pureOCL (foldM f b)

Since we are dealing with monadic computations we have to use foldM , the
monadic version of fold . We also need to take care of the cases were the collection
we want to iterate is either an invalid or null value. This is expressed in the
function pureOCL, which calls a given function only if a valid value is received.
In other cases it just creates a computation returning an invalid or null value.

pureOCL :: (a → OCL m (Val b))→ Val a → OCL m (Val b)

pureOCL f (Val x) = f x

pureOCL Inv = ocl Inv

pureOCL Null = ocl Null

The rest of the collection operators can be implemented in terms of iterate.
Although we decided to provide specific implementations, given that they all
correspond to well-known functional programming abstractions, like map and
filter . This also allows representing specific semantic aspects with respect to
null and invalid values in each collection operator. For example, collect is almost
directly translated to a monadic map.
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collect :: (Val a → OCL m (Val b))→ Val [Val a ]→ OCL m (Val [Val b ])

collect f = pureOCL (λl → mapM f l >>= ocl ◦Val)

The function context defines a computation that verifies a list of invariants
in a given context. This is done by applying all the invariants to every instance
of the given context (self ).

context :: (OCLModel m e,Cast m e a)

⇒ Val a → [Val a → OCL m (Val Bool)]→ OCL m (Val Bool)

context self invs = ocl self |.| allInstances |->| forAll (mapInvs invs)

The function mapInvs applies all the invariants invs to a given element, and
creates a computation that returns true if all of them are satisfied. The invariants
(e.g. those in Figure 5) are represented as functions from a given context (which
we call self to keep the OCL terminology) to a boolean OCL computation.

In order to be able to declare invariants, monadic versions of the operators
on the basic types had to be defined for the OCL computations.

(|&&|) :: OCL m (Val Bool)→ OCL m (Val Bool)→ OCL m (Val Bool)

e1 |&&| e2 = liftM2 (&&&) e1 e2

Val False &&& = Val False

&&& Val False = Val False

Val True &&& Val True = Val True

&&& = Inv

Notice that (&&&) complies with the semantic rule: False AND-ed with anything
(even invalid or null values) is False, satisfying a specific semantic aspect.

5.2 Accessing model elements

The following type classes provide functions to navigate through models. In-
stances of such classes have to be provided for any data type m, that represents
a model, with top-level elements e, as shown in the Section 5.3.

class OCLModel m e | m → e where

elems :: m → [e ]

The function elems of the class OCLModel , returns a list with the elements of a
given model.

class Cast m a b where

downCast :: Val b → Val a → OCL m (Val b)

upCast :: Val a → Val b → OCL m (Val a)

The type class Cast m a b provides functions for the model m, to downcast an
element of a base class (represented by the type a) to one of its derived classes
(represented by the type a), and upcast an element of a derived class to one of
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its supertypes. In the casting functions, the first parameter is used to determine
the type to which the element has to be casted and the second parameter is
the element to cast. The results is an OCL computation that returns the casted
value or invalid if the cast is not possible.

The casting functions are used, for example, to implement the oclAsType

operation, that casts an element to a given type, if possible.

oclAsType :: (Cast m a b,Cast m b a)⇒ Val a → Val b → OCL m (Val a)

oclAsType t e = do c ← downCast t e

case c of

Val → ocl c

→ upCast t e

We first try downcasting, if it returns a valid value the result is a computation
returning this value, otherwise we return the result of upcasting (possibly an
undefined value). These definitions perform specific type checkings preventing
from undesirable outcomes.

To implement allInstances, that returns a collection with all the instances of
a given class t in a given model, we first obtain the model m from the monad
(using the Reader monad operation ask), then we get its list of elements and try
to downcast all of them to t . Finally we return a collection with the elements
that could be downcasted (i.e. downcast resulted in a valid value).

allInstances :: (OCLModel m e,Cast m e a)⇒ Val a → OCL m (Val [Val a ])

allInstances t = do m ← ask

es ← mapM (downCast t ◦Val) (elems m)

return (Val [Val e | Val e ← es ])

5.3 Defining Instances for a given Metamodel

In order to apply the OCL library in a specific metamodel, we have to de-
fine the instances of OCLModel and Cast for the datatypes that represent the
metamodel. We also need to define functions to access element properties.

In order to navigate up and down in the hierarchy we used an approach
inspired by the Zipper [20] structure, where we couple the element in focus
and its context. In our case the context includes the information to obtain the
immediate supertype. We define types to represent such “navigable elements”
based in the inheritance relations described in Figure 1.

data Top = Top

type UMLModelElement = (UMLModelElement ,Top)

type Attribute = (Attribute ,UMLModelElement )

type Package = (Package ,UMLModelElement )

type Classifier = (Classifier ,UMLModelElement )
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type PrimitiveDataType = (PrimDataType ,Classifier )

type Class = (Class ,Classifier )

Thus, in the instance of OCLModel for the UML Model defined in Fig-
ure 2, the type of the top-level elements is UMLModelElement ; i.e. navigable
UMLModelElements.

instance OCLModel Model UMLModelElement where

elems (Model l) = map (λe → (e,Top)) l

To downcast to an immediate child in this representation, we return the child
coupled with the actual (navigable) element, while to upcast to an immediate
supertype we only need to return the second component of the pair. We show
this in the instance of Cast for Classifier and Class .

instance Cast Model Classifier Class where

downCast (Val e @(Classifier (Just (ClassifierChCla x)), )) = ocl (Val (x , e))

downCast = ocl Inv

upCast (Val ( , e)) = ocl (Val e)

If we try to downcast a Classifier element as a Class which is not (e.g. a
PrimitiveDatatype), then an invalid value is returned.

When casting to classes further in the inheritance path, we use the cast-
ing functions of the inmmediate parent or child. For example in the instance
for UMLModelElement and Class , to downcast from UMLModelElement to
Class , we obtain the Classifier and then downcast it to Class .

instance Cast Model Classifier Class ⇒ Cast Model UMLModelElement Class where

downCast t (Val e @(UMLModelElement (UMLMECCla c),Top))

= downCast t (Val (c, e))

downCast = ocl Inv

upCast t (Val ( , e)) = upCast t (Val e)

Notice that the first parameter of the casting functions is only used to determine
the type to which we want to cast, and thus, due to lazy evaluation, it is never
evaluated. For all the classes of the metamodel, we define a dummy value, which
can be used just to provide its type information.

UMLModelElement = ⊥ :: Val UMLModelElement

Attribute = ⊥ :: Val Attribute

Package = ⊥ :: Val Package

Classifier = ⊥ :: Val Classifier

Class = ⊥ :: Val Class

Primitivedatatype = ⊥ :: Val PrimitiveDataType

Such values have been used in Figure 5 to refer to the contexts of the invariants,
and as arguments of the functions allInstances, oclIsTypeOf and oclAsType.
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Finally, the functions to access to the properties are implemented. For exam-
ple, oid is a property of UMLModelElement, thus it is a property of every class
that inherits from it. This is implemented by the function oid , that given an el-
ement of a given type a, if this type can be upcasted to UMLModelElement
then the value is upcasted and the property is obtained from the returned
UMLModelElement .

oid :: Cast Model UMLModelElement a ⇒ Val a → OCL Model (Val Int)

oid a = upCast UMLModelElement a >>=

pureOCL (λ(UMLModelElement x , )→ return (Val x))

In the cases where the property is a reference to another element of the model,
for example the Class owner of an Attribute, the element is looked up in the
model and downcasted to the desider type. This is done by the function lookupM ,
which takes a value, representing the type to which we want to downcast, and
an identifier, and searchs (and downcasts) the element in the list of elements of
the model obtained from the monad.

owner :: Cast Model Attribute a ⇒ Val a → OCL Model (Val Class )

owner a = upCast Attribute a >>=

pureOCL (λ(Attribute x , )→ lookupM Class x)

Properties can return collections of elements. In this case the lookupM func-
tion has to be mapped to all the indices.

atts :: Cast Model Class a ⇒ Val a → OCL Model (Val [Val Attribute ])

atts a = upCast Class a >>=

pureOCL (λ(Class x , )→ mapM (lookupM Attribute) x >>= ocl ◦Val)

6 Supporting OCL advanced features

Based on the functional setting defined in Section 5 we can provide an interpre-
tation for many advanced OCL features proposed in the literature.

The first point of discussion is according the real OCL 2.5 plans as pre-
sented in [7]. The new version of OCL tends to rewrite many aspects of the
specification as well as to improve it semantic basis and language constructs.
In the current specification the expressions used within collections are textual
macros, e.g. result and a.type.namespace = c.namespace within the iter-
ation in example (Inv2), which poses certain restrictions. In the new version
there will be a lambda type which is in the basis of functional programming
languages for denoting an anonymous function abstraction. In our example
iterate already defines a lambda abstraction with two parameters res and a:
iterate (λres a → ocl res |&&| ((ocl a...) |==| (ocl c...))).

Collection types are currently defined using a generic type T. In the new
version it represents a type template parameter. Haskell functions can be poly-
morphic based on type variables (for primitive types and other functions). Our
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OCL collection functions are all polymorphic, and they are based on basic poly-
morphic functions, e.g. the function foldM used for defining iterate which has
the following type: foldM :: Monad m ⇒ (a → b → m a) → a → [b ] → m a.

Reflection is of special interest, not only for the definition of OCL (e.g. for
resolving oclIsTypeOf) but also for the discovery and manipulation of metaob-
jects and metadata in metamodels, as introduced in MOF. This aspect requires
further study. In this sense, Template Haskell [21], i.e. an extension to Haskell
that adds compile-time metaprogramming facilities, needs to be analyzed.

Syntactic sugar issues are introduced in [7] to make OCL expressions more
clear. Two specific proposals are of special interest: safe navigation and pat-
tern matching. The existence of the null object is troublesome since it intro-
duces potential navigation failures. Safe navigation [22] is proposed through
the safe object navigation operator ? and the safe collection navigation op-
erator ?->. These operators ensure that the result is the expected value or
null; no invalid failure. As an example, the operators allow a1?.name instead of
if a1 <> null then a1.name else null endif. Safe navigation can be eas-
ily supported by the definition of new operators (e.g. (|?.|)) and the correspond-
ing handling of the Val values, or by defining more restrictive types.

OCL pattern matching was proposed in [6] in order to provide more concise
specifications based on the definition of patterns over object structures instead of
the use of repeated navigation expressions. The new version of OCL does not pro-
pose full pattern matching but a special case: typesafe if, which allows reducing
the number of oclIsTypeOf/oclAsType uses. As an example, in (Inv3) instead
of expressing if self.oclIsTypeOf(Class) then self.oclAsType(Class).f

we can express if c : Class = self then c.f. In our functional setting this
notation can be defined as a new operator oclIf . Nevertheless, pattern matching
is a basic construct in Haskell so it could be further explored to support more
complex expressions.

In [10] the authors propose to extend OCL with functional abstractions (pos-
sible higher-order functions) so the language may improve its abstraction and
modularity capabilities, as well as providing a collection operations definition
based on primitive collection operations and recursive functions. This is straight-
forward in Haskell which provides means for the definition of (higher-order)
functions, lambda abstractions (as explained before) and a standard library of
collection functions as fold and map. Haskell also provides a let and where dec-
laration expression constructs. As an example, recall the definition of iterate
which is defined as a higher-order function based on foldM . The definition of
collection operations based on the use of monoid calculus (list comprehension in
Haskell), as proposed in [11], is straightforward. In fact, Haskell already provides
an implementation for Set, OrderedSet, Sequence and Bag collection types.

In [10] the authors also propose to allow implicit strict downcast in OCL
collection operations, e.g. using the expression s->forAll(c:Class | ...) in-
stead of s->select(oclIsTypeOf(Class))->forAll(c:Class | ...). As with
the case of safe navigation, this can be supported by the definition of new col-
lection operators with the corresponding handling of the Val values.
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Finally, in [8] the authors propose a lazy evaluation strategy for OCL which
could be beneficial when processing large or infinite models. Lazy evaluation is
Haskell’s default evaluation strategy. Moreover, lazy evaluation provides means
for processing infinite structures defined through functions or list comprehension.
As an example, the expression Bag{1..} is equivalent to [1..].

7 Conclusions & Future Work

In this paper we have explored a functional approach to support the construction
of an OCL interpreter. We have presented a Haskell-based representation of the
main aspects of OCL and we have discussed how it provides a direct and clear
interpretation for advanced OCL features proposed in the literature.

Although the functional infrastructure could be not easily readable for a
inexperienced user, it can be predefined (the whole OCL library) and automat-
ically generated (e.g. operations for accessing model properties). There is also a
direct representation of the OCL invariants mimicking its structure. Moreover,
the —Reader— monad allows a clean handling of errors and a precise definition
of the four-valued semantics of OCL.

This approach is exploratory, thus it still needs further work to be put into
real action. We need to continue developing the OCL library, e.g. considering
other kind of collections and primitive types, and to fine tuning its semantics. In
particular, it could be desirable to examine the relation between our definitions
and the Isabelle/HOL-based semantics defined in [18]. Some OCL aspects could
be not easily represented (e.g. tuples without a fixed length and heterogeneous
collections) so they deserve further analysis. We also need to consider other OCL
uses, e.g. for expressing pre- and post-conditions on operations, and to study the
use of Template Haskell [21] for providing metaprogramming capabilities.

From a practical point of view, we need to focus on parsing and type checking
issues. In particular, we are working on the automatic transformation of models,
metamodels and OCL invariants into Haskell and its connection with the Eclipse
Modeling Framework for simplifying these aspects. A benchmark comparison
between our interpreter and others could also be of interest, since lazy evaluation
has a main drawback which is that memory usage becomes hard to predict.
Moreover, it will be desirable to essay an extension of the —Reader— monad in
order to capture more expressive error messages.

Finally, we should evaluate the use of this approach together with model
transformations in three directions: considering an extension of OCL for express-
ing model transformations, as in [23], continuing our previous work [17] on the
use of Attribute Grammars for the same purpose, and exploring the functional
definition of bidirectional model transformations.
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