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Abstract. In model-driven engineering (MDE), models are mostly used in pre-
scriptive ways for system engineering. While prescriptive models are indeed an
important ingredient to realize a system, for later phases in the systems’ lifecy-
cles additional model types are beneficial to use. Unfortunately, current MDE
approaches mostly neglect the information upstream in terms of descriptive mod-
els from operations to design, which would be highly needed to improve systems
continuously. To tackle this limitation, we propose execution-based model profil-
ing as a continuous process to improve prescriptive models at design-time through
runtime information by incorporating knowledge in form of profiled metadata
from event logs generated during the execution of a code model. For this purpose
we combine techniques of process mining (PM) with runtime models of MDE. In
the course of a case study, we implement a preliminary prototype of our frame-
work based on a traffic light system example which shows the feasibility and
benefits of our execution-based model profiling approach.

1 Introduction

In model-driven engineering (MDE), models are put in the center and used throughout
the software development process, finally leading to an automated generation of the
software systems [13]. In the current state-of-practice in MDE [2], models are used as an
abstraction and generalization of a system to be developed. By definition a model never
describes reality in its entirety, rather it describes a scope of reality for a certain purpose
in a given context. Thus, models are used as prescriptive models for creating a software
system [18]. Such models@design.time determine the scope and details of a domain of
interest to be studied. Thereby, different aspects of the domain or of its solution can
be taken into account. For this purpose different types of modeling languages (e.g.,
state charts, class diagrams, etc.) may be used. It has to be emphasized that engineers
typically have the desirable behavior in mind when creating a system, since they are not
aware in these early phases of the many deviations that may take place at runtime [3].

According to Brambilla et al. [2] the implementation phase deals with the mapping
of prescriptive models to some executable systems and consists of three levels: (i) the
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modeling level where the models are defined, (ii) the realization level where the solu-
tions are implemented through artifacts that are used in the running system, and (iii)
the automation level where mappings from the modeling to the realization phase are
made. Thus, the flow is from models down to the running realization through model
transformations.

While prescriptive or design models are indeed a very important ingredient to realize
a system, for later phases in the system’s lifecycle additional model types are needed.
Therefore, descriptive models may be employed to better understand how the system
is actually realized and how it is operating in a certain environment. Compared to pre-
scriptive models, these other mentioned types of models are only marginal explored
in the field of MDE, and if used at all, they are built manually. Unfortunately, MDE
approaches have mostly neglected the possibility to describe an existing and operating
system which may act as feedback for design models. As theoretically outlined in [12],
we propose model profiling as a continuous process (i) to improve the quality of design
models through runtime information by incorporating knowledge in form of profiled
metadata from the system’s operation, (ii) to deal with the evolution of these models,
and (iii) to better anticipate the unforeseen. However, our aim is not to “re-invent the
wheel” when we try to close the loop between downstream information derived from
prescriptive models and upstream information in terms of descriptive models. There
exist already promising techniques to focus on runtime phenomena, especially in the
research field of Process Mining (PM) [3]. Thus, our model profiling approach in its
first version follows the main idea of combining MDE and PM. The contribution of this
paper is to present a unifying architecture for a combined but loosely-coupled usage of
MDE approaches and PM techniques.

The remainder of this paper is structured as follows. In the next section, we present
a unified conceptual architecture for combining MDE with PM frameworks. In Section
3, we present a case study in execution-based model profiling based on a traffic light
system example. In Section 4, we present recent work related to our approach and dis-
cuss its differences. Finally, we conclude this paper by an outlook on our next steps in
Section 5.

2 Marrying Model-Driven Engineering and Process Mining

In this section, we briefly describe the main building blocks of both, MDE as well as
PM, necessary for the context of this paper, before we present a unifying architecture
for their combined but loosely-coupled usage.

2.1 Prerequisites

Model-driven Engineering (MDE). In each phase of an MDE-based development
process “models” (e.g., analysis models, design models) are (semi-)automatically gen-
erated by model-to-model transformations (M2M) that take as input those models that
were obtained in one of the previous phases. In the last step of this process the final
code is generated using model-to-text transformation (M2T) from the design model [2].
These transformation engineering aspects are based on the metamodels of a modeling

79



language, which provide the abstract syntax of that language. This syntax guarantees
that models follow a clearly defined structure, and it forms the basis for applying oper-
ations on models (e.g., storing, querying, transforming, checking, etc.).

As described in [2], the semantics of a modeling language can be formalized by (i)
giving denotational semantics by defining a mapping from the modeling language to a
formal language, (ii) giving operational semantics by defining a model simulator (i.e.,
for implementing a model execution engine), or (iii) giving translational semantics
by defining, e.g., a code generator for producing executable code. In order to generate
a running system from models, they must be executable. This means, a model is ex-
ecutable when its operational semantics is fully specified [2]. However, executability
depends more on the used execution engine than on the model itself. The main goal of
MDE is to get running systems out of models.

In our approach, we consider executable modeling languages which explicitly state
“what” the runtime state of a model is, as well as all possible events that can occur dur-
ing execution [1]. These executable modeling languages not only provide operational
semantics for interpreters, but also translational semantics in form of code generators
to produce code for a concrete platform to realize the system.

Process Mining (PM). It combines techniques from data mining and model-driven
Business Process Management (BPM) [3]. In PM, business processes are analyzed on
the basis of event logs. Events are defined as process steps and event logs as sequential
ordered events recorded by an information system [15]. This means that PM works on
the basis of event data instead of designed models and the main challenge is to capture
behavioral aspects. Thereby, specialized algorithms (e.g., the α-algorithm) produce a
Petri net, which can be easily converted into a descriptive model in form of a process
model. To put it in a nutshell, there is a concrete, running system which is producing
logs and there are algorithms used to compute derived information from those logs.

Generally in PM, event logs are analyzed from a process-oriented perspective us-
ing GPLs (e.g., UML, Petri nets) [4]. There are three main techniques in PM: (i) the
well-established discovery technique by which a process model can be automatically
extracted from log data [3], (ii) the conformance checking technique, which is used to
connect an existing process model with an event log containing data related to activi-
ties (e.g., business activities) of this process [11], and (iii) the enhancement technique
which is used to change or extend a process model by modifying it (i.e., repair), or
by adding a new perspective to this model (i.e., extension) [3]. In recent work, van
der Aalst already brings together PM with the domain of software engineering. For
instance in [10], the authors present a novel reverse engineering technique to obtain
real-life event logs from distributed software systems. Thereby, PM techniques are ap-
plied to obtain precise and formal models and to monitor and improve processes by
performance analysis and conformance checking.

2.2 Unifying Conceptual Architecture

In this section, we combine MDE with PM by presenting a unifying conceptual archi-
tecture. The alignment of these two different research fields may help us, e.g., to verify
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Fig. 1. Unifying conceptual architecture for MDE and PM.

if the mapping feature of design models is really fulfilled, or if important information
generated at runtime is actually missing in the design model.

Fig. 1 presents an overview of this architecture. On the left-hand side there is the
prescriptive perspective, where we use models for creating a system, whereas on the
right-hand side there is the descriptive perspective where models are extracted from
running systems. In the following, we describe Fig. 1 from left to right. The starting
point is the design language specification at the metamodeling level which defines the
syntax as well as the semantics of the language. The design model at the modeling level
describes a certain system and conforms to the design language. In our approach, this
design model describes two different aspects of the problem or the solution: (i) the
static aspect, which is used to describe the main ingredients of the modeled entity and
their relationships, and (ii) the dynamic aspect, which describes the behavior of these
ingredients in terms of events and interactions that may occur between them [2]. For
the vertical transition from the model level to the realization level (i.e., the process of
transforming models into source code), we use code generation at the automation level.
Finally, at the realization level the running software relies on a specific platform for its
execution.

At the right-hand side of Fig. 1 (at the top right), we present a logging metamodel—
the so-called observation language. This metamodel defines the syntax and semantics
of the (event) logs we want to observe from the running system. In particular, we de-
rive this metamodel from the operational semantics of the design language. This means
that this observation metamodel can be derived from any modeling language that can
be equipped with operational semantics. Fig. 1 indicates this transformation at the
metamodel level. The observation model, which conforms to the observation language,
thumbs the logs at runtime and provides these logs as input for any kind of tools used
for checking purposes of non-functional properties (e.g. performance, correctness, ap-
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propriateness, etc.). This means that we can transform a language-specific observation
model to a workflow file and import it, e.g., in a PM tool as presented in our case study.

3 Case Study: Execution-based Model Profiling

In this section, we perform an empirical explanatory case study based on the guidelines
introduced in [14]. The main goal is to evaluate if current approaches for MDE and
PM may be combined in a loosely-coupled way, i.e., both can stay as they are initially
developed, but provide interfaces to each other to exchange the necessary information
to perform automated tasks. In particular, we report on our results concerning a fully
model-driven engineered traffic light system which is enhanced with execution-based
model profiling capabilities. All artifacts of the case study can be found on our project
website.1

3.1 Research questions

As mentioned above, we performed this study to evaluate the feasibility and benefits
of combining MDE and PM approaches. More specifically, we aimed to answer the
following research questions (RQ):

1. RQ1—Transformability: Is the operational semantics of the modeling language rich
enough to automatically derive observation metamodels?

2. RQ2—Interoperability: Are the observation metamodels amenable for PM tools by
reusing existing process mining formats?

3. RQ3—Usefulness: Are the generated model profiles resulting from the observation
model sufficient enough for runtime verification?

3.2 Case Study Design

Requirements. As an appropriate input to this case study, we require a system which
is generated by an MDE approach equipped with an executable modeling language, i.e.,
its syntax and operational semantics are clearly defined and accessible. Furthermore, the
approach has to provide translational semantics based on a code generator which may
be extended by additional concerns such as logging. Finally, the execution platform
hosting the generated code must provide some means to deal with execution logs.

Setup. To fulfill the stated requirements, we selected an existing MDE project concern-
ing the automation controller of a traffic light system. This system consists of several
components, e.g., lights (green, yellow, red) for cars and pedestrians, as well as a con-
troller of the system. We modelled this example by using a UML-based design language
named Class/State Charts (CSC) resulting in a class diagram and a timed state machine
as prescriptive models (cf. Fig. 2). While the state machine shows all possible and valid
transitions/states within this example, the class TrafficLightController spec-
ifies the blinkcounter (bc) and the different lights which can be on or off. The models
of this example have been developed by using the Embedded Engineer.2 We use the

1 http://www.sysml4industry.org/?page_id=722
2 http://www.lieberlieber.com
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TrafficLightController

bc: int = 0

carG: {on,off}

carR : {on,off}

carY : {on,off}

pedG : {on,off}

pedR : {on,off}

UML class diagram

SafetyState
carG = off
carY = off
carR = on
pedG = off
pedR = on
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Ped ‐> blink
entry /pedG = on
exit /pedG = off

Ped ‐> red
pedR = on

5sec

3sec

2sec 1sec

5sec

1sec [bc<=5] /bc++

1sec [bc>5] /bc=01sec

UML state machine diagram

Fig. 2. UML class diagram and state machine of the traffic light system.

Embedded Engineer also to produce Python code from the traffic light model. The code
can be executed on a single-board computer. We use as specific execution platform a
Raspberry Pi (see Fig. 3, at the bottom left). It has to be noted that we aimed for full
code generation by exploiting a model library which allows to directly delegate to the
GPIO module (i.e., input/output module) of the Raspberry Pi.

3.3 Results

In this subsection, we present the results of applying the approach presented in Sec-
tion 2.2 for the given case study setup. First, we show the general architecture to realize
execution-based model profiling for the traffic light system example. Subsequently, sev-
eral details of the realization are presented by focussing on the observation metamodel
as well as the usage of an established PM tool.

Technical Realization at a Glance. Our prototypical realization of execution-based
model profiling considers the execution logs of a running code model as the experimen-
tal frame. Fig. 3 gives an overview of its implementation. We extend the code generator
to produce Python code which enables to report logs to a log recording service im-
plemented as MicroService provided by an observation model repository. For data
exchange between the running system and the log recording service, we use JSON,
which means that the JSON data transferred to the MicroService is parsed into log
entry elements in the repository. We use Neo4EMF3 to store the execution logs in a
NoSQL database for further analysis. In order to be able to use established PM tools,
we generate XML files from the recorded logs (i.e., the observation model). For first
evaluation purposes, we import this files in PromLite.4 The use of this PM tool enables
us to generate different Petri net (PN) models from the recorded logs. In more detail, we
use ATL [20] as transformation tool to transform an observation model to a workflow
instance model and import it in ProM to run the PN discoverer.

The Observation Metamodel. According to PM techniques, we consider an obser-
vation model as an event log with a start and end time registered as a sequences of
transactions that having already taken place. However, we do not receive event logs

3 http://www.neoemf.com
4 http://www.promtools.org/doku.php?id=promlite
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Fig. 3. Deployed traffic light system example.

from an executed process model (i.e., the activities of a business process in an ordered
manner), rather we receive the traces from transformed log messages of an executed
code model.

Fig. 4 shows the observation metamodel derived from the operational semantics of
the excerpt of UML which is considered in the context of this case study. It illustrates
that changes at runtime (rt) are basically value updates for attributes of the UML class
diagram as well as updates concerning the current active state of the UML state ma-
chine (cf. Fig. 4, these elements are marked with the �rt� stereotype). The class
Log represents a logging session of a certain running software system with a regis-
tered observationStart and an observationEnd. The class Log consists of
log entries with a unique id and a timeStamp for ordering purpose (i.e., showing
when the entry was recorded). The LogEntry either registers a AttValueChange
or a CurStateChange. In case of a CurStateChange the LogEntry consid-
ers the predecessor (pre) and successor (succ) states. If an attribute has changed the
LogEntry includes the additional information about the preValue and postValue.

Generated Model Profiles. For generating different model profiles from the observa-
tion model, we employ existing PM tools. For this purpose, we have reverse engineered
the XML Schema of the workflow log language5 into a metamodel, which allows to
translate our language-specific observation model into workflow instances by defining
different model transformations based on the information which should be discovered.
For our case study, we have first implemented a model transformation in ATL which
considers the state occurrences of system runs, i.e., it is a view on the observation model
just considering the CurStateChange elements. By this, we can check if the state
machine is realized as intended by the code generator and if it executes on the real-
ization level as specified. In particular, their equivalence can be check semantically by
comparing the state space of the state machine with the state space of the observed
Petri net or also syntactically by defining bi-directional transformation rules which can
be used to check the consistency of two heterogeneous models [23]. Second, we have

5 http://www.processmining.org/WorkflowLog.xsd
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Fig. 4. Observation language for UML class diagram (CD) and state machine (SM).

developed another ATL transformation which extracts for each attribute a workflow in-
stance which contains the sequence of AttValueChanges. By this, we can extract
the shape of the values stored in the attribute and enrich the model with this kind of
information, or check if certain value constraints are fulfilled during execution. For in-
stance, for the blink counter (bc) attribute we have derived a PN which explicitly shows
a loop counting from zero to six. All the generated artefacts can be found on our project
website.

3.4 Interpretation of Results

Answering RQ1. The operational semantics could be transferred into an observational
viewpoint. By generating a change class for every element in the design metamodel
which is annotated with the �rt� stereotype, we are able to provide a language to
represent observations of the system execution. This language can be also employed to
instrument the code generator in order to produce the necessary logging statements as
well as to parse the logs into observation model elements.

Answering RQ2. By developing transformations from the language-specific observation
metamodels to the general workflow-oriented formats of existing PM tools, we could
reuse existing PM analysis methods for MDE approaches in a flexible manner. Not only
the state/transition system resulting from the state machine can be checked between im-
plementation and design, but also other mining tasks could be achieved such as comput-
ing value shapes for the given attributes of the class diagram. Thus, we conclude that it
is possible to reuse existing formats for translating the observations, however, different
transformations may be preferred based on the given scenario.
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Answering RQ3. For runtime verification, we took as input transformed event logs (i.e.,
selected state changes as a workflow file) and employed the α++-algorithm of Prom-
Lite 1.1 to derive a PN. This generated PN exactly corresponds to the state machine,
as shown in Fig. 2 on the right hand side. We are therefore convinced that the state
machine is realized as intended by the code generator. Similarly, we have done this for
variable changes. As output we extracted a value shape [0..6] stored in the attribute blink
counter. By doing so we demonstrated, that we are also able to enrich the initial class
diagram with runtime information in terms of profiled metadata. Finally, we manually
implemented random error-handling states in the Python code model (not in the design
model) to show that these errors are one-to-one reflected in the generated PN. By ap-
plying bi-directional transformations, these additional states may be also propagated to
the state machine model in order to complete the specification for error-handling states
which are often neglected in design models [5].

3.5 Threats to Validity

To critically reflect our results, we discuss several threats to validity of our study. First,
in the current realization of our approach we do not consider the instrumentation over-
head which may increase the execution time of the instrumented application. Of course,
this may be critical for timed systems and has to be validated further in the future. Sec-
ond, the current system is running as a single thread which means we are not dealing
with concurrency. Extensions for supporting concurrency may result in transforming the
strict sequences in partially ordered ones. Third, we assume to have a platform which
has network access to send the logs to the micro service. This requirement may be crit-
ical in restricted environments and measurements of network traffic have to be done.
Finally, concerning the generalizability of the results, we have to emphasize that we
currently only investigated one modeling language and one execution platform. There-
fore, more experiments are needed to verify if the results can be reproduced for a variety
of modeling languages and execution platforms.

4 Related Work

We consider model profiling as a very promising field in MDE and as the natural
continuation and unification of different already existing or emerging techniques, e.g.,
data profiling [7], process mining [3], complex event processing [6], specification min-
ing [5], finite state automata learning [8], as well as knowledge discovery and data min-
ing [9]. All these techniques aim at better understanding the concrete data and events
used in or by a system and by focusing on particular aspects of it. For instance, data
profiling and mining consider the information stored in databases, while process min-
ing, FSA learning and specification mining focus on chronologically ordered events.
Not to forget models@run.time, where runtime information is propagated back to en-
gineering. There are several approaches for runtime monitoring. Blair et al. [22] show
the importance of supporting runtime adaptations to extend the use of MDE. The au-
thors propose models that provide abstractions of systems during runtime. Hartmann
et al. [21] go one step further. The authors combine the ideas of runtime models with
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reactive programming and peer-to-peer distribution. They define runtime models as a
stream of model chunks, like it is common in reactive programming.

Currently, there is emerging research work focusing on runtime phenomena, run-
time monitoring as well as discussing the differences between descriptive and prescrip-
tive models. For instance, Das et al. [16] combine the use of MDE, run-time monitoring,
and animation for the development and analysis of components in real-time embedded
systems. The authors envision a unified infrastructure to address specific challenges
of real-time embedded systems’ design and development. Thereby, they focus on in-
tegrated debugging, monitoring, verification, and continuous development activities.
Their approach is highly customizable through a context configuration model for sup-
porting these different tasks. Szvetits and Zdun [17] discuss the question if information
provided by models can also improve the analysis capabilities of human users. In this
context, they conduct a controlled experiment. Heldal et al. [18] report lessons learned
from collaborations with three large companies. The authors conclude that it is impor-
tant to distinguish between descriptive models (used for documentation) and prescrip-
tive models (used for development) to better understand the adoption of modeling in
industry. Last but not least, Kühne [19] highlights the differences between explanatory
and constructive modeling, which give rise to two almost disjoint modeling universes,
each of it based on different, mutually incompatible assumptions, concepts, techniques,
and tools.

5 Conclusion and Next Steps

In this paper, we pointed to the gap between design time and runtime in the current
MDE approaches. We stressed that there are already well-established techniques con-
sidering runtime aspects in the area of PM and that it is beneficial to combine these
approaches. Therefore, we presented a unifying conceptual architecture for execution-
based model profiling, where we combined MDE and PM. We built this approach upon
traditional activities of MDE such as design modeling, code generation, and execution
and demonstrated it for the traffic light system case study. While the first results seem
promising, there are still several open challenges, which we discussed in the threats to
validity subsection of the case study. As next steps we will focus on reproducing our
current results with other case studies, e.g., by considering a domain-specific modeling
language for an elevator system [1].
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