
Local Optimizations in Eclipse QVTc and QVTr
using the Micro-Mapping Model of Computation

Edward D. Willink
Willink Transformations Ltd.

Reading, United Kingdom
Email: ed at willink.me.uk

Abstract—The OMG QVT FAS1 was the result of, perhaps
premature, enthusiasm to standardize the fledging model trans-
formation community. The Eclipse implementation of the QVTo
language prospers but the initial implementations of the declar-
ative QVTr language had poor performance and have faded
away. Perhaps it is time to consign QVTc and QVTr to the
dustbin of misguided initiatives. Alternatively, in this paper we
show how metamodel-driven analysis and a disciplined Model of
Computation support fulfilment of the original aspirations.

Index Terms—Graph Optimization; QVT; QVTc; QVTr;
Micro-Mapping; Model of Computation

I. INTRODUCTION

The OMG QVT specification [6] was planned as the stan-
dard solution to model transformation problems. The Request
for Proposals in 2002 stimulated 8 responses that eventually
coalesced as a merged submission in 2005 for three languages.

The QVTo language provides an imperative style of
transformation. It stimulated two useful implementations,
SmartQVT and Eclipse QVTo.

The QVTr language provides a rich declarative style of
transformation. It stimulated two implementations. However
ModelMorf never progressed beyond beta releases. Medini
QVT had disappointing performance and is not maintained.

The QVTc language provides a much simpler declarative
capability that was intended to provide a common core for
the other languages. However there has never been a QVTc
implementation since the Compuware prototype was not up-
dated to track the evolution of the merged QVT submission.

The Eclipse QVTd project [12] extended and enhanced the
Eclipse OCL [11] framework to provide QVTc and QVTr
editors, but until now provided no execution capability. This
paper introduces the Micro-Mapping and its Model of Com-
putation that underpins the production of efficient schedules
and describes local Micro-Mapping optimizations.

In Section II we briefly describe the Eclipse QVTd archi-
tecture in order to provide the application context for Micro-
Mappings. In Section III we consider how a declarative trans-
formation is executed to motivate the Micro-Mapping Model
of Computation in Section V. A running example is presented
in Section IV and resumed in Section VI. Results from the
example appear in Section VII demonstrating some scalability

1Object Management Group Query/View/Transformation Final Adopted
Specification.

and code generation speed-ups. Section VIII summarizes some
related work and Section IX concludes.

II. PROGRESSIVE TRANSFORMATION ARCHITECTURE

The Eclipse QVTd architecture ‘solves’ the problem of
implementing a triple language specification by introducing
Yet Another Three QVT Languages[8] (QVTu, QVTm and
QVTi). Figure 1 shows that a further QVTs is useful.

Fig. 1. Progressive transformation approach for Declarative QVT.

1) QVTr2QVTc: the incomplete RelToCore transformation
from the QVT specification. This is still a work in progress.

2) QVTc2QVTu: creates a Unidirectional transformation
without the bloat for the unwanted directions.

3) QVTu2QVTm: creates a Minimal transformation free
from the complexities of mapping refinement and composition.

4) QVTm2QVTs: converts to a graphical form suitable for
static Scheduling analyses.

5) QVTs2QVTs: rewrites as Micro-Mappings to avoid live-
lock / deadlock hazards and establishes an efficient Schedule.

6) QVTs2QVTi: serializes to an Imperative form for direct
execution by the QVTi interpreter that extends the OCL Virtual
Machine. Alternatively an extension of the OCL code genera-
tor produces Java code with one outer class per transformation
and a function or inner class per compound Micro-Mapping.
The generated Java code bypasses many of the overheads of
interpreted execution or dynamic EMF.

In this paper we concentrate on the local schedule anal-
yses and optimizations that result in the creation of Micro-
Mappings at the start of the QVTs2QVTs transformation.

III. DECLARATIVE TRANSFORMATION EXECUTION

An imperative transformation author provides the control
strategy that the transformation tooling must use in order
to execute the transformation. The performance is governed
by the quality of the programmed control strategy and the
ability of the transformation tool to implement what it has
been instructed to do. The accuracy is totally dependent on
unchecked assertions that required function inputs are ready.

26



In contrast, a declarative transformation just expresses a
truth that relates the output models to the input models. The
truth can be demonstrated after the transformation completes,
but how the constraints that express the truth are executed
may not be obvious. A declarative transformation therefore
requires less programming2, but declarative transformation
tooling must discover an appropriate control strategy to es-
tablish the required truth. This provides an opportunity to
provide inherently accurate solutions that are faster than those
for imperative transformation languages. But it also requires
substantial compilation effort to avoid poor quality solutions.

A. Commit-Actions, Micro-Mappings and Naive Scheduling

The result of a transformation is one or more intermediate
or output models each of which may be rendered as a UML In-
stance Diagram with Class-typed nodes for the model elements
and Property-typed edges for their relationships. A diagram
may be drawn one node or edge at a time, nodes before
edges. A declarative transformation may therefore execute one
commit action at a time, where a commit action either creates
a node or assigns an edge. The type of object created, or
the value assigned by the commit-action is computed from
zero or more objects or values that must be ready for use.
We therefore wrap the commit-action up inside a primitive
Micro-Mapping to include the input parameters, predicates and
computations that influence the commit-action. A primitive
Micro-Mapping is therefore similar to the mapping or rule
or relation of declarative transformation languages, but is
constrained to a single commit-action. The correct sequence of
primitive Micro-Mapping invocations can be found by a naive
polling scheduler executing each primitive Micro-Mapping
once after checking that all the objects and values that the
Micro-Mapping depends upon are ready and compatible.

Retry loop { – until finished
Invocation loop { – all Micro-Mappings

Object loops { – all object/parameter pairs
Compatibility guard
Repetition guard
Validity guard
Execute Micro-Mapping
Create repetition memento

}
}

}

This is hideously inefficient. The many executions, wrapped
in at least three loops, with guards and mementos contrast
poorly to the simple linear ‘loop’ nests of imperative pro-
grams. Fortunately there are many static analyses that we can
perform on a declarative transformation in conjunction with
its metamodels to tame the naive polling scheduler.

2Declarative transformation authors must learn to express the truth of what
must happen rather than the mechanism by which it is done.

B. Global Micro-Mapping Optimizations

1) Retries: Most retries can be avoided by executing Micro-
Mappings in a sensible order exploiting producer/consumer
relationships between mappings. Where retries are necessary,
they can be a result of useful progress rather than naive polling.

2) Invocations: Dead Micro-Mappings can be eliminated,
but most Micro-Mappings will normally be required. The
invocation loop cannot be eliminated, rather it should be
effectively sequenced.

3) Objects: Considering all permutations of all objects
with respect to all parameters is unnecessary; the metamodel
provides a strong type system that should allow only type
compatible permutations to be considered. In particular a
Micro-Mapping that produces some type can be followed by
a Micro-Mapping that consumes that type.

Once Micro-Mappings are scheduled in a deterministic
order, many of the guards can be optimized away and many
of the invocation mementos eliminated since only a single
invocation is possible.

The above optimizations are global. In this paper we con-
centrate on the utility of Micro-Mappings and local optimiza-
tions that facilitate the overall global optimizations. Global
optimization will be described in another paper.

C. Local Micro-Mapping Optimizations

Permuting candidate objects and parameters can lead to very
poor performance, typically a two parameter quadratic search,
but worse for more parameters. In this paper we will see how
Micro-Mapping analysis in conjunction with the metamodel
relationships enables most Micro-Mappings to be reduced to
a single parameter avoiding the very poor performance.

D. Compound Micro-Mappings

Declarative transformation languages do not require each
commit-action to be separately programmed, rather mappings
(or rules or relations) aggregate one or more commit-actions
as an output object pattern related to an input object pattern.
These patterns impose dependencies on the availability of
source objects, and guard conditions upon their suitability.
In the following example we will see how the failure to
distinguish between primitive and compound Micro-Mappings
causes trouble for some transformation languages and con-
versely how recognizing the distinction enables Eclipse QVTd
to give good performance.

IV. MICRO-MAPPING EXAMPLE

We will consider a very simple example that has some
interesting difficulties. We will transform a model comprising
a DoublyLinkedList that owns a ring of Elements into another
DoublyLinkedList that owns a copied ring of Elements with
the order of elements in the ring reversed. The metamodel
is shown in Figure 2. Since we use models rather than Java
Objects, the complexities of maintaining bidirectional linkages
are subsumed by the metamodel bidirectional relationships.

27



Fig. 2. Example Metamodel - Doubly Linked List.

A. ATL Implementation

The transformation is sufficiently simple to show the full
unidirectional implementation in ATL in Figure 3. The trans-
formation requires two rules. list2list declares the mapping
from the forwardList input to the reverseList output, populat-
ing its name and headElement. element2element populates a
reverseElement from a forwardElement. The target to source
assignment performs the reversal.

Fig. 3. Example transformation in ATL.

The exposition is particularly easy in ATL where the
implicit resolution of the new-headElement from the old-
headElement is done automatically. The commented lines
show where an implicit resolution is performed.

Careful study of the transformation reveals that full execu-
tion of list2list requires that element2element has previously
created the new headElement and that full execution of el-
ement2element requires that list2list has previously created
the new reverseList. Further study reveals that full execu-
tion of element2element requires that another execution of
element2element has created its new source which recurses
to require that yet another execution of element2element has
created the new source’s source. The recursion terminates
with full execution of element2element requiring that ele-
ment2element has already created its reverseElement. These
dependencies are obscure, cyclic and seemingly insoluble.

B. QVTr Implementation

Figure 4 provides the bidirectional QVTr equivalent of
ATL’s unidirectional list2list rule. The asymmetric to/from

patterns are replaced by symmetric forward/reverse patterns.
forwardList.headElement and reverseList.headElement are ex-
plicitly co-ordinated by a when clause rather than syntax sugar.

Fig. 4. Example list2list Mapping in QVTr.

C. QVTs Colored Mapping Instance Diagrams

Once a forward execution direction has been selected, the
Eclipse QVTr/QVTc tooling provides the UML-like QVTs
rendering of the mappings shown in Figures 5 and 6.

Fig. 5. list2list Mapping in QVTs.

Fig. 6. element2element Mapping in QVTs.

Rectangles represent Class instances with an instance name
above a Class name. Rounded rectangles similarly represent
shared DataType values.

Edges show directed Properties with name and cardi-
nality. The left hand edge depicts the navigation con-
straint forwardHead = forwardList.headElement.
Arrows show something-to-one navigation paths.

Colors show the validity of each part of the mapping.
• BLACK - model elements that are constant

28



• BLUE - model elements that form part of the input model
• CYAN - model elements required before execution
• GREEN - model elements created by execution
The diagrams are created automatically; only the layout has

been enhanced manually. On the left hand side BLUE elements
show the input sub-pattern. On the right hand side there is a
corresponding output sub-pattern. QVTc and QVTr differ from
other transformation languages through the use of explicit
model elements to trace the execution of each mapping. There
is therefore a column of trace elements directly connected
to each other and to the side patterns. Since in OCL, which
QVT extends, all unidirectional navigations are bidirectionally
navigable, the trace elements are navigable from the sides and
so left, trace and right are unified in an overall pattern. In
other transformation languages the trace is an implementation
detail requiring irregular language constructs to exploit it.

V. THE MICRO-MAPPING MODEL OF COMPUTATION

Diagrams or rather graphs of nodes and edges provide a
useful way to understand systems and also computations. But
as demonstrated by the Ptolemy group, diagrams only become
really useful once there is a Model of Computation [5] to
define the semantics of information flow along the edges.

A Mapping provides a pattern of constraints that are all
satisfied once the Mapping has been executed. It therefore
defines the overall truth. In QVTs, colors are used to sup-
port intermediate partial truths. The BLACK color identifies
compile-time truth. The BLUE is true after input models are
loaded. The GREEN is true as a consequence of the truth
of BLACK, BLUE and CYAN elements. Partial truths evolve
as successively more BLACK then BLUE then CYAN then
GREEN elements are resolved.

A Mapping involving more than one GREEN element may
not be executable since the multiple GREEN-after-CYAN
constraints in one Mapping may deadlock with respect to an
inverse ordering in another Mapping.

A. Partitioning, Primitive Micro-Mappings

Primitive Micro-Mappings avoid the deadlock hazard by
partitioning the Mapping into multiple primitive Micro-
Mappings each with a single GREEN element. This gives
a very simple execution semantic; nothing happens until all
CYAN elements are available, then execution proceeds un-
eventfully. When partitioning a Mapping into primitive Micro-
Mappings, the chosen GREEN element may depend on other
GREEN elements. These other GREEN elements are recolored
CYAN since they are prerequisites of the chosen GREEN
element. This is rather easy graphically.

B. Local Merging, Compound Micro-Mappings

Partitioning a Mapping such as Figure 5 leads to nine
primitive Micro-Mappings to eliminate the deadlock hazards.
Primitive Micro-Mappings that share the same dependencies
may be merged to form a compound Micro-Mapping without
losing the string properties of a primitive Micro-Mapping.

C. Typed Nodes

Each node is typed by a metamodel Class and has an
instance name distinguishing its role in the overall pattern.

D. Typed Directed Edges

Each edge is typed by a metamodel Property that defines
its name, direction and cardinality, which must be something-
to-one. Consequently whenever a source object exists, a tar-
get object must form part of the final truth. Wherever the
metamodel defines a something-to-one opposite relationship,
the opposite edge is added to the Micro-Mapping. Thus at
the bottom right of Figure 6 both forwardElement.target and
forwardTarget.source are drawn.

E. Inputs and Outputs

The available outputs from the Micro-Mapping are all the
GREEN elements (both nodes and edges). A Micro-Mapping
has no local knowledge of which GREEN nodes or edges
appear in CYAN in another Micro-Mapping.

The potential inputs to the Micro-Mapping are all the
BLUE and CYAN elements. A naive implementation may
therefore need to invoke the Micro-Mapping for all possible
permutations of objects and input nodes. Most invocations will
fail through type or connectivity mismatch of a node or edge.

Partial truths involving non-GREEN elements may be falsi-
fied when further satisfactory elements are not found. A partial
truth involving any GREEN element involves a commit-action;
this may not be falsified.

F. Heads

The heads are the smallest set of input (BLUE or CYAN)
nodes from which all input nodes can be reached by following
directed edges. The heads therefore correspond to the neces-
sary inputs of the Micro-Mapping; all other input elements can
be computed from them. In Figure 6 forwardElement is the
single head. It is drawn with a thick border to emphasize its
importance. We observe that 90% of Micro-Mappings require
only a single head and so are amenable to invocation within
a loop over compatible input objects. This contrasts with a
more naive pattern match that might have attempted a three
dimensional search to locate all the compatible forwardList,
forwardElement and forwardTarget objects. Use of the meta-
model connectivity and cardinality constraints automatically
identifies the efficient common sense solution.

G. Computations

This example involves no guards or complicated OCL
expressions. For more general purposes, the Micro-Mapping
diagram notation is extended with ellipses for iteration or
operation calls and computation edges to pass OCL expression
results. This ensures that the Micro-Mapping captures all of
the declarative mapping. ‘Common subexpression elimina-
tion’ occurs for free. OCL operations such as oclIsKindOf,
oclAsType and includes are converted directly to edges.

29



H. Null, Optional and Collection Nodes

The foregoing description stresses the utility of to-one cardi-
nalities. We can generalize this to support to-zero cardinalities
by specifying that a node is optional. A null Node may be used
to denote the absence of an object. We can also generalize to
support to-many cardinalities treating a Collection of objects
as a single collected object provided the collection is not
dismantled by an OCL computation.

VI. LOCAL OPTIMIZATION

The graphical Micro-Mapping provides a representation that
is much easier to analyze than diverse textual syntaxes. The
Model of Computation provides the power to reason about the
functionality. GREEN elements identify commit-actions that
are performed once the CYAN parts are available to support
execution of the commit-actions. CYAN elements therefore
inhibit execution until corresponding GREEN elements of
other mapping invocations creates them.

It is clear from Figure 5 that list2list has a dependency
on an element2element execution since there is a CYAN
Telement2element. Similarly element2element in Figure 6 has
a dependency on another element2element and a list2list
execution. The invocations of element2element can be seen as
two instances of Telement2element. One in GREEN named
trace represents the successful execution of this invocation.
Another in CYAN named when Telement2element represents
the predicate on successful execution of an element2element
referenced in a when clause.

A. Speculating

Any dependency-driven attempt to execute the Mappings in
Figures 5 and 6 is doomed to fail. list2list cannot execute
until element2element has executed for the headElement.
element2element cannot execute until list2list has executed.
A naive polling scheduler will livelock as it polls in vain
for something to execute. A slightly smarter scheduler will
deadlock once nothing executes. Yet ATL executes this trans-
formation successfully. How? See Section VI-B.

Our earlier discussion argued that execution of primitive
Micro-Mappings with a single commit action is sound and our
example demonstrates that Mappings with multiple commit
actions (GREEN elements) may be unsound. In this example
we have a cyclic dependency that not even primitive Micro-
Mappings can avoid.

Figures 7, 8 and 9 show how a sequence of compound
Micro-Mappings can execute list2list speculatively and so
break the dependency cycle.

1) Speculation Micro-Mapping: The Speculation Micro-
Mapping speculates the creation of the trace object wherever
the easy BLUE input dependencies are satisfied. This specu-
lated trace object is shown In RED since it has been created
without checking its CYAN dependencies.

2) Speculated Micro-Mapping: The Speculated Micro-
Mapping has AMBER dependencies for objects that must be

provided by Speculation Micro-Mappings and CYAN depen-
dencies for everything else that must be available before the
GREEN output-related elements can be created.

Comparing Figure 8 with Figure 5 reveals that a CYAN re-
verseHead node and associated edges have been omitted at the
bottom right. This omission is justified by the observation that
reverseHead is a corollary of the element2element Mapping;
a successful execution of the AMBER element2element is
guaranteed to create the required CYAN element. The GREEN
reverseList at the right of Figure 8 is the corresponding list2list
corollary.

If the missing CYAN element was added to 8 and its
element2element counterpart, the cyclic dependency returns.

3) Edge Micro-Mapping: Once Speculation and Speculated
Micro-Mappings have mediated the solution to the dependency
cycle, zero or more further Edge Micro-Mappings can then
provide the residual GREEN edges once the nodes at their
ends are available.

Fig. 7. list2list speculation compound Micro-Mapping in QVTs.

Fig. 8. list2list speculated compound Micro-Mapping in QVTs.

Fig. 9. list2list reverseHead edges compound Micro-Mapping in QVTs.

4) Failure: The speculation may fail, in which case Figures
8 and 9 do not execute and no output model elements
are created; the failed speculation is only visible as a still-
speculating trace element in the trace model.

30



B. ATL Execution

We can now understand how ATL successfully executes the
example. ATL does not perform a dependency analysis and
so does not detect the difficulty. ATL just executes its rules
in two stages. First all the new objects are created, then all
the inter-object references are populated. ATL has therefore
effectively partitioned the two list2list and element2element
rules into four mini-rules list2list-create + list2list-assign, and
element2element-create + element2element-assign. Executing
the create mini-rules before the assign mini-rules works. This
is similar to the speculation/speculated partitioning above.
However ATL’s partitioning is pragmatic and the successful
execution fortuitous. If a more complex guard invalidates the
premature creation of outputs, ATL is unable to roll-back its
invalid creations.

C. More Model of Computation Facilities

Space permits only a very brief summary of the other
benefits of the analyses facilitated by the Micro-Mapping
Model of Computation.

1) Multiple Heads: Micro-Mappings with multiple heads
require multiple inputs and consequently incur invocation
difficulties and non-linear execution performance. Analysis
of the to-many metamodel relationships allows most multiple
head Micro-Mappings to be realized by a single head Micro-
Mapping with local rather than global loops for the other
heads. This typically gives linear performance with respect
to the output model size. Only genuinely Cartesian problems
need incur Cartesian costs.

2) Global optimizations: The simple relationship between
GREEN creation and CYAN use facilitates powerful global
analysis. Some of these were briefly mentioned in Section
III-B

3) Static Scheduling: We find that most Micro-Mappings
can be statically scheduled and so only a small number incur
dynamic scheduling overheads at run-time.

4) Global Merging: The local merging in Section V-B is
heavily constrained by the requirement for a mutually shared
partial truth. Once a static schedule has been established,
merging can be much more aggressive. Micro-Mappings may
be merged into their invokers. Predicates guaranteed by an
invoker can be pruned from an invoked Micro-Mapping.

5) Incremental Execution: Execution of Micro-Mappings
can be persisted as an evaluation graph comprising

• input nodes for each BLUE input element
• invocation nodes for each Micro-Mapping invocation
• BLUE-BLUE dependency edges between invocation

nodes and input nodes
• CYAN-GREEN dependency edges between consuming

invocation nodes and producing invocation nodes

Each invocation node holds its prevailing GREEN state and
is aware of the nodes that consume it. The graph can be
selectively re-evaluated to propagate BLUE input changes
efficiently.

VII. RESULTS

In Figure 10 we plot3 the performance of the Dou-
blyLinkedListReversal transformation using a variety of trans-
formation engines and a couple of manual implementations4.
The plot demonstrates the scalability and the underlying
tooling efficiency.

Fig. 10. Performance of the Doubly Linked List Reversal transformation.

Between 1000 and 50000 model elements, the top four and
a half lines show superior performance for ATL and EMFTVM
(the improved ATL executor) compared to Eclipse QVTo
and Interpreted QVTc. However for larger models quadratic
performance, probably as a consequence of requiring a linear
search of the trace to resolve output/input correspondences
affects ATL, EMFTVM and QVTo. Interpreted QVTc remains
linear and so at 1000000 model elements, it is 10 times
faster. The performance of Epsilon for large models cannot
be characterized since its half line terminates abruptly; Epsilon
resolves data dependences recursively and so runs out of stack
for lists longer than about 1000 elements.

The lower four lines show direct Java results, the upper
two for Eclipse QVTc and QVTr, and a further two manually
coded reference implementations, one using EMF extensively
as a consequence of a EcoreUtil copy, and another using EMF
sparingly in manual code.

QVTc and QVTr performance is almost identical since both
execute the same schedule for very similar mappings. The
QVTr performance is slightly worse than QVTc since the naive
auto-generated trace is larger; an optimization of the auto-
generated trace model will make QVTr better than QVTc. The
performance almost matches EcoreUtil. Further optimizations
should get much closer to the manual performance. An im-
proved object representation could enable QVTr to outperform
the manual implementation.

(The interpreted QVTc or QVTr performance may improve
quite significantly once some of the static analyses for the
code generated approach are exploited.)

3The plots use no averaging. Single point wobbles may be due to concurrent
activity. Discontinuities may be due to fortuitous cache alignment.

4Model overheads are reduced by Java generated by an EMF genmodel.

31



The results demonstrate that an efficient declarative sched-
ule can be derived automatically for a difficult dependency
problem.

The results also demonstrate, unintentionally, the benefit
of QVTc’ explicit trace model and the consequent linear
performance when an appropriate cache is synthesized for
the unnavigable opposite accesses. The quadratic performance
of ATL, EMFTVM and QVTo highlights an implementation
deficiency that can be remedied at the expense of some extra
working memory. Ensuring that the extra memory cost is
modest and the additional execution time is small, probably
requires similar static compile-time or load-time analyses to
those performed by Eclipse QVTd.

The code and results for this example are available
in the tests/org.eclipse.qvtd.doc.exe2016.tests plugin of the
https://git.eclipse.org/r/mmt/org.eclipse.qvtd GIT repository.
Significant bugs in Eclipse QVTd were fixed to support this
example. These fixes should be available in the Oxygen M2
milestone build in mid September 2016.

VIII. RELATED WORK

Scheduling and particularly static scheduling has been a
rich research topic with provision of optimized schedules
recognized as a computationally hard problem. The many
works of the Ptolemy group [1] that build upon [4] has
been a strong background influence. However the appreciation
that metamodels impose such strong constraints that sensible
schedules can be produced rapidly for declarative transforma-
tions appears to be novel.

The Graph Transformation community has been very active
in providing a rigorous foundation for graph mappings. Sadly
the QVT specification ignored this important work, preferring
instead to define the semantics of the QVTr transformation
language using an incomplete exposition of a transformation
of QVTr written in an untested QVTr to another language
(QVTc) that has at best informal semantics. The utility and
power of the QVTs graphical Micro-Mapping and its Model
of Computation may begin to bridge the gap between these two
communities. The automated coloring in QVTs is inspired by
Henshin’s [2] manual use of colors to denote create/delete/no-
change in endogenous transformations. The reification of the
QVTc traceability element mirrors the evolution operators in
UMLX [7] for heterogeneous transformations.

Active Operations [3] also reify mappings to persist the
state necessary for incremental execution. Micro-Mappings
similarly support incremental execution, but their primary
rationale is to be a deadlock-free unit of computation.

IX. CONCLUSION

We have introduced the Micro-Mapping Model of Computa-
tion and shown how it supports efficient declarative schedules
for Eclipse QVTc and QVTr.

We used the Micro-Mapping Model of Computation to
demonstrate the need for speculative creation of trace objects.

We have shown how a graphical presentation of metamodel
and dependency analyses tames the naive inefficiencies of a
declarative schedule.

We have introduced the first implementation of the QVTc
specification.

We have presented the first results for a QVTr implemen-
tation using a direct code generator.

We have mentioned some future works. Many more opti-
mizations to do.

ACKNOWLEDGMENT

The authors would like to thank Adolfo Sanchez-Barbudo
Herrera, Horacio Hoyos Rodriguez, Dimitris Kolovos and
Richard Paige for helpful discussions about declarative
scheduling approaches. Horacio prepared some of the results
and prototyped some of the scheduler algorithms.

REFERENCES

[1] Bhattacharyya, S., Murthy, P., Lee, E.: Software synthesis from dataflow
graphs, Kluwer Academic Press, Norwell, MA, 1996

[2] Biermann, E., Ermel, C., Schmidt, J., Warning, A.: Visual Modeling of
Controlled EMF Model Transformation using HENSHIN Proceedings of
the Fourth International Workshop on Graph-Based Tools, GraBaTs 2010.

[3] Jouault, F., Beaudoux, O.: On the Use of Active Operations for Incre-
mental Bidirectional Evaluation of OCL 15th International Workshop on
OCL and Textual Modeling, Ottawa, 2015

[4] Lee, E., Messerschmitt, D.: Synchronous data flow, Proceedings of the
IEEE, 1987

[5] Lee, E., Sangiovanni-Vincentelli, A.: Comparing models of computa-
tion, Proceedings of the 1996 IEEE/ACM international conference on
Computer-aided design

[6] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification, Version 1.3. OMG Document Number: ptc/16-06-03, June 2016.

[7] Willink, E: UMLX : A Graphical Transformation Language for
MDA Model Driven Architecture: Foundations and Applications,
MDAFA 2003, Twente, June 2003. http://eclipse.org/gmt/umlx/doc/
MDAFA2003-4/MDAFA2003-4.pdf

[8] Willink, E.: Yet Another Three QVT Languages. ICMT 2013 (2013)
[9] Eclipse ATL Project.

https://projects.eclipse.org/projects/modeling.mmt.atl
[10] Eclipse EMF Project.

https://projects.eclipse.org/projects/modeling.emf.emf
[11] Eclipse OCL Project.

https://projects.eclipse.org/projects/modeling.mdt.ocl
[12] Eclipse QVT Declarative Project.

https://projects.eclipse.org/projects/modeling.mmt.qvtd

32




