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Abstract. In this paper, we present a novel application of a compu-
tational model of word meaning to capture human judgments of the
linguistic properties of metaphoricity, familiarity, and meaningfulness.
We present data gathered from human subjects regarding their ratings
of these properties over a set of word pairs specifically designed to ex-
hibit varying degrees of metaphoricity. We then investigate whether these
properties can be measured in terms of geometric features of a model
of distributional lexical semantics. We compare the performance of two
models, our own Concept Discovery Model which dynamically constructs
context-sensitive subspaces, and a state-of-the-art static distributional
semantic model, and find that our dynamic model performs significantly
better in its measurement of metaphoricity.
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1 Introduction

In this study, we investigate whether computational models of lexical meaning
might help explain human comprehension of metaphors. We examine several
alternative models, based on language statistics in a large general collection of
English, to see if they capture relations between words which correlate with
human judgments of metaphoricity.

Psycholinguistic studies Research on metaphor in human participants has at-
tempted to clarify the mechanisms underlying understanding metaphoric lan-
guage. One of the earliest approaches, the standard pragmatic model, stipulates
that the literal meaning of a metaphoric sentence needs to be rejected before the
figurative meaning is generated [10]. Behavioral studies inspired by this model
have shown that participants do not use more time to comprehend metaphoric
than literal sentences, and that metaphoric meaning is generated in parallel
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with the literal meaning of an utterance [8, 29]. These studies, however, did not
make a distinction between conventional and novel metaphors. Later reports
have shown that novel metaphors do require more processing time than literal
sentences, while conventional metaphor and literal language comprehension take
comparable time [2].

Recently, a number of electrophysiological (EEG) studies investigating meta-
phor comprehension have been reported in which the N400 component, a negative-
going wave observed between 300 and 500ms after the presentation of the critical
stimulus, has received considerable attention. Larger N400 amplitudes have been
observed in the processing of metaphoric as compared to literal sentences, with
no differences in component latency (i.e., the time window within which the ef-
fect is observed) or scalp distribution (i.e., the sites on the scalp over which the
effect is present) (e.g., [2]). This increase in amplitude has been interpreted as
reflecting more activity in memory needed to retrieve the semantic information
necessary for comprehension of metaphoric as compared to literal sentences[16].
At the same time, comparable latency and scalp distribution of the compo-
nent might be indicative of the involvement of similar mechanisms in literal and
metaphoric language comprehension. Interestingly, differences have been found
between conventional and novel metaphors, with the N400 amplitudes for con-
ventional metaphors falling in-between those for novel metaphoric and literal
utterances [2]. This graded effect has not been observed in reaction time stud-
ies, which demonstrates that ERP measures offer greater sensitivity to the time
course of cognitive processes involved in metaphor comprehension. These find-
ings raise important questions concerning the nature of the mechanisms involved
in understanding metaphors.

One of the approaches that has attempted to elucidate metaphor comprehen-
sion mechanisms is the structure mapping model and its descendant, the career
of metaphor model, which stipulate that the same mechanisms are involved in
the comprehension of literal comparisons, similes, and metaphors [5, 30]. Within
this view, comprehending metaphoric sentences, like my mind is a warehouse,
requires a mapping that involves a symmetrical mechanism of alignment of re-
lational commonalities in the source (warehouse) and target (mind), together
with an asymmetrical mechanism of inference projection from the source to
the target. Moreover, the career of metaphor model assumes that while novel
metaphors are understood via comparison, categorization is involved in conven-
tional metaphor understanding. These assumptions have received some support
in ERP studies, which have also shown that a shared mapping process may be
involved in categorization and comparison [9, 17]. Moreover, comparison seems
to facilitate not only novel, but also conventional metaphor comprehension, al-
though this facilitation is observed at later processing stages than in the case of
novel metaphors.

Computational studies Computational approaches to metaphor have generally
focused on a combination of pattern matching and hand coded information pro-
cessing [25]. The KARMA model for metaphor understanding [7], for instance,
attempts to encode environmentally grounded knowledge about action in the
world into a framework of transferable domains. In a similar vein, ATT-Meta
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[3] asks users to provide domain specific knowledge about entities and processes
and then ports this knowledge between different contexts—this context sensitive
aspect of the system in particular aligns with both the approach to theoretical
work on metaphor and to the computational work presented here.

Moving towards data-driven approaches, a model for metaphor comprehen-
sion has been described that employs latent semantic analysis, a statistical tech-
nique for building spaces of word similarity, to the selection of the salient fea-
tures trafficked between a metaphoric source and target [15]. This technique,
along with a similar method involving the selection of transferred features based
on proximity in a semantic space [27], bears comparison to our dynamically con-
textual method as described in Section 3.2: each of these models attempts to
extract particular features of a semantic space in order to capture the semantic
context of a metaphor. A more recent description of a Service-Oriented Architec-
ture [28] discovers properties of source and target by matching patterns within
large-scale web corpora and then looks for properties salient in the source which
can be transferred to the target. Other contemporary approaches have tended
towards the more overtly statistical, with for instance the application of linear
algebraic operations to model the metaphoric composition of vector space type
word representations [11].

The computational component of the work presented here broadly falls within
the paradigm of the distributional hypothesis, which holds that “words that occur
in similar contexts have similar meanings,” [26, p. 148]. The general method-
ology of distributional semantics involves the traversal of large scale textual
corpora in order to build spaces of word-vectors where the proximity of two
vectors reflects the tendency for those two words to be observed co-occurring
with similar terms [6]. Initial approaches to distributional semantics typically
involved building up word representations based on straight-up co-occurrence
counts [24], while more recent methodologies have often incorporated matrix
factorisation techniques to derive dense matrices from co-occurrence statistics
[13] or employed neural network architectures to derive word embeddings from
observations of co-occurrences across iterative traversals of a corpus [4].

In the study presented here, we will in particular be comparing Word2Vec
[21], a neural network driven model for generating word embeddings that has
achieved state-of-the-art results on tests of word similarity and analogy comple-
tion, with our own Concept Discovery Model [19], which deploys a word-counting
approach to distributional semantics to dynamically construct contextualised
subspaces in which conceptual relationships play out as geometric relationships
[20]. We will be examining the ways in which spaces generated by each model
compare with human assessments of the degree of metaphoricity, familiarity,
and meaningfulness in noun-verb word pairings. With this in mind, recent work
using distributional models enriched with information from lexical and associa-
tive knowledge bases to build spaces of word-vectors constructed for detecting
similarity or relatedness should be taken into consideration [14].
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2 Modeling human metaphor judgements

Our objective in this study is to explore the ways in which geometric models
of word meaning can capture the perception of metaphor, and in particular can
measure the degree to which two-word phrases are perceived as being metaphor-
ical. To do so, we compare words’ relations in the geometric model with human
judgments of metaphoricity, via a set of empirically-derived normative data. Note
that while data were collected for three types of norming measures (metaphoric-
ity, meaningfulness, and familiarity), the principal aim of the computational
work is to model the perception of metaphoricity, that is, to discover meaningful
subspaces that reflect the extent to which a two-term expression is perceived as
being metaphorical.

2.1 Materials

The materials were collected for an ERP study, which investigated metaphor
comprehension in bilinguals [12]. Verb-noun word dyads in Polish (native lan-
guage) and English (second language) were used in the ERP experiment. In each
case, the verb was considered the metaphoric source and the noun the target:
so, for example, in the instance of the conventional metaphor “cut pollution”,
some salient property of the action cutting is being transferred to the entity
pollution.

Prior to the ERP experiment, five normative studies were carried out to en-
sure the word pairs fell within the following three categories: novel metaphors
(e.g., to harvest courage), conventional metaphors (e.g., to gather courage), and
literal expressions (e.g., to experience courage). Based on the results of the
normative studies, the final set of 228 English verb-noun word dyads (76 in
each category) was selected for the purpose of the current study. Out of the
five normative studies, four will be reported here. The statistical analyses con-
sisted of mixed-design analyses of variance (ANOVAs), with utterance type as
a within-subject factor and survey block as a between-subject factor. No main
effect of survey block was observed. Significance values for the pairwise compar-
isons were corrected for multiple comparisons using the Bonferroni correction.
When Mauchlys tests showed that the assumption of sphericity was violated, the
Greenhouse-Geisser correction was applied. In such cases, the original degrees of
freedom are reported with the corrected p value. The demographic data for the
participants of the four normative studies are presented in Table 1.

Table 1. Demographic characteristics of participants of the four normative studies,
including the number of participants (number of female participants) and mean age.

Normative study type Number of participants(female) Mean age

Cloze probability 140 (65) 23
Meaningfulness ratings 133 (61) 22
Familiarity ratings 101 (55) 23
Metaphoricity ratings 102 (59) 22
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Cloze probability Because reduced N400 amplitudes have been observed in
relation to expected as compared to unexpected words, a cloze probability test
was performed prior to the ERP study to ensure the second word in a given word
dyad was not highly anticipated by the participants of the ERP experiment. Each
participant of the cloze probability test received the first word of a given word
pair, and was asked to provide the second word, so that the two words would
make a meanigful expression. Due to the length of the test, all word pairs were
divided into four blocks, so that each word was completed by 35 participants. If
a given word pair was observed in the cloze probability test more than 3 times,
the word pair was excluded from the final set and replaced with a new one. This
procedure was repeated until the cloze probability for word pairs in all categories
did not exceed 8%.

Meaningfulness In order to assess the meaningfulness of the stimuli, par-
ticipants were asked to rate how meaningful a given word pair was on a scale
from 1 (totally meaningless) to 7 (totally meaningful). The set of 228 word
dyads was divided into four survey blocks in order to avoid the repetition of
the target word within the same survey. Additionally, 76 meaningless word pairs
were included in this normative study. The results revealed a main effect of
utterance type, [F(3, 387) = 1611.54, p < .001, ε = .799, η2p = .93]. Pairwise
comparisons revealed that literal word pairs were assessed as more meaningful
(M = 5.99, SE = .05) than conventional metaphors (M = 5.17, SE = .06)
(p < .001), and conventional metaphors were assessed as more meaningful than
novel metaphors (M = 4.09, SE = .08)(p < .001).

Familiarity Familiarity of each word pair was assessed in another normative
study. Participants were asked to decide how often they had encountered the
presented word pairs on a scale from 1 (very rarely) to 7 (very frequently). The
set of 228 word dyads was divided into three survey blocks in order to avoid
the repetition of the target word within the same survey. Again, a main effect
of utterance type was found, [F (2, 296) = 470.97, p < .001, ε = .801, η2p = .83].
Pairwise comparisons showed that novel metaphors (M = 2.15, SE = .07) were
rated as less familiar than conventional metaphors (M = 2.97, SE = .08), (p <
.001), with literal expressions being most familiar (M = 3.85, SE = .09), (p <
.001). Furthermore, conventional metaphors were less familiar than literal word
dyads, (p < .001). It is crucial to note that although differences were observed
between categories, all word pairs were relatively unfamiliar. This is visible in the
mean score for literal word pairs, which are most familiar of all three categories,
but at the same time relatively low in familiarity (below 4 on a scale where 6 and
7 represent very familiar items). The reason why familiarity was low in all three
categories is the same as for the cloze probability test, i.e., that we intentionally
excluded highly probable combinations.

Metaphoricity In order to assess the metaphoricity of the word pairs, partic-
ipants were asked to decide how metaphoric a given word dyad was on a scale
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from 1 (very literal) to 7 (very metaphoric). The set of 228 word dyads was
again divided into three survey blocks in order to avoid the repetition of the
target word within the same survey. The results revealed a main effect of utter-
ance type, [F (2, 198) = 588.82, p < .001, ε = .738, η2p = .86]. Pairwise compar-
isons confirmed that novel metaphors (M = 5.00, SE = .06) were rated as more
metaphoric than conventional metaphors (M = 3.98, SE = .06), (p < .001), and
conventional metaphors were rated as more metaphoric than literal utterances
(M = 2.74, SE = .07), (p < .001).

3 Computational Modeling Method

In order to computationally model human judgment of the conceptual features
of word dyads, we construct distributional semantic spaces where the proximity
of word-vectors relates to their semantic similarity, and then explore the geom-
etry of these spaces for ways of mapping relationships between words that are
productive with regard to such conceptual, cognitive phenomena as metaphor.
Specifically, we compare two different distributional semantic models to assess
the difference in performance between a model that might be described as static,
such as the one outlined in Section 3.1, versus one that is contextually dynamic,
as is the intent with our own model as explained in Section 3.2.

For both our static and dynamic models, we train vectors on the English
language version of Wikipedia. For the purpose of capturing word co-occurrences,
we focus only on the descriptive content of Wikipedia pages, ignoring headers,
lists, captions, and the like. Considering only sentences at least five words in
length, we strip the corpus of punctuation, remove articles (the, a, and and),
and remove parenthetical phrases, resulting in an overall corpus of approximately
7.5 million word types and 1.1 billion word tokens. For the construction of both
models, we consider context windows of five words on either side of a target
word, treating sentence endings as contextual boundaries as well. We take the
200,000 most frequently occurring words in the corpus as the vocabulary for
both models, constructing one word-vector for each word in the vocabulary.

As our measure of semantic relatedness between two words, we take the cosine
similarity between their corresponding word-vectors, in line with a number of
other contemporary distributional semantic models [18, 23]. It should be noted
that in the case of a normalised distributional semantic space, such as that
described in Section 3.1, relations based on cosine similarity are equivalent to
those based on Euclidean distance.

3.1 Word2Vec

As our primary point of comparison in this study, we use the Word2Vec distri-
butional semantic model [22]. This model has achieved state of the art results on
analogy completion tasks in particular, and has generally received widespread
attention within the field of computational linguistics. A critical feature of the
model is its deployment of a neural network to build a space of word-vectors. One
result of this process is that the model’s dimensionality cannot be interpreted:
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Word2Vec treats a dimension as an arbitrary handle for pulling word-vectors
into the desired relationship based on observations of co-occurrences in train-
ing data. Therefore, in comparison to our model described in Section 3.2, it is
not possible to project dimensionally contextualized subspaces from a Word2Vec
type model in a direct manner (while perhaps a separate neural network could
be designed and trained specifically to perform this projection, this is beyond
the scope of this paper).

Two different network architectures have been reported in the literature; here,
we employ the Skip-gram architecture, consisting of a two-layer neural network
which learns to predict context terms based on an input word, as this approach
has been reported as performing particularly well on semantically oriented tasks
[21]. The model takes the form of a set of word-vectors arrayed across the surface
of a hypersphere. Here, we build a 300-dimensional space based on 10 passes over
the corpus described above, with a negative sampling rate of 10. To assess the
model’s ability to capture the human metaphoricity judgment data, we then
measure the cosine similarity between the word-vectors for each word in each
word pair from the study described in Section 2.

3.2 Conceptual Discovery Model

We compare the performance of the established Word2Vec semantic model with
the output of a distributional semantic model which dynamically interprets in-
put text to project context-sensitive subspaces from a sparse, high-dimensional
base space. As described in detail elsewhere [1, 19], the Conceptual Discovery
Model builds a base space populated by what might be described as literal sta-
tistical data about word co-occurrences as observed in a large-scale corpus: each
dimension in the space corresponds directly to a co-occurrence term, and no
matrix factorisation or other dimensional reduction technique is applied to this
base space. Rather, each dimension c of a word-vector −→w is populated with a
pointwise mutual information (PMI) score based on this equation, where nw,c

represents the frequency at which word w is observed occurring within 5 words
of word c, nw is the independent frequency of w, nc is the independent frequency
of c, W is the total word count, and a is a smoothing constant:

−→wc = log2

(
nw,c ×W

nw × (nc + a)
+ 1

)
(1)

We build a base space of roughly 7.5 million dimensions, corresponding to
the number of word types in Wikipedia. From this base space, we dynamically
pick 200-dimensional subspaces, specific to each word-pair in the study. Three
different methodologies for projecting subspaces will be discussed below, but
in each case, the input used to determine the projection is simply the pair of
words involved in a potentially metaphoric dyad, and the projection is based on
an analysis of the respective values of these inputs along any given dimension.
The intuition behind this methodology is that subspaces consisting of dimensions
which are mutually salient for both components of a dyad will capture something
of the semantic context in which the candidate metaphor might be meaningful.
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Within these subspaces, as with Word2Vec, we assess the relationship between
the words in a word pair in terms of the cosine similarity between their two
corresponding word-vectors. One of the primary considerations in the application
of this model is therefore the method for selecting these subspaces.

Discovering conceptually relevant spaces We experimented with three dif-
ferent techniques for choosing subspaces from our base space, in each case fo-
cusing on the relationship between the target and source word in each dyad.
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Fig. 1. Here three different types of subspaces are presented, with three expressions
involving the word “pollution” superimposed on each two-dimensional projection: the
literal phrase “cause pollution”, the conventional metaphor “cut pollution”, and the
novel metaphor “pierce pollution”. Angles between the vectors for both words in each
pair are measured for correlation with human judgments of the metaphoricity of each
expression. Angles and vector lengths from the 200 dimensional subspaces we analysed
are preserved in these projections. The word-vector for pollution is the same for all
three versions of the noun-only space, since the other terms have no influence on the
selection of dimensions here.

– Noun-Only Subspaces: the subspace is selected based only on associations
with the target term: we take the 200 dimensions with the highest PMI value
(as expressed in Equation 1) for the target (i.e., noun) in a given dyad.

– Joint Subspaces: selection is based on associations shared by the source
and target terms: we select the 200 dimensions with the highest average PMI
for both target and source terms in each dyad.

– Independent Subspaces: selection is based on independent associations
with the source term and the target term, such that we select the 100 terms
with the highest PMI values for the source term and the target term inde-
pendently, and then merge these two sets of dimensions into a single 200
dimensional space.

An example of how a target and source dyads manifest in these three subspaces
is shown in Fig. 1.
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4 Results and Discussion

For both Word2Vec and CDM, cosine similarity values were computed for each
word pair used in the behavioral study described above. Because the human
ratings are the ground truth in this instance, Cosine Similarity is the dependent
variable in each of the multiple regressions reported below. The three measures
provided by human raters – Metaphoricity, Meaningfulness, and Familiarity –
are the independent variables used in the analyses. The general aim is to identify
which aspects of the word pairs (in terms of perceived metaphoricity, etc) are
captured by cosine similarity in a given space. We also explore which type of
subspace is best able to capture metaphor alone (that is, which space accounts
for the most variability in human responses for metaphoricity).

We first report the results for Word2Vec, which are then used as a baseline
against which to compare the results of our CDM model. The results for CDM
are broken down by the type of underlying subspace.

4.1 Word2Vec results.

The results of the multiple regression analysis for Word2Vec indicated that the
predictors accounted for a significant proportion of the variance in Cosine Simi-
larity scores [R2 = .249, F (3, 224) = 24.81, p < .001]. Metaphoricity significantly
predicted Cosine Similarity scores, [β = −0.25, t(224) = −3.09, p < .01], as did
Familiarity [β = 0.22, t(224) = 2.65, p < .01]. Low values of Metaphoricity
tend to yield high values of Cosine Similarity, and low values of Familiarity tend
to yield low values of Cosine Similarity. Meaningfulness was not a significant
predictor in the regression.

First, these results confirm that Cosine Similarity does, in fact, capture more
information than simply similarity about a given pair of terms: both Metaphoric-
ity and Familiarity help to account for the variance in Cosine Similarity values
for Word2Vec. Second, these results provide a standard by which we are able to
compare the Conceptual Discovery Model’s performance.

4.2 CDM results.

Unlike Word2Vec, the CDM model affords the discovery of different kinds of
geometrically-defined subspaces. The crucial advantage of the CDM model is
its ability to project a context-specific subspace geared towards capturing the
semantics of situations in which a metaphor can be meaningfully applied. As
such, our objective is to compare the performance of Cosine Similarity scores
for detecting properties of metaphors using different techniques for constructing
context-specific subspaces, in particular, the Noun-only, Joint, and Independent
methods described in Section 3.2. The same multiple regression analysis as above
was performed for these three CDM model configurations. Finally, the relation-
ship between Cosine Similarity and Metaphoricity ratings is explored in more
depth for the best performing model.
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Noun-only subspaces and Joint subspaces The regression analysis for the
Noun-only subspaces indicates that the predictors account for a limited propor-
tion of the variance of Cosine Similarity scores, [R2 = .108, F (3, 224) = 9.04, p <
.01]. Metaphoricity significantly predicts Cosine Similarity scores, [β = −0.30,
t(224) = −3.48, p < .01], where higher Metaphoricity ratings are associated with
lower values of cosine similarity. The regression analysis for the Joint subspace
does not yield any significant results, with R2 = .016, F (3, 224) = 1.19, p = n.s.

Given the poor performance of the above models (which is quantified in
the low R2 for all four model configurations) compared with Word2Vec, we
conclude that neither the Noun-only subspace nor the Joint subspace are suitable
for capturing perceived metaphoricity of word pairs. Previous computational
approaches to metaphor generation and interpretation [28, 31] have highlighted
the fact that successful metaphors often result from situation in which the salient
properties of one term (e.g., the target) are distinct from the salient properties
of the other term. Therefore, the results may indicate that these two types of
subspaces do not capture the necessary imbalance of salient properties between
terms necessary to reflect metaphorical language. In other words, the Noun-only
and Joint methods of delineating subspaces do not seem to select dimensions
that are more salient for one term than the other, suggesting that Independent
subspaces may provide a better way of capturing this information.

Independent subspaces The results of the multiple regression analysis for the
Independently-constructed subspaces indicate that Metaphoricity accounts for
a significant proportion of the variance in Cosine Similarity scores [R2 = .271,
F (3, 224) = 27.73, p < .001], and Metaphoricity significantly predicts Cosine
Similarity [β = −0.37, t(224) = −4.72, p < .001].

Of the three multiple regressions reported here, this analysis accounts for the
most variability in cosine similarity values, with an R2 of .271, which is signifi-
cantly higher than the regression for Word2Vec (where the R2 was .249). Note
that, interestingly, Familiarity is not significant in this analysis. The interpreta-
tion of this finding is discussed below in the General Discussion.

To visualize how the relationship between Cosine Similarity and Metaphoric-
ity varies by utterance type (Conventional metaphor, Novel metaphor, and Lit-
eral word pair), a correlation analysis is shown in Fig. 2 for this best-performing
model, with utterance types demarcated. Metaphoricity is inversely correlated
with Cosine Similarity [r = −.50, t = 32.49, p < .001], such that word pairs
rated as highly metaphorical tend to have low Cosine Similarity values. Novel
metaphor word pairs, which participants rated highest for Metaphoricity, gener-
ally have low Cosine Similarity scores. This trend is shared by the Conventional
metaphor word pairs, although the Metaphoricity scores tend to be slightly lower
(this is confirmed by examining the averages of these two utterance types). Fi-
nally, Literal word pairs, which garnered the lowest ratings for Metaphoricity,
tend to have slightly higher Cosine Similarity values overall.

In sum, whereas Cosine Similarity in Word2Vec is correlated with both
Metaphoricity and Familiarity, the flexibility of our CDM model (specifically,
the ability of our model to discover specific, conceptually-relevant spaces) allows
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Fig. 2. Correlation between Cosine Similarity and Metaphoricity, including visualisa-
tion of Pair Types.

us to discover a space in which Cosine Similarity reflects only the metaphorical
aspects of word pairs.

5 General Discussion

The set of results for Word2Vec and CDM offers important insight for the com-
putational simulation of metaphoric language use. Firstly, for both Word2Vec
and the Independent subspaces version of the CDM model, human ratings of
Metaphoricity were able to account for a significant proportion of the variability
in Cosine Similarity scores. Although only 24-27% of the variance was explained,
it is important to consider that utterance type (which significantly influenced
ratings) was not included in the statistical analyses above, because 1) the present
research investigates the extent to which cosine similarity (alone) accounts for
perceived metaphoricity between two terms, and 2) information about utterance
type would not be available when applying our model in other contexts.

The performance of Word2Vec was used as a standard with which to compare
the three variants of our CDM model. Both Familiarity and Metaphoricity were
significant predictors of Cosine Similarity for Word2Vec, but for CDM, we were
able to find a subspace that captures solely the perceived Metaphoricity of word
pairs (because Metaphoricity was the only significant effect in the regression
analysis). Furthermore, this Independent subspaces model performed best out
of all of the models tested here, with an R2 of .271 (while Word2Vec had an
R2 of only .249). Although this is only a modest improvement over Word2Vec,
the difference does suggest that our CDM has a greater capacity to capture
perceived metaphoricity. We therefore conclude that the Independent subspace
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method offers both the most accurate and the most direct model of Metaphoricity
(without confounding effects from Familiarity or Meaningfulness).

It is interesting to consider the comparative performance of the differently-
configured CDM models, and explore why the Independent subspaces technique
results in by far the best subspaces for mapping human judgments of metaphoric-
ity to cosine similarity between word-vectors. In as much as a “property theoretic
view of metaphor” [28, p. 56] has been laid out in computational terms, the ex-
pectation is that a successful computational model of metaphor will capture
the way in which salient properties of a source are mapped to specific instances
of a target. The subspaces generated by our model are intended to represent
a conceptually relevant contextualisation of a lexical space: the dimensions of
these subspaces consist of sets of words which taken independently offer only
anecdotal glimpses into the way language is used, but which collectively can be
understood as a certain way of speaking about a conceptually coherent topic.

So in a metaphorically relevant subspace, we hope to discover a de facto
overlapping of some but not all of the properties of source and target. Rather
than discover spaces where the mutual properties of two conceptual domains are
already to some extent emphasised – as is the case with our Joint subspaces – we
seek spaces where only a degree of overlap between the salient properties of each
conceptual domain can be found, and where precisely this feature of a space is
significant. This explains the efficacy of our Noun-only and, moreover, Indepen-
dent subspaces in mapping human judgments of metaphor. In the case of the
Noun-only subspace, we establish a context emphasizing the salient properties of
the noun; to the extent that a verb expresses a conceptually paradigmatic action
in this context, the cosine similarity between noun and verb word-vectors will
be high, becoming lower as the noun-verb relationship becomes more metaphori-
cal in nature. This phenomenon is considerably more evident in our Independent
subspaces, where cosine similarity shows an inverse correspondence to the salient
properties of each component of the dyad which have been merged into a single
hybrid context.

It is worth noting that distributional semantic models have typically been
applied to tasks involving the identification of word similarity, with the under-
lying intuition regarding these spaces being that similar words occur in similar
contexts. Similarity here must be understood in a different light than the fa-
miliarity inherent in a word pairing: we might expect familiarity to correlate
roughly with a tendency towards juxtaposition, and so a statistical measure
of familiarity might emerge simply from calculating the PMI between two co-
occurring words. Nonetheless, we must also note that words that tend to occur
together will necessarily also tend to occur together in the same context, and
so we might expect familiarity to emerge as a kind of artifact of this tendency
in spaces geared towards similarity. It is therefore not surprising that a fairly
standard distributional semantic model such as Word2Vec captures a degree of
familiarity in measures of cosine similarity.

With this in mind, we might imagine a way forward towards building more
nuanced subspaces particularly geared to prise apart judgments of metaphoricity.
We could, for instance, investigate techniques for building subspaces that focus
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primarily on the source component of a word pair – the verb, in the cases studied
here – in order to draw out the salient properties of the source and then measure
the degree to which these properties are typically transferable to a target. Finally,
in future work we hope to use our findings regarding the geometric properties
of subspaces to discover how people are likely to interpret new word pairs. In
contrast to the research presented above, where human ratings were used to
explain the variance in cosine similarity scores, this future direction will use
cosine similarity scores for novel dyads to predict the degree to which human
participants will perceive a given dyad as being metaphorical.
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