Shared Multi-Space Representation
for Neural-Symbolic Reasoning

Edjard de S. Mota and Yan B. Diniz

Federal University of Amazonas
Institute of Computing
Av. Rodrigo Octéavio, 6200 CEP 69077-000 Manaus, Brasil
{edjard,ybd}@icomp.ufam.edu.br

Abstract. This paper presents a new neural-symbolic reasoning approach based on a shar-
ing of neural multi-space representation for coded fractions of first-order logic. A multi-space
is the union of spaces with different dimensions, each one for a different set of distinct fea-
tures. In our case, we model the distinct aspects of logical formulae as separated spaces
attached with vectors of importance weights of distinct sizes. This representation is our
approach to tackle the neural network’s propositional fixation that has defied the commu-
nity to obtain robust and sound neural-symbolic learning and reasoning, but presenting
practical useful performance. Expecting to achieve better results, we innovated the neuron
structure by allowing one neuron to have more than one output, making it possible to share
influences while propagating them across many neural spaces. Similarity measure between
symbol code indexes defines the neighborhood of a neuron, and learning happens through
unification which propagates the weights. Such propagation represents the substitution of
variables across the clauses involved, reflecting the resolution principle. In this way, the net-
work will learn about patterns of refutation, reducing the search space by identifying a region
containing ground clauses with the same logical importance.

1 Introduction

This paper presents a new neural-symbolic reasoning approach based on neural sharing of multi-
space representation for a coded portion of first-order formulae suitable for machine learning and
neural network methods. The Smarandache multi-space [9] is a union of spaces with different
dimensions, each one representing a different set of distinct features. We distribute across such
a structure the different aspects of logical expressions along with vectors of weights of distinct
sizes. With such a representation one can compute the degree of importance, that is induced by
the resolution principle and unification across distinct dimensions of the logical structure during a
deduction [12], taking such spaces into account.

There have been some efforts to deal with the neural network’s propositional fixation [10],
since it was argued in [4] that for some fragments of first-order logics such a limitation can be
overcome, for instance [1,7]. However, their attempt to provide robust and sound neural-symbolic
learning and reasoning were unsuccessful, as they all lack practical useful performance [3], defying
us to tackle this issue from a different perspective. Looking at Amao! structure sharing-based

L A cognitive agent we are developing at the Intelligent and Autonomous Computing group at IComp in
UFAM

Copyright © 2016 for this paper by its authors. Copying permitted for private and academic purposes.

implementation [13,2], as in most Prolog engines, we felt like transforming them into a structure
sharing of code indexes and use it for neural learning computation.

Automated deduction based on Resolution Principle [12], reduces the search space by trans-
forming the task of proving the validity of a formula to prove that its negation is inconsistent.
The main struggle with doing first-order logic reasoning in connectionist approaches is that the
variable binding of terms may lead to a huge, if not infinite, number of neurons for all elements of
the Herbrand Base. We realized that, instead of doing this, neural reasoning could actually points
to "neural regions" where the negation of a given formula were most likely to be inconsistent.
The difference would be the use of a structured neural network trained to learn about regions of
potential refutations before one is even requested. This is only possible if the network learns from
the initial set of formulae and self-organize in regions of refutation.

In this paper, we introduce the Shared Neural Multi-Space (Shared NeMuS) of coded first-
order expressions (CFOE), a weighted multi-space of CFOEs. The idea is to give a relative degree of
importance for each element within it according to the element attributes and similarity with others
structurally equivalent. Similarity defines the neighborhood of an element and neural learning is
performed by the propagation of weights through unification. Such propagation represents the
substitution of variables across the clauses involved, reflecting resolution principle for first-order
logic[12]. In this way the network will learn about patterns of refutation to reduce the search space
when queries are proposed.

Before describing the formalities of our approach, section 2 shows the fundamental aspects
of the neural shared multi-spaces of CFOEs. In a Shared NeMuS one neuron represents logical
expression and it may have many inputs of importance as well as outputs that influence others.
We formally present the shared NeMuS for CFOEs in section 3 to capture the fundamentals
described. In section 4 we detail the mechanisms to train such a structured neural net based
on an adapted best-match similarity measure for learning patterns of resolution-based deduction.
This innovative way of creating a structured neural network, shared NeMuS, may not fit in the
standards of the machine learning field as discussed in section 5. Nonetheless, such a perspective
can bring new light to the way neural-symbolic learning and reasoning is performed for first-order
logic as we discuss in section 6.

2 Fundamentals of Neural Sharing of Multi-Space

We use Smarandache multi-space [9], which is a union of n spaces Ay, ..., A, in which each A; is the
space of a distinct observed characteristic of the overall space. For each A; there is a different metric
to describe a different side (or objetive), of the "major" side (or objective). In this perspective, first-
order language has atomic constants (of the Herbrand universe), function, predicate with its literal
instances, and clause spaces. Variables are used to refer sets of atomic terms via quantification,
and they belong to the same space of atoms. Figure 1.(a) depicts a multi-space representation of
first-order expressions with n clauses, at space 3, each one defined by a (possibly different) number
of literals at space 2. Each literal is composed of terms either from function space 1 or constant
space 0, or both. Lines from one element covers its compound terms at the space below.

The neural network embedded within such a multi-space is based on a chain of importance
weights, having constant space as the basic level of importance. In their turn, weights of the
constant space induce the importance weights of functions space, and both (constant and function)
spaces induces weights of the predicate space according to literal instances within it. Finally, weights

of predicate space induces clauses importance weights. Figure 1.(b) depicts the neural multi-space
of FOEs, in which weights are the (blue) arrows representing the influence of attributes from one
space on objects at one or two space above them.

Different from traditional Artificial Neural Networks (ANN), one single neuron may have, along
with its inputs (weights of influence), more than one output representing its influence upon more
than one element at a space level above. From Figure 1.(b) constant ag affects literals Iy and
5 of clause C7, and it affects Iy of clause C,,. Note that there are two [; logical objects, but if
both are positive/negative instances of the same predicate, then there should be just one neuron
representation in this case rather then replicating information.

3 3

C'l Cj Cn P vﬁ pj 1Cn
2 = % o 0
ik 1

/1\ l’) 1 /J{l l\}k
A Ay
/\/ \\ \ak /al Taz/ \'3 oo (2,

(a) (b)

S

Fig. 1. (a) A general sharing multi-space of FOEs. (b) A neural sharing multi-space of FOEs

To avoid such repetition, we adopted the sharing of structure idea [13]: every logical neural
element is a pair. The first component is the neuron symbol-attribute pair, formed by symbol code
and a vector of indexes with the space each one belongs to. The second component is a vector
of structured weights pointing to the elements the neuron exerts influence. A structured weight
neuron is, in the case of constant neural space, a triple: the space index (0 up to 3), the code index
of the symbol upon which it influences, and the value of the influence. A triple is used because
atoms at level 0 can be attributes of functions (at level 1) or of a literal (at level 2), e.g. constant
asz, and most import is to tell the influence of a term on a function from a literal, like as does on
function f; as well as on literal [;. For all other spaces, a structured weight is pair because, from
space 1, every neuron will exert influence only on neurons at one level above.

When a shared NeMuS of FOE is generated all weight vectors of its components, at all levels,
are set to zero to represent no previous learning. Then training is divided into two phases. In the
first, every ground clause (clause with no variables), has its weights updated according to the code
of its symbol components. This will create the importance of clauses, expressed in weights. Then,
clauses that had their weights updated will propagate them via similarity of the predicate space,
yielding regions associated to such similarity measure.

In the second phase, every clause with more than one literal and at least one variable, called
deduction rule, is divided into two parts: conclusion and assumptions. For each assumption p of
a deduction rule, with an index code 4,, a sort of neural unification is applied between p and its
complementary literal with same index, if there is any, at the negative region of predicate space.
The premisses with successful unification will update their weights from their components, and
the weights of the conclusion will be updated by the weights of the shared variables. In the case

of functions, not only variable weights are updated, but the composition of predicate and variable
weights will update the weights of functions.

3 NeMuS Framework for Coded First-order Expressions

3.1 Amao Logical Language

Amao? symbolic representation and reasoning component is a clausal-based formal system [14],
in which clauses are divided into two categories. 1) Initial Clauses, say B, are those belonging to
the set of axioms plus the negation of the query; 2) structured Clauses are the ones derived by a
sort of Linear Resolution [12]. Roughly, if S is a sentence or query, in clausal form, and B is the
set of initial clauses, then a deduction of S from B corresponds to derive an empty clause, LI, from
{~ S} UB, or according to Herbrand theorem, to prove that {~ S} UB is unsatisfiable and it yields
the most general unifier for S.

A set of logical formulae is represented by clauses of literals according to the following ter-
minology. Predicates and constant or atomic symbols start with lowercase letters like p,q,r, ...
and a,b,c,..., respectively. Variables start with capital letters, like X,Y,.... A term is either a
variable, a constant symbol or a function f(¢i,...,tx) in which f represents a mapping from terms
t1,...,tx to an "unknown" individual. If p is a symbol representing a predicate relation over the
terms tq, .. . t,, then p(t1,...,t,) is a valid atomic formula. Predicates and functions are compound
symbols with similar structure, but with different logical meaning. A literal is either an atomic
formula, L, or its negation ~ L, and both are said to be complementary to each other. A Deduction
Rule is a disjunction of literals Ly, ..., L,, written as Ly;...;L;. There may exist more than one
positive literal, an so any Horn clause is represented by Head; ~ body, in which literals of the body
are called assumptions.

Ezxample 1. The following is a valid sequence of clauses, each with its unique index code.

L p(a). 3.7(a). 5. ¢(X, f(X)); ~p(X)
2.p(b). 4.7(c). 6.5(X,f(Y)); ~r(X);~p(Y)

3.2 First-Order Expressions as Multi-Spaces

Amao symbolic reasoning component parses and translates a sequence of clauses into an internal
structure of shared of data connected via memory address pointers. This representation is very effi-
cient for dealing with symbols, and the idea of sharing data could be used to create computational
efficient neural representations of clauses. Formal logic languages are structurally well defined, and
such a structure can be thought as a structure of indexes. Instead of training a neural network
with bare data like other approaches, e.g. [7], we decided to use an efficient encoding of shared
structures, and turn them into spaces of index to build up a first-order neuronal multi-space.

For this purpose, Amao makes use of a symbolic hash mapping [8] (SHM), that maps symbolic
objects of the language to a hash key within a finite range. Such a key is not the one used for

2 Amao is the name of a deity that taught people of Camanaos tribe, who lived on the margins of the
Negro River in the Bragzilian part of the Amazon rainforest, the process of making mandioca powder and
beiju biscuit for their diet.

learning because there may occur collisions. For this reason a separate chaining is used to place
keys that collide in a list associated with index, in which every node contains the kind of occurred
symbol. Counters were added so that to every new symbol parsed and "hashed", a code hash
mapping (CHM) function generates the next natural number, starting from 1. In this way, every
single symbol has a unique index, and such an index shall be the one used for neural learning
mechanism. All codes compose what we call coded corpus defined as follows.

Definition 1 (First-order Coded Corpus (FOCC)) Let C, F and P be a finite sets of con-
stants, functions and predicates, respectively. The First-order Coded Corpus is a triple of asso-
ciative hash mappings (fc, fr, fp), such that fo : C - N, fr : F — N and fp : P — N. The
mappings fr and fp take into account the arity of each function and predicate, to generate their
indexes n € N. Fach element of a FOCC triple C shall be identified as Cc, Cp and Cp.

Note that the uniqueness of a mapping is only within a corpus space, i.e. the code "1" will be
the index of the first predicate found, as well as the first atom four in the case of formula p(a) be
the first clause parsed. Figure 2 depicts a possible FOCC generated from clauses of example 1.

Fig. 2. First-order coded corpus of logical symbols from Example 1.

The result of parsing of any logical formula is passed to the corpus generation, which is also fed
with variable indexes according to their clause scope. From a reasoning perspective, variables can
be interpreted as an abstract way to talk about sets of atomic constants. For efficiency sake it is
assumed that both belong to two different regions of the same space: positive region for constant
symbols and negative for variable appearing in all clauses. The scope of each variable is bound via
weights. The following two definitions capture these idea, in which Zy means Z \ {0}.

Definition 2 (Subject Binding) Let k € N be an indez, h € {1,2} , i € Zo and w € R. The
Subject Binding of k is the triple (h,i,w), and it represents that subject with index k influences
object with index i at space h with measure w.

The spaces a subject may influence are the function space (1) and the predicate space (2) (see
Figure 1). As said above variables can be seen as a way to refer to sets of constants, either atoms
or (mostly ground) functions. To be identified outside the subject space a variable shall always be
a negative number, but its influence or subject binding will be accessed by its absolute value from
the variable region of the subject space.

Definition 3 (Neural Subject Multi-Space (NeSuMS)) Let C3 = [z1,...,2n] and Vg =
[y1,---,yn], where each x;(y;) is a vector of subject binding, be two subject binding spaces for
constants and variables, respectively. A Neural Subject Multi-Space is the pair (Cg, V3).

Functions and predicates have a different sort of binding, or importance, along with the infor-
mation about their attributes. As they are both structurally alike, they are treated in the same
way regarding their composition. Their binding is simpler than subject binding because they just
need the logical element index at the space above and the value of such influence. In both cases,
their attributes are uniquely identified by space, either zero (for subject space) or one (for function
space), and the attribute index. In the case of space 0, if attribute index is less than zero this
means that it refers to the variable region.

Definition 4 (Neural Compound Multi-Space (NeComMS)) Let hy,...,hy € {0,1} be space

indezes (for variable and function, i.e. 0 or 1), a1,...,am € Zo, 24 = [(h1,01),-., (Am,am)] a
vector of pairs space-index of compound i, w1, . ..,w, are vectors of Compound Binds w € Zy x R.
Then a Neural Compound Multi-Space, with k compounds, will be [(x,, 07{), s (2 cT;g)], in which

ﬁ
every x may have a different size m as well as every W, andi=1...k.

Predicates, a part from the symbols uniquely indexed in the corpus, have their positive and
negative occurrences, and so there will be two regions for predicate space too. This is one of the
difference between predicates and functions, the other is their logical value. So, the spaces for them
are defined as follows

Definition 5 (Function and Predicate Neural Multi-Spaces) Let Cy , C,f and C, be NeComMS,
such that Cy has index space one (1), and Cf and C, have both index space two(2). Then Cy is
called a Function Neural Multi-Space, and every o appearing in Cy represents a vector of influ-
ences upon elements of space two (2). The pair (C’;r, C,) is called a Predicate Neural Multi-Space
(LMS), in which every o appearing on both represent a vector of influences upon elements of space

three (3) of clause.

Clause spaces are simpler than compound spaces (functions and predicates) because clauses
have "attributes" (their literals), but exert no influence upon spaces above, at least for the scope
out our current research. One may think in terms of non-classical logics as adding other spaces
composed of clauses that influence them. A clause is just an special case of a compound MS in
which every weight vector has just one dimension pair (_,0), where the symbol represents an
anonymous logical object, and 0 represents no known influence to above spaces. The attributes
will represent the literals that compose the clause.

Definition 6 (Neural Multi-Space of Clauses) Let ky,...,kmn € Zg be predicate index codes,
a Neural Clause at clause multi-space is C = ([(2,k1), ..., (2,km)],[(_,0)]). A Neural Multi-Space
of Clauses is simply [C1,...,Cy] in which every C;,i = 1..n, is a neural clause.

Definition 7 (Shared NeMusS of CFOE) Let S, F, P and C be a subject, function, predicate
and clause neuronal multi-spaces. Then, we call a Shared Neural Multi-Space of CFOE to the
ordered space (S, F,P,C)

4 Amao Learning Mechanism

In this section we present shared NeMuS learning process that is based on Kohonen [6] Self-
Organizing Maps (SOM), although any learning mechanism could be used. Because shared NeMuS
is not a standard matrix as in vector-spaces, distance measures are performed in different ways
as it shall be clear in the sequel. The SOM training phase calculates the euclidean distance from
the input vector to every neuron on the map. After that, it searches for the best match unity and
updates the weights of every neuron in the neighborhood. The neighborhood of a single clause is
defined by the index of a predicate. The following equation is used to update the weight vector:

Drny =@ +n(@1— Jw) (1)

in which 7 is the learning rate, 3(,5) and W are a multi-space vectors of weights, and ¢ represents
the epoch of interaction. We adapted the best match unity W pm for our purposes, making it possible
to apply resolution on clauses with complementary literals. In NeMusS this is easily obtained because
the representation of any literal is its predicate index code in the positive region of the predicate
space, and its complementary literal should have same index in the negative region, so the access
is of complexity O(1).

Training steps

This phase starts after the shared NeMuS structure had just been created from the compilation
of the symbolic KB.The input for training is the KB itself and the steps are divided into two
parts: one to deal with ground atomic formulae and the other deals with formulae with variables,
henceforth called deduction rules (defined in section 3.1). Let @ be an arbitrary input where its
weights are represented by a CFOE, and Nxp = (S, F,P,C) a shared NeMusS.

Algorithm 1 Chain training
1: for every clause C € C do
2: if C has just one literal then > (Process of ground atoms.)

3: for k € C a index for predicate codes do

4: U(Hl) = [we, Wi, W1 ..., wim] + N(WF — [Wo, Why W1 eey Win])

5: if C has more than one literal then > (Process of deduction rules.)
6: for k a index for predicate codes € C' do

7 if kK > 0 then

8: for f a function attribute of predicate with code k do

9: for v a variable € f do
10: {we,wi} = {wk,ws} = {Wem,wsm }, for every function, or literal in clause C.
11: else
12: for a variable attribute v from predicate with code k do

13: {we, wi} = {wWsm,wsm }, for every literal € C.

Refutation Pattern Learning Mechanism

The refutation pattern learning mechanism of Amao, called NeMuS NeuraLogic Reasoner, will try
to find one refutation pattern for the input vector, has two important tasks that defines what was
learned.

1. to recognize the refutation for a query (deduction rule inference with no premisses), it just
needs to identify the region within its trained shared NeMuS for which all variable can be
assigned a value.

2. to recognize the refutation for a ground formulae with more than one literal, it just need to
compare the weight values of the input with the region indicated in the training phase, and if
it is different, the answer is false, otherwise true.

Running Experiment on Refutation Pattern

The first test shows classical Modus Ponens reasoning with deduction rules having no restriction
on the number of variables, and also when we have one level function. Using the NeMuS training
on knowledge base presented in Example 1, we obtained these weights:

Symbolic Representation|Neural Representation
1. p(a). (1.44, 0.84, 1.44)
2. p(b). (1.44 0.84, 1.44)
3. r(a). (3.12, 1.68, 2.04)
4. r(c). (3.12, 1.68, 2.04)
5. q(X, £(X)); ~p(X). (1.04, 0.84, 1.44, 0.84, 1.44)
6. s(X, £Y));~r(X); ~p(X).|(1.52, 1.68, 2.04, 0.84, 1.44, 1.68, 2.04, 0.84, 1.44)

Table 1. A NeMusS net trained

There are two important things to consider regarding the test results. The first is the trans-
lation of the symbolic input (query) into a NeMuS format with its vector of input weights Wi
Second, identify the region this NeMuS object is most likely to belong. Furthermore, there must
be a "kind of relation" between the input and the region which best matches it. For this Amao
NeuraLogic reasoner creates a relation between region and the input. On the following table we
present a best match selection from a single proof:

Proof p(X) :
1. Converting to wy {1.44,0.84,0}

The conversion of X is 0, because it is not in p.
2. Search for best match:

Distance p(X) < p(a) 1.44
Distance p(X) <> p(b) 1.44
Distance p(X) <> r(a) 2.20617
Distance p(X) <> r(c) 2.20617
Distance p(X) + ¢(X, f(X)) 2.76261
Distance p(X) < ¢(X, f(Y)) 4.17248

With the information about the distance, Neuralogic reasoner can define a relation between
input and the best match solution. With the shortest distance 1.44, X can assume two values,
{X/a} and {X/b}. Now we are going to force a true and false for proposition, asking for:

Proof s(a, f(c)):
1. Converting to & : {1.68, 0, 0.84, 0,1.68, 2.04, 0.84, 1.44}
From the translation we know that exist r(a) and p(c), and so their values are not 0. However,
as it is not known whether there is a s(a, f(c)), their values for that positions are 0.
2. Search for best match give us: 2.49704.
So now the shared NeMuS learn that 2.49704 is true.

Proof s(c, f(b)):
1. Converting to oy : {1.68, 0, 0.84, 0,1.68, 0, 0.84, 0}

2. Search for best match give us: 3.53135
With this shared NeMuS knows the maximum distance for true is 2.49704 and the answer is
so far, that it’s false.

Ezxample 2. This example shows how first-order inductive learning can be easily dealt when recur-
sive deduction rules are defined. For instance, to find a path on a graph can be simply defined with
this knowledge base.

1. link(a,b). 3. link(c,d). 5. path(XY) ; ~ link(X,Y)
2. link(b,c). 4. link(d,e). 6. path(X,Y) ; ~ link(X,Z);~ path(Z,Y).

After knowledge base be represented it’s possible to do training process:

Symbolic Representation Neural Representation
_Tink(a,b). 3.35, 0.974, 1.4, 1.44)
. link(b,c 3.35, 0.974, 2.28, 2.28)

. link(d,e 3.35, 0.974, 3.96, 3.96)

. path(X, Y);~link(X, Y). 4.89, 0.974, 3.39, 3.39, 0.974, 3.39, 3.39)

. path(X,Y);~link(X, Z);~path(Z, Y).|(4.89, 0.974, 3.39, 3.39, 0.974, 3.39, 3.39, 0.974, 3.39, 3.39)
Table 2. Trained base of path between links problem.

(
) (
. link(c,d). (3.35, 0.974, 3.12, 3.12)
) (
(

DU W N

Notice that there is a recursive rule, when X # Y on clause 5, a value for Z is necessary on 6.
So this search goes on until link(X,Y) is true, or no path from X to Y is found. Our proposition
is to give such a responsibility to NeuraLogic reasoner to perform an iterative process to verify if
there is a path from X to Y by checking region weights. This is described in the following process
to deal with path(X, Y).

For i a weight € P
- If there’s a index CFOE with &; and &y with the same weight, answer true.
- Else

- If there’s a index CFOE with weight W, and &x with the same weight
ﬁx — ﬁl

- Else the answer is false.

For now we can not avoid this iterative process to express a recursive execution, so Neuralogic
reasoner have only to give the right answer when it is asked for a link.

5 Related Work

Developing robust and sound, yet efficient, neural-symbolic learning and reasoning is the ultimate
goal of the marriage between neural networks and symbolic (logical) reasoning[3]. The approach
presented in this paper falls in the category of the ones pursuing for a feasible representation to
overcome John McCarthy’s claim that connectionist systems have propositional fixation[10], but
which provides a feasible implementation to achieve useful performance.

Some recent approaches that sought to overcome this issue have proposed frameworks to allow
expressive representation of complex nesting of symbols in first-order formulae. Komendantskaya
proposed unification neural network [7], to allow first-order connectionist deduction. Practical
results were not proven to be easily achieved for arbitrary first-order formulae having a (potential)
infinite number of symbols. The proposed CFOE representation (section 3.2) has no such limit,
and the sharing of neural CFOE makes the access of any neuron of O(1) complexity in any case,
while saving storage space. This is also an advantage when compared to Pinkas, Lima and Cohen,
[11], who designed pools (tables) for symbols to allow the nesting of bindings and to keep track
of unification. Despite the claimed efficiency when compared to the former, the pools are actually
matrices representing directed acyclic graph. Sets of formulae with different numbers of terms and
literal would generate sparse matrices compromising the complexity of the algorithms for learning
and reasoning.

Guillame-Bert, Broda and Garcez, [5], encoded first-order formulae as vectors of real number
from Cantor set aiming to provide neural-symbolic inductive learning about first-order rules. The
type restriction on terms, but not on sub-terms, weakened the claimed expressive power. The
generation of codes for large sets of first-order sentences may have an impact on the efficiency of
the training process. Besides, our approach does not suffer the type restriction since it is already
based on a multi-space concept where every logical symbol e well placed in its appropriate space.

6 Concluding Remarks

In this paper we presented a novel approach for neural-symbolic learning and reasoning of first-
order logic. Our main purpose was to create a neural model that we could characterize patterns of
proof by refutation, based on the resolution principle with unification for first order inference. There
were two well known challenges to be tackled in or der to achieve this general and ambitious goal:
to overcome the propositional fixation and a neural network architecture that could allow efficient
computations. This means, Amao should perform reasoning faster than symbolic approaches as it
should take advantage of having learned something about the domain.

These challenge were dealt with a little ingenuity of the shared NeMuS (Neural Multi-Space
approach), which combines Smarandache multi-space modeling technique with sharing of structure
concept from Boyer-Moore efficient implementation of Prolog engines. By separating in spaces

constants and variables, functions, predicates (literals) and clauses, we treated each of this logical
objects as a type since each has specific computations for the overall neural computation of learning
and reasoning.

Our main contribution was to show, like in Example 2 (in the end of section 4), that first-
order neural-symbolic reasoning does not need to compute the entire Herbrand base (i.e. the set
of ground atomic formulae). Amao used its trained shared NeMusS to iterate over the regions of
similar ground atomic formulae and efliciently find a refutation or say the query does not follow
from what it has learned. However, some interesting challenges remain to be tackled and we point
some here.

— recursive deduction rules generating a potentially infinite number of ground terms, e.g. s(s(s(...))),
were not tested. Although Amao is not likely to deal with it, another space orthogonal to all
others seem to be one solution to deal with recursive loops on functions.

— a part from induction inference by recursive rules, which other kinds of deduction pattern can
a self-trained NeMuS recognize?

References

1. Bader, S., Hitzler, P., Holldlber, S.: Connectionist model generation: A first-order approach. Neuro-
computing 1(71), 2420-2432 (2008)

2. van Emden, M.H.: An interpreting algorithm for Prolog programs, Ellis Horwood Series Artificial
Intelligence, vol. 1, chap. 2, pp. 93-110. Ellis Horwood (1984)

3. d’A. Garcez, A., Besold, T.R., de Raedt, L., Foldiak, P., Hitzler, P., Icard, T., Kiihnberger, K.U.,
Lamb, L.C., Miikkkulainen, R., Silver, D.L.: Neural-symbolic learning and reasoning: Contributins
and challenges. In: AAAT Spring Symposium on Knowledge Representation and Reasoning: Integrating
Symbolic and Neural Approaches - Dagstuhl (2014)

4. d’Avila Garcez, A.S., Broda, K., Gabbay, D.: Neural-Symbolic Learning Systems: Foundations and
Applications, Perspectives in Neural Computing. Springer-Verlag (2002)

5. Guillame-Bert, M., Broda, K., d’Avila Garcez, A.: First-order logic learning in artificial neural net-
works. In: International Joint Conference on Neural Networks (IJCNN). pp. 1-8. IEEE (2010)

6. Kohonen, T.: Self-Organizing Maps. Springer, 3rd edn. (2001)

7. Komendantskaya, E.: Unification neural networks: unification by error-correction learning. Logic Jour-
nal of the IGPL 19(6), 821-847 (May 2010)

8. Konheim, A.G.: Hashing in Computer Science: Fifty Years of Slicing and Dicing. John Wiley & Sons
(2010)

9. Mao, L.: An introduction to smarandache multi-spaces and mathematical combinatorics. Scientia
Magna 3(1), 54-80 (2007)

10. McMCarthy, J.: Epistemological challenges for connectionism. Behavioral and Brain Sciences 11(1),
11-44 (1988)

11. Pinkas, G., Lima, P., Cohen, S.: Representing, binding, retrieving and unifying relatinal knowledge
using pools of neural binders. Elsevier Biologically Inspired Cognitve Architectures 1(6), 87-95 (2013)

12. Robinson, A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1),
23-42 (1965)

13. R.S. Boyer, J.M.: The sharing of structure in theorem-proving programs. In: Bernadrd Meltzer, D.M.
(ed.) Annual Machine Intelligence. vol. 7, pp. 101-116. Edinburgh University Press (1972)

14. Vieira, N.: Maquinas de Inferéncia para Sistemas Baseados em Conhecimento. Ph.D. thesis, Pontificia
Universidade Catolica do Rio de Janeiro (1987), phD Thesis

