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Abstract 

In this paper, we propose an approach 
for doing Gene Ontology (GO) 
annotation on full-text biomedical 
articles.  This system explores the word 
proximity relationship between genes 
and GO terms.  We associate genes and 
GO terms by considering the density 
function between gene-GO pairs in a 
paragraph.  Different density models 
are built and several evaluation criteria 
are employed to assess the effects of the 
proposed methods.  In the best case, we 
got a precision of < 88% and a recall of 
< 12%. 

1 Introduction 

A large amount of biological and medical data is 
stored in various databases.  How to integrate 
the information of interesting genes scattered 
around different databases is an important 
research issue.  Gene Ontology (GO) 
(Ashburner et al., 2000; The Gene Ontology 
Consortium, 2001; Ashburner and Lewis, 2002) 
is one of the databases that focus on providing 
standard vocabularies of gene products in 
different databases.  In GO, there are three 
kinds of structured controlled vocabularies 
(sub-ontologies) to describe three semantic types 
of concepts, including molecular function, 
biological process and cellular component.  
The sub-ontology represents different categories 
of genomic characteristics which are described 
by GO terms.  Each GO term is associated with 
a "GO ID".  For example, a GO term 
"biological_process" has the "GO ID" of 
"GO:0008150".  Several databases (e.g., SGD1, 
Flybase2 and MGI3) that belong to different 
model organism databases annotate their gene 
products with GO terms, and provide references 
as well as indicate what kind of evidences is 
available to support the annotations.  But the 
                                                 
1 http://www.yeastgenome.org/ 
2 http://flybase.bio.indiana.edu/ 
3 http://www.informatics.jax.org/ 

annotation process requires curators to look 
through articles.  Methods for speeding up or 
automating the annotation process to meet the 
large volume of literature are thus worthy of 
investigation. 

Because of the importance of automatic 
annotation of GO terms, there were some 
competitions on GO annotations recently.  For 
example, TREC 2004 and TREC 2005 
Genomics Track organized GO categorization 
tasks.4  The former simplified GO annotation 
(i.e., not to annotate the precise GO terms) to the 
task of assigning one or more GO main 
categories ("biological process", "cellular 
component" and "molecular function") to 
articles, while the latter included three more 
triage topics.  The increase in the number of 
participants at Genomics Track shows that GO 
annotation problems attracted a lot of attention. 

Several attempts have focused on GO 
annotation.  The Gene Ontology Annotation 
(GOA) project (Camon et al., 2003) developed 
mappings between protein domains and GO 
terms, and between SWISS-PROT (Boeckmann 
et al., 2003) keywords and GO terms.  The 
sequence can be automatically labeled with 
certain GO terms after it has been annotated 
with a SWISS-PROT keyword.  Joslyn et al. 
(2004) developed the Gene Ontology 
Categorizer (GOC) to summarize or categorize a 
list of genes of interest.  Their evaluation 
criteria were different from precision/recall 
measures.  Perez et al. (2004) proposed a 
method for establishing mappings between GO 
and terms from the MEDLINE database of 
scientific literature, with a recall of 8% and a 
precision of 67%.  Hou et al. (2005) modeled 
GO annotation as relevance detection and 
showed 78% recall rates and 66% precision rates 
at distance 12.  Some researchers (Ray and 
Craven, 2005; Verspoor et al., 2005) tried to 
expand the GO terms by finding related words.  
These approaches slightly improved recall or 
coverage rates. 

                                                 
4 http://ir.ohsu.edu/genomics 



Most of the previous works used information 
extracted from the title, abstract and MeSH 
terms only.  Obviously, full-text articles contain 
more information than abstracts, but they also 
introduce more noises.  This is a challenge we 
must face when doing GO annotation on 
full-text articles.  One important feature we can 
extract is the word proximity relationship 
between genes and GO terms.  The postulation 
is: if only one gene and GO terms appear in the 
same paragraph, they are considered to be 
associated to each other.  If more than one gene 
is found, the gene with closer proximity to GO 
terms is preferred.  Consider the GO term 
"cytoplasm" (GO:0005737) in the literature with 
PMID 10037727 as follows: 

 
… There was a strong cross-reaction of the 
anti-<GENE:trr2>Trr2</GENE> antibody 
reacted with a 36-kDa protein in the total cell 
homogenates and cytosolic fractions of both 
strains that is probably due to the presence of 
<GO:0005737>cytoplasmic</GO> 
<GENE:trr1>Trr1</GENE>, which is 84% 
identical to <GENE:trr2>Trr2 </GENE>. 
 

There are two genes and one GO with three 
gene-GO_term occurrences appearing in the 
above paragraph.  The nearest gene to GO term 
"cytoplasm" is "Trr1" which is annotated with 
"cytoplasm" in SGD (Saccharomyces Genome 
Database) (Ball et al., 2000) while "Trr2" is 
farther, and "Trr2" is not annotated with 
"cytoplasm".  It shows that the postulation of 
associating GO terms with the nearest gene may 
be reasonable. 

To describe the relationship between PMID, 
GO terms and genes, we use a 3-tuple 
representation.  For example, the yeast 
"15S_RRNA" in SGD is annotated with GO 
terms "structural constituent of ribosome" 
(GO:0005763), "protein biosynthesis" 
(GO:0003735), "ribosome assembly" 
(GO:0006412) and "mitochondrial small 
ribosomal subunit" (GO:0042255). The 
annotations are referenced to documents with 
PMID 6261980, 6280192, 2167435 and 
6261980, respectively.  In our study, we 
represent this curation as a triple of <PMID, GO 
ID, GENE> where "PMID" represents PubMed 
identifier, "GO ID" represents GO category ID, 
and "GENE" represents the gene name.  In the 
above example, we get four 3-tuples for the 
yeast "15S_RRNA", i.e., <6261980, 0005763, 
15S_RRNA>, <6280192, 0003735, 
15S_RRNA>, <2167435, 0006412, 

15S_RRNA>, and <6261980, 0042255, 
15S_RRNA>. 

The rest of this paper is organized as follows.  
Section 2 sketches an overview of the system 
architecture.  Section 3 depicts how the 
experimental corpus is built.  The details of the 
proposed methods are presented in Section 4.  
The experimental results are shown and 
discussed in Section 5.  We also introduce the 
evaluation metrics in this section.  Finally, we 
make conclusions and present some further 
work. 

2 System Overview 

Figure 1 shows the overall architecture of the 
proposed system.  First, we preprocess each 
full-text article in the corpus, which involves (1) 
gene name recognition for tagging the gene 
names, (2) stop-word removal for filtering the 
stop-words, (3) morphological normalization for 
getting the stems of verbs and nouns, and (4) 
GO terms tagging for adding GO ID tags to GO 
terms.  The order of the preprocessing is 
reasonable.  BioTagger is applied first because 
some gene names contain stop-words and 
stemming may influence the recognition of gene 
names.  GO term tagging is applied last 
because we also apply stop-word removal and a 
stemmer to GO terms.  We make use of some 
biomedical domain specific resources (i.e., 
BioTagger 5  and Gene Ontology) and some 
natural language processing resources (i.e., a 
stop-word list and Porter’s stemmer 6 ) to 
preprocess the corpus.  After that, we get a set 
of articles with tagged gene name and tagged 
GO terms.  Then, an algorithm based on word 
proximity relationship annotates genes with GO 
terms.  Finally, a 3-tuple of <PMID, GO ID, 
GENE>, which specifies a gene GENE is 
annotated with some GO term in a biomedical 
article PMID, is reported. 

3 Corpus Construction 

To construct an evaluation corpus, we first 
downloaded all the GO annotation files from the 
GO website.7  For each entry in the annotation 
files, we searched for its corresponding 
biomedical article using Entrez PubMed.8  We 
downloaded the free online full-text articles if 

                                                 
5 http://www.seas.upenn.edu/~ryantm/software/BioTagger/ 
6 http://www.tartarus.org/~martin/PorterStemmer/ 
7 http://www.geneontology.org/GO.current.annotations.shtml 
8 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 



they exist.  We were able to retrieve 10,054 
full-text articles. 

 
Because of the complications with gene name 

synonyms, we did not use all 10,054 articles.  It 
is common for a gene to have multiple names, so 
a gene’s name in the GO annotation file may be 
different from its name in a biomedical article.  
As the focus of this study is not to recognize all 
the different names of a gene, we decided to 
filter out the articles which do not contain the 
gene names as specified in the GO annotation 
file.  This is done by examining each article 
and keeping the article if at least one entry in the 
GO annotation file referring to the article also 

refers to a gene that appears in the article.  
After filtering is done, we were left with 4,479 
articles.  We also removed entries in the GO 
annotation files which either do not refer to one 
of these 4,479 articles, or do not refer to a gene 
name that appears in one of these 4,479 articles.  
In summary, our final corpus consists of 4,479 
full-text biomedical articles, which contain a 
total of 15,566 annotations. 

4 Methods 

Our annotation procedure for each article 
consists of (1) gene name tagging, (2) GO term 
tagging, and (3) GO term to gene name 
association.  To illustrate our annotation 
procedure, we give an example of a paragraph in 
the article with PMID 10198058.  The example 
is shown in Figure 2. 

4.1 Gene Name Tagging 

We used BioTagger (Liu et al., 2004) to identify 
all appearances of gene names in an article. 
BioTagger is a biological entity tagging system 
capable of recognizing gene names, genomic 
variations in cancers and malignancy types in 
cancers.  BioTagger has a precision of 77% and 
a recall of 96% for the yeast.  Figure 3 shows 
the tagging result of the paragraph in Figure 2. 

4.2 GO Term Tagging 

We used word matching to identify GO terms.  
In the beginning, we used PubMed’s stop-word 
list to remove all the stop-words from every GO 
term.9  We then stemmed the GO terms with 
Porter’s stemmer (Porter, 1980).  At the end of 
these steps, we ended up with a list of processed 
GO terms which contain stemmed words and no 
stop-word. 

When tagging GO terms, we treated each 
paragraph of an article as an independent unit.  
For each paragraph, we went through the list of 
the processed GO terms to check whether the 
paragraph contains all the words (named 
GO-component in this paper) of any particular 
GO term.  If the paragraph did, we considered 
the paragraph to contain an instance of that 
particular GO term.  The GO-components did 
not have to appear next to each other or in any 
particular order in the paragraph.  We labeled 
all the appearances of GO-components in the 
paragraph with the GO term’s GO ID.  In brief, 
                                                 
9 
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubme
d.table.pubmedhelp.T38 
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Figure 4. Example of GO Term Tagging* 
*The upper part is the result of GO term tagging.  The lower part lists the GO terms.  A word may be tagged 

with more than one GO ID when it is a GO-component of more than one GO term.  For example, bud. 

GO:0005935 : bud neck    GO:0007114 : cell budding

The <GO:0005935|GO:0007114>Bud</GO> <GO:0005935>Neck</GO> Localization of <GENE>Yck2</GENE> 
Begins as a Ring at the End of Mitosis and Becomes a Patch under the Septum As mentioned previously, 
<GO:0005935|GO:0007114>bud</GO> and mother <GO:0007114>cell</GO> membranes of all large-budded 
<GO:0007114>cells</GO> with two DAPI-staining regions are equally fluorescent, but a bright ring or thin bright bar 
is often visible at the <GO:0005935|GO:0007114>bud</GO> <GO:0005935>neck</GO> (Figure 2 , F-H). The 
observation of a septum by Nomarski optics that lies above the bright bar (as shown for a diploid 
<GO:0007114>cell</GO> in Figure 6 B , bottom panel) supports the idea that <GENE >GFP-Yck2p</GENE> 
becomes enriched in the membrane that underlies the growing septum. This change in Yck2p distribution could also 
parallel the timing of a major change in <GENE>actin</GENE> cytoskeletal organization (Adams and Pringle, 1984; 
Kilmartin and Adams, 1984; Botstein et al., 1997). Before <GENE>actin</GENE> cytokinesis, actin becomes 
concentrated in a contractile ring at the <GO:0005935|GO:0007114>bud</GO> <GO:0005935>neck</GO> (Epp and 
Chant, 1997; Bi et al., 1998 ; Lippincott and Li, 1998). As cytokinesis and secretion of new <GO:0007114>cell</GO> 
wall material to the <GO:0005935>neck</GO> region occur, the cortical actin becomes distributed in patches 
underlying mother and <GO:0005935|GO:0007114>bud</GO> sides of the division site. 

Figure 3. Example of Gene Name Tagging

The Bud Neck Localization of <GENE>Yck2</GENE> Begins as a Ring at the End of Mitosis and Becomes a Patch 
under the Septum As mentioned previously, bud and mother cell membranes of all large-budded cells with two 
DAPI-staining regions are equally fluorescent, but a bright ring or thin bright bar is often visible at the bud neck 
(Figure 2, F-H). The observation of a septum by Nomarski optics that lies above the bright bar (as shown for a diploid 
cell in Figure 6 B, bottom panel) supports the idea that <GENE >GFP-Yck2p</GENE> becomes enriched in the 
membrane that underlies the growing septum. This change in Yck2p distribution could also parallel the timing of a 
major change in <GENE>actin</GENE> cytoskeletal organization (Adams and Pringle, 1984; Kilmartin and Adams, 
1984; Botstein et al., 1997). Before cytokinesis, <GENE>actin</GENE> becomes concentrated in a contractile ring at 
the bud neck (Epp and Chant, 1997; Bi et al., 1998; Lippincott and Li, 1998). As cytokinesis and secretion of new cell 
wall material to the neck region occur, the cortical actin becomes distributed in patches underlying mother and bud 
sides of the division site. 

The Bud Neck Localization of Yck2 Begins as a Ring at the End of Mitosis and Becomes a Patch under the Septum As 
mentioned previously, bud and mother cell membranes of all large-budded cells with two DAPI-staining regions are 
equally fluorescent, but a bright ring or thin bright bar is often visible at the bud neck (Figure 2, F-H). The observation 
of a septum by Nomarski optics that lies above the bright bar (as shown for a diploid cell in Figure 6 B, bottom panel) 
supports the idea that GFP-Yck2p becomes enriched in the membrane that underlies the growing septum. This change 
in Yck2p distribution could also parallel the timing of a major change in actin cytoskeletal organization (Adams and 
Pringle, 1984; Kilmartin and Adams, 1984; Botstein et al., 1997). Before cytokinesis, actin becomes concentrated in a 
contractile ring at the bud neck (Epp and Chant, 1997; Bi et al., 1998; Lippincott and Li, 1998). As cytokinesis and 
secretion of new cell wall material to the neck region occur, the cortical actin becomes distributed in patches 
underlying mother and bud sides of the division site. 

Figure 2. Untagged Paragraph with PMID 10198058

------------------∆----------------------------------------------------------------------------------
------------------------------------------●----------∆----------------------------------------------
------------------------------------∆----------------------------------------------------------------
--------------------------------------------------------------------------------------------○--------
------------------------------------------------------------------∆----------------------------------
∆: a GO component              ●: a gene, g1              ○: a gene, g2 

Figure 5. Word Proximity Relationship between Genes and GO-components 



a GO-component is any word in a GO term.  
GO-components are annotated in the text.  
Since GO-components can be part of different 
GO terms, each annotation in the text can refer 
to different GO terms.  Figure 4 shows the 
tagging result of two distinct GO terms.  The 
matching words with GO term "bud neck" 
(GO:0005935) are in boldface. 

4.3 GO to Gene Association 

Figure 5 sketches the basic idea of our 
GO-to-Gene association algorithm.  In Figure 5, 
there are two genes, g1 and g2, and four 
GO-components that may be the same or 
different in a paragraph.  Without loss of 
generality, we assume there is only one GO term 
in this paragraph.  There is a link between each 
gene and each GO-component, and it represents 
the word proximity relationship.  We calculate 
the association scores between them.  On the 
one hand, as we mentioned before, the gene with 
the closest proximity to the GO term should be 
associated to the GO term.  In other words, if 
the distance between a gene and a 
GO-component is shorter, the score is higher.  
On the other hand, if a GO-component is more 
important, the score is higher.  This model is 
like a density model: the gene with the highest 
density (i.e., most tightly surrounded by 
GO-components) will be selected.  To explore 
the effects between distance and the 
GO-component’s importance, we designed two 
experiments, Density Models 1 and 2, which are 
explained in Section 4.3.1 and 4.3.2, 
respectively. 

4.3.1 Density Model 1 

For each unique GO term appearing in a 
paragraph, we associated exactly one gene with 
it.  First, we explore the effect of distance 
between GO-components and genes.  The 
GO-to-Gene association algorithm is stated 
informally as follows. 
 

For each occurrence of a gene in the paragraph, 
we compute the distance between the gene 
occurrence and GO-component.  The shorter 
the distance is, the higher the score is.  After 
that, we average the scores of the gene and 
each GO-component.  Then we average the 
scores for all the gene’s occurrences.  The 
gene with the highest score is associated with 
the GO term. 
 
To describe the above algorithm more 

formally, we define the following symbols. 

Gi: the i-th gene occurrence in a given 
paragraph, 
Tj : the GO term with the j-th unique GO ID, 
Tj,k : the k-th occurrence of a GO term Tj’s 
GO-component in a given paragraph, 

kji TGw
,, : total number of words between gene Gi 

and GO-component Tj,k, and 
cj : total occurrences of Tj’s GO-components in a 
given paragraph. 

 
Consider a paragraph with n genes in an order 

of G1, G2, …, Gn, where Gi and Gj may be the 
same or different gene names.  Then, the score 

between Gi and Tj is ∑
=

=
j

kji

ji

c

k TGj
TG wc

s
1 ,

,

,

11 . 

For a certain GO term Tj, the average score of 
all genes’ occurrences identifying the same gene 

Gi is ∑
=

=
m

l
TGTG jliji

s
m

savg
1

,,
1)( , for all ii GG

l
=  

and there are m occurrences with the same name 
Gi.  Finally, a gene Gp with the highest score of 

)( , jp TGsavg  will be associated with Tj.  In other 

words, Gp and Tj make the most preferred 
association. 

We apply our algorithm to the example in 
Figure 4.  Note that the target GO term T1 is 
"bud neck" where the GO-components "bud" 
and "neck" are in boldface.  First of all, there is 
a single occurrence of gene "Yck2", a single 
occurrence of gene "GFP-Yck2p" and two 
occurrences of gene "actin".  G1, "Yck2", has 
the distances of 3, 2, 19, 48, 49, 136, 137, 161, 
174, to the nine occurrences of T1’s 
GO-components.  The association score 
between G1 and T1 is: 

).
174

1
161

1
137

1
136

1
49
1

48
1

19
1

2
1

3
1(

9
1

11 , ++++++++=TGs   

Since there is only one occurrence for gene 
"Yck2", we obtain 

1111 ,, )( TGTG ssavg = .  We 
compute 

12 ,TGs , 
13 ,TGs and 

14 ,TGs  in a similar way 
where G2="GFP-Yck2p" and G3=G4="actin".  
Moreover, the average scores of each gene are 

1212 ,, )( TGTG ssavg = , and 
)()()(

14131413 ,,2
1

,, TGTGTGTG sssavgsavg +== .  The 
result suggests that the gene "Yck2" should be 
annotated with the GO term "bud neck" and this 
is indeed a correct annotation according to the 
SGD database.  For T2 "cell budding", we 
calculate )(

21,TGsavg , )(
22 ,TGsavg , )(

23 ,TGsavg  



and )(
24 ,TGsavg  first, and then assign it to the 

gene of the highest average score. 

4.3.2 Density Model 2 

In Density Model 1, each GO component has the 
same weight.  The next model considers the 
weight of individual components of GO terms.  
We use tf-idf (term frequency and inverse 
document frequency) values to represent the 
importance of a GO-component, and propose 
Density Model 2.  The second association 
algorithm is similar to Density Model 1, but 
each GO-component is multiplied by its tf-idf 
weight. 

We formally explain the association algorithm 
of Density Model 2 as follows.  We use the 
same symbols as Section 4.3.1.  Besides, we 
define two more symbols. 

 

kjTweight
,

: the tf-idf value of Tj,k in GO and 

jk
jkT n

Ntfweight
kj 2log

,
⋅= .  Where  

tfjk = frequency of the GO-component Tj,k in Tj, 
N = number of GO terms in the GO ontology, 
and 
njk = number of GO terms where GO-component 
Tj,k occurs at least once. 

 
Then, the score between Gi and Tj with tf-idf 

weights is ∑
=

=
j

kji

kj

ji

c

k TG

T

j
TG w

weight
c

s
1 ,

,

,

,1ˆ . The formula 

to compute the average of all genes’ occurrences 
identifying the same gene Gi, )ˆ( , ji TGsavg , is the 

same as before except 
ji TGs ,  is replaced with 

ji TGs ,ˆ , so that  

∑
=

=
m

l
TGTG jliji

s
m

savg
1

,, ˆ1)ˆ(  for all ii GG
l
=  and 

there are m occurrences with the same name Gi.  
Finally, a gene Gp with the highest value of 

)ˆ( , jp TGsavg  will be associated with Tj. 

We apply this algorithm to the example in 
Figure 4 again.  Suppose the weights of "bud" 
and "neck" are w1 and w2.  The score 
considering tf-idf values between G1 and T1 is  

)
17416113713649481923

(
9
1ˆ 122121121

, 11

wwwwwwwwws TG ++++++++= .  

And )ˆ(
11,TGsavg  is equal to 

11,ˆ TGs .  We then 
compute the values of )ˆ(

12 ,TGsavg , )ˆ(
13 ,TGsavg , 

and )ˆ(
14 ,TGsavg  in a similar way.  At last, we 

select the gene with the highest score.  The 
association between T2 "cell budding" and a 
gene is made in a similar way. 

5 Experiment Results 
5.1 Evaluation Metrics 

We use the standard precision and recall 
evaluation measures.  Precision and recall are 
defined as follows. 
 

Precision =
FPTP

TP
+

, and Recall =
FNTP

TP
+

 

 
where TP is the number of true positives, FP is 
the number of false positives, and FN is the 
number of false negatives.  In this experiment, 
true positives are the correct GO annotations 
proposed by our system.  False positives are the 
incorrect GO annotations proposed by our 
system.  False negatives are GO annotations in 
the answer key which our system did not 
propose. 

However, the standard precision measurement 
is not representative of the performance of the 
system because the answer key is incomplete.  
The GO annotation files provided by the GO 
website do not contain every single correct GO 
annotation for all of the 4,479 articles in our 
corpus.  This is because the GO website obtains 
its GO annotation files from different databases 
and these databases often specialize in different 
areas.  For example, WormBase, one of the 
databases that the GO website gets its GO 
annotations from, focuses on Caenorhabditis 
elegans genes and gene products.10  Therefore, 
annotations provided by WormBase may miss 
non-Caenorhabditis elegans genes.  To account 
for this, we also provide an alternative precision 
measurement which assumes that a list of genes 
of interest for each article is given.  This 
precision measurement ignores the proposed GO 
annotations which do not refer to one of the 
genes in the genes-of-interest list.  For each 
article, we define its genes-of-interest list to be 
all the genes mentioned in the answer key’s GO 
annotations which refer to that particular article.  
We call this precision measurement "Known 
Gene Precision" in Section 5.2.  In a similar 
vein, we also define two other precision 
measurements, where one assumes that a list of 
GO terms of interest is given, and the other 
assumes that both a list of GO terms of interest 
and a list of genes of interest are given.  The 
                                                 
10 http://www.wormbase.org/ 



 
 TP FP FN Recall Precision Known 

Gene 
Precision 

Known GO 
Precision 

Known 
GO-Gene 
Precision 

Baseline 3,826 10,872,725 11,015 25.78% 0.04% 0.87% 3.37% 81.80% 
System GO 1,631 1,521,440 13,210 10.99% 0.11% 1.37% 7.69% 87.08% 
System Gene 469 442,974 14,372 03.16% 0.11% 1.41% 7.62% 84.77% 
System 
GO/Gene 

318 234,872 14,523 02.14% 0.14% 1.55% 8.98% 87.15% 

Table 1. The Experimental Results of Density Model 1 

 TP FP FN Recall Precision Known 
Gene 

Precision 

Known GO 
Precision 

Known 
GO-Gene 
Precision 

Baseline 3,826 10,872,725 11,015 25.78% 0.04% 0.87% 3.37% 81.80% 
System GO 1,645 1,523,262 13,196 11.08% 0.11% 1.37% 7.75% 86.99% 
System Gene 600 449,399 14,241 4.04% 0.13% 1.74% 7.72% 85.59% 
System 
GO/Gene 

385 237,605 14,456 2.59% 0.16% 1.83% 9.14% 87.73% 

Table 2. The Experimental Results of Density Model 2 

former will be named as "Known GO Precision" 
and the latter will be named as "Known 
GO-Gene Precision" in the following section. 

5.2 Results and Discussion 

The TP (true positive), FP (false positive), FN 
(false negative) values of Density Models 1 and 
2 are shown in the left part of Tables 1 and 2, 
respectively.  There is no TN (true negative) 
value, because the answer key does not contain 
false instances. 

For the baseline, we proposed every single 
pair of GO term and gene names appearing in 
the same paragraph.  The baseline provides an 
upper bound for the recall value.  The "System 
GO" row shows the performance of our system 
as described in Section 4.3.  For the "System 
Gene" experiment, we assigned one GO term to 
every gene, instead of the other way around.  
The same density-based method was used, 
except that the role of genes and 
GO-components were switched.  That is, for 
each unique gene appearing in a paragraph, we 
associated exactly one GO term with it.  For 
the "System GO/Gene" experiment, we proposed 
only the GO annotations that appear in both 
"System GO" and "System Gene" experiments.  
In other words, the set of GO annotations 
proposed in the "System GO/Gene" experiment 
is the intersection of the sets of annotations 
proposed in the "System GO" and "System 
Gene" experiments. 

For the example mentioned in Figure 4, the 
baseline method would return 6 annotations 
because there are 3 distinct genes and 2 distinct 
GO terms.  The "System GO" method will 
produce 2 annotations, each with a unique GO 

term.  The "System Gene" method will propose 
3 annotations, because there are 3 different 
genes.  Finally, the "System GO/Gene" method 
will generate at most 2 annotations, because the 
number of distinct GO terms limits the size of 
the intersection to the maximum of 2. 

Experimental results under different precision 
metrics are shown in the right part of Tables 1 
and 2.  The "Precision" column shows the 
precision values as defined in the conventional 
way.  The precision values in the "Known Gene 
Precision" column are obtained by assuming that 
the genes of interest are given.  Similarly, 
values in the "Known GO Precision" column are 
computed assuming that the GO terms of interest 
are provided.  For the "Known GO-Gene 
Precision" values, it is assumed that both the GO 
terms and genes of interest are given. 

The experimental results show that recall rates 
decrease when the annotation conditions become 
stricter.  For instance, the Density Model 1’s 
baseline recall value of 25.78% drops to 2.14% 
when the "System GO/Gene" method is used.  
It is expected, because stricter conditions would 
filter out correct annotations where the GO term 
and gene are not close to each other.  The recall 
rate of "System GO" is higher than "System 
Gene" in both models.  This implies that the 
appearance of a GO term is a better indicator for 
the presence of a GO annotation than the 
appearance of a gene. 

In Tables 1 and 2, the rank of different 
precision measurements, ordered from the 
lowest to the highest, is "Precision", "Known 
Gene Precision", "Known GO Precision" and 
"Known GO-Gene Precision".  It tells us the 
relative difficulties of different annotation tasks.  



For example, knowing GO terms of interest 
makes GO annotation easier than knowing genes 
of interest. 

The high precision of "Known GO-Gene 
Precision" indicates that the word proximity 
relationship between Gene and GO terms really 
works.  It shows that word proximity is a good 
feature for GO annotation. 

Moreover, the performance of Density Model 
2 is better than Density Model 1.  It shows 
tf-idf values of GO-components also play an 
important role in GO annotation. 

6 Conclusion 

This paper uses the word proximity relationship 
between genes and GO terms to do GO 
annotation.  We proposed an automatic way to 
assign a GO term to a gene based on the full-text 
documents.  We made different experiments on 
GO annotation, including (1) proposing all pairs 
of gene-GO term, (2) assigning one gene to 
every GO term, (3) assigning one GO term to 
every gene, and (4) making the intersection of (2) 
and (3).  We applied different precision metrics 
to evaluate the results.  We also built two 
density models to explore the influence of 
GO-component’s importance factor.  The rank 
of experimental results using different precision 
metrics tells us the relative difficulties of 
different annotation tasks.  The high 
performance of "Known GO-Gene Precision" 
reveals the word proximity relationship is a good 
feature for GO annotation.  Furthermore, the 
tf-idf weight is also an important feature. 

The preliminary experiments have promising 
results which will be helpful for the annotation 
task.  There is still room for improvement.  
For improving the accuracy of GO term 
recognition, we can use the information such as 
word semantics or co-occurrence words.  We 
also try to find other relationship between genes 
and GO terms and it’s on-going.  Combining 
word semantics to boost the performance is 
other feasible directions.  Furthermore, 
combining other approaches with ours may 
increase the performance and that will be our 
future work. 
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