
Rework Effort Estimation of Self-admitted Technical

Debt

Solomon Mensah1, Jacky Keung1, Michael Franklin Bosu2 and Kwabena Ebo Bennin1
1Department of Computer Science, City University of Hong Kong, Hong Kong, China

{smensah2-c, kebennin2-c}@my.cityu.edu.hk, Jacky.Keung@cityu.edu.hk
2Centre for Business, Information Technology and Enterprise

Wintec, Hamilton, New Zealand

michael.bosu@wintec.ac.nz

Abstract—Programmers sometimes leave incomplete,

temporary workarounds and buggy codes that require rework.

This phenomenon in software development is referred to as Self-

admitted Technical Debt (SATD). The challenge therefore is for

software engineering researchers and practitioners to resolve the

SATD problem to improve the software quality. We performed

an exploratory study using a text mining approach to extract

SATD from developers’ source code comments and implement

an effort metric to compute the rework effort that might be

needed to resolve the SATD problem. The result of this study

confirms the result of a prior study that found design debt to be

the most predominant class of SATD. Results from this study also

indicate that a significant amount of rework effort of between 13

and 32 commented LOC on average per SATD prone source file

is required to resolve the SATD challenge across all the four

projects considered. The text mining approach incorporated into

the rework effort metric will speed up the extraction and analysis

of SATD that are generated during software projects. It will also

aid in managerial decisions of whether to handle SATD as part

of on-going project development or defer it to the maintenance

phase.

Keywords—Self-admitted Technical Debt; Rework Effort; Text

Mining; Source code comments; Source code analysis

I. INTRODUCTION

The increasing pressure to deliver fast software products to
customers sometimes forces project managers to impose
unrealistic deadlines on their developers. As a result, these
developers intentionally commit incomplete code, buggy code
and temporary fixes in order to meet the expectation of their
customers. This practice could produce errors which might
require rework. These intentional or self-admitted errors are
assumed as mistakes by the software development team. Potdar
and Shihab [1] describe this phenomenon of weak software
development process resulting in series of long-term overheads
in the maintenance phase as Self-admitted Technical Debt
(SATD). The debt metaphor is gradually becoming a research
focus [1][3][5] with studies aimed at finding solutions for
combating or minimizing the developers’ coding errors and
shortcuts of producing less quality applications [6].

Harrington's concept of “cost of poor quality” [7] in relation
to technical debt basically refers to the cost involved in resolving
defective products. According to Chatzigeorgiou et al. [8], the
concept of “cost of poor quality” does not only deal with the cost
for rectifying the gap between optimum and actual products but

also involves the effort required to resolve defects in delivered
products.

The challenging question that arises among project
managers prior to release of software product is “Should we
meet our short-term business objective and release the product
as soon as possible or we should take our time and fix the code
before release?” From either point of view, a loss or debt in
relation to software quality can be incurred. It is worth noting
that not all SATD can realistically be repaid. In this study, the
effort involved in resolving these debts is described as Rework
Effort. Rework effort from the point of view of Bhardwaj and
Rana [11] plays a significant role in software testing and leads
to additional cost in software development. For a released
product to be more robust and long-term effective, there is the
need to consider the amount of rework effort that is needed to
fix all identified SATD in the software project.

To study the issue of this debt metaphor, we extracted
source code comments from four large open-source software
projects and performed an exploratory study analysis on the
corpus of code comments with the intention of estimating the
rework effort necessary to fix the SATD tasks. Based on a
vocabulary of SATD indicators manually identified by Potdar
and Shihab [1], we developed an automated text mining
approach to assist in the extraction and estimation of the
rework effort for SATD tasks. We classify the SATD tasks into
five classes based on the classification scheme by Maldonado
and Shihab [3] using the algorithm in Section C. The
contribution of this work is twofold: to the best of our
knowledge this is the first study to use text mining in
identifying SATD from source code comments and to estimate
rework effort of SATD.

The remaining sections of the paper are organized as follows.
Section II highlights the methodological procedure employed.
Section III addresses the results from the empirical analysis of
the study. Finally, Section IV presents the threats to validity and
Section V gives a summary of the study based on conclusions
and future directions of the study.

II. METHODOLOGY

 The exploratory analysis for this study was performed using

the MATLAB toolkit (version R2014b) and the R Software

(version 3.2.2). These toolkits enabled in the setting up of the

text mining algorithm by constructing regular expressions for

the source code analysis and searching for patterns for SATD

from the open-source projects.

1st International Workshop on Technical Debt Analytics (TDA 2016)

72

mailto:kebennin2-c%7d@my.cityu.edu.hk

A. Datasets

 For the purpose of this study, we chose four well-

commented open-source projects made available at

openhub.net. These datasets were first extracted by Potdar and

Shihab [1] for a manual exploratory study of SATD. The four

projects are ArgoUML, Chromium OS, Apache HTTP Server

and Eclipse Platform project. The description of the open-

source projects is presented in Table I. In each project, the

following metrics were extracted - the total number of Lines of

Code (LOC), lines of source code comments, contributors or

developers and the dates of software release.

TABLE I. DESCRIPTION OF OPEN-SOURCE PROJECTS

Metric

Open-Source Projects

AgroUML Chromium Eclipse Apache

LOC 122,575 107,706 659,231 192,333

Comment lines 115,713 37,889 437,640 54,295

Release Date Dec, 2011 Nov, 2009 Jun,

2013

Jul,

2013

Developers 53 1,784 221 145

Version 0.34 30 4.3 2.4.6

B. Data Preprocessing Methods

 Preprocessing is an important phase in text mining and text

classification. For an efficient regular expression matching, we

preprocessed the extracted open-source code comments based

on data cleaning, stopword filtering, and term weighting. In the

dataset cleaning process, we used the text mining approach to

remove punctuation marks in the form of ~!@,.-#$%^*][|\ from

the corpus of code comments. Again, we filtered out noise in

the form of blank lines and white spaces within strings from

each project. Stopwords occurring frequently (such as and, this,

the, or, of, am, it, on, at) were removed because they

contributed less in the text mining and classification process.

These words were searched and removed following an

approach by Fabrizio [10]. We assigned term weights to the

various SATD code comments in all cases of the project

datasets to know the frequency at which the SATD indicators

occurred in the source code comments. The assignment of term

weights was done based on term frequency-inverse document

frequency (tfidf) [4] which is a well-known ranking function in

text mining and information retrieval. The tfidf function is

composed of the product of the term frequency (tf) and the

inverse document frequency (idf). We define these two terms in

(1) and (2) with respect to each project dataset.

 ,
(,)

t d

d

f
tf t d d D

m
   (1)

(,) loge

t

D
idf t D

N


 (2)

(, ,) (,) (,)tfidf t d D tf t d idf t D  (3)

where ft,d = frequency of term (t) in an SATD comment (d)

 md = number of terms in a given SATD comment

 D = total number of SATD comments per source file

 Nt = number of SATD comments with a given term (t)

1 grepl is a function in the CRAN library of R which returns a particular string when found in the search

space.

C. Proposed Text Mining Technique

 We proposed a text mining technique (Algorithm 1) for

mining SATD tasks using source code comments. This

technique plays a significant role in transforming source code

comments into numeric counts based on the assignment of term

weights for easy modeling and rework effort estimation. The

text mining technique for commented source code is divided

into 5 phases as follows:

Phase I: Preprocessing phase of the project datasets

Phase II: Extraction of code comments containing SATD

Phase III: Categorization of SATD classes

Phase IV: Computation of term weights for SATD tasks

Phase V: Computation of Rework Effort for SATD tasks

 Provision of some notations of the various variable names

used is made available. The algorithm constructed with regular

expressions is supplied with the contributor/developer details

and their respective comments made. Prior to Phase I, we

employed the textscan function to read the separated strings in

each of the code comments into separate vectors for each

system studied. This function also contributed in reading

commented strings with whitespaces.

 In Phase I, punctuation and special characters such as {“

”:\;!/.@[]-?#%^()’ ’} were eliminated from each of the source

code comment and contributor using the punct[] function and

result assigned to the variable P (line 1). Stop words such as is,

are, of, the, that, with, a, so, to, by, but, if, it, and, in, what, how

and other related words were removed in line 2 and the

remaining result assigned to SW variable.

 In Phase II, SATD comments void of stop words were

extracted using an implemented extract_satd function

containing the array of SATD indicators [1] in the first for loop

from lines 3 to 5.

 In Phase III, we made use of a dictionary of indicators,

StD_type for the various types of SATD tasks as studied by

Maldonado and Shihab [3]. Thus, with the help of this

dictionary, we can search and extract the various types of SATD

tasks in line 7.

 With the help of the tfidf for each case, statistical analysis

was made on the transformed dataset for statistical inferences.

In Phase IV, we made use of tfidf [4] in the second for loop

statement from lines 9 to 13 to compute the term weights for the

SATD list. In line 10, the total number of terms per each

comment within each corpus was computed and the term

frequency computed in line 11 as the ratio of the number of

searched and targeted t terms to the end result in line 10. We

computed the inverse document frequency in line 12 ignoring

case sensitiveness of terms in the grepl1 function. The grepl

function returns a logical vector containing searched SATD

comments. The tfidf values were computed in line 13 for each

SATD code comment. In Phase V, the rework effort (RW) is

computed in step 16 and further explained in equation (4).

1st International Workshop on Technical Debt Analytics (TDA 2016)

73

Algorithm 1 Source Code Comment Text Mining

Notations:

 P: remove punctuations’ function

 SW: remove stop words’ function

 Q: total number of commented tasks per project

 D: total number of SATD commented tasks per project

 SATD: List of SATD comments

 class: Class of SATD indicators

 tfidf: term frequency inverse document frequency

 Input:
 DCS: Dataset of contributors and source code comments

 StW[]: array of stopwords

 punct[]: array of punctuation characters

 StD: array of SATD indicators

 StD_type: array of types of SATD indicators

 RsF: rank source files

Output:

 RW: Rework Effort for SATD tasks

Procedure

 // Remove Punctuation Characters

1: P ← remove_punct("punct[]", DCS)

 // Remove Stop Words

2: SW ← remove_stop.words(P, StW[])

 //Extract SATD comments from corpus

3: for i, i=1,...,Q do

4: SATD[i] ← extract_satd(P[i], StD)

5: end for

 // Categorization of SATD Tasks

6: for l, l=1,…,D do

7: class[l] ← categorize(StD_type[l])

8: end for

 // Compute term weights for SATD list using tfidf

9: for j, j=1,…,D do

 //Computing number of terms(t) per each SATD comments

10: tf_tot[j] ← compute(SATD[j], length)

11: tf[j] ← count(t terms) / tf_tot[j]

12: idf[j]← log(D / sum(grepl(SATD[j], ignore.case)))

13: tfidf[j] ← tf[j] * idf[j]

14: k ← cos(RsF, StD)

15: Sk ← count(StD, file[k])

 //Computation of Rework Effort

16: RW ← compute(LOC[j]/Sk)

17: end for

18: Output RW

D. Rework Effort Estimation Metric for SATD

 In the quest of investigating the extent of rework effort in

relation to resolving commented LOC prone to SATD, we

formulated a rework effort metric based on a study by Zhao et

al. [2]. The rework effort (RW) metric is defined as follows:

 1 1

()
n k

ij

j i

k

LOC F

RW
S

 



 (4)

where LOC(Fij) denotes the commented LOC of the ith source

file in the ranked list for the jth SATD indicator. Sk is the number

of SATD indicators contained in the k ranked source files (step

15). n is the total number of SATD indicators. Thus, given any

software project containing n commented LOC in a number of

source files, we first compute the term weights of the source

files, followed by a ranking process [2] and use the cosine

similarity to obtain the k ranked source files. The cosine

similarity finds the close relation between the source files and

SATD indicators [1] with the intention of obtaining k files

prone to SATD (step 14). The k SATD prone files were

obtained based on a cosine similarity threshold of at least 0.7.

In relation to each kth file, we extract the commented LOC that

contains SATD. This is done repeatedly until all the commented

LOC tasks are obtained from the n source files as the numerator

in (4). RW is computed as the ratio of the numerator (LOC(Fij))

and denominator (Sk). We present a sample of the code

comments prone to SATD below.

Examples of SATD comments

* Don’t wait around; just abandon it *

* Leave it for next release *

* Do nothing and bail out *

* Strictly speaking, this is a design error *

* DESIGN ERROR: a mix of repositories *

* TODO: this isn’t quite right but is ok for now *

 This list of SATD indicators [1] formed the vocabulary of

words which was used in the proposed text mining approach for

the rework effort estimation. With respect to previous study [3],

the SATD commented tasks were categorized into five classes

– requirement debt, design debt, testing debt, defect debt and

documentation debt. The explanation with examples of the

classes of SATD are elaborated in [3].

 We evaluated the classification performance of the proposed

text mining approach by averaging the precision and recall

values across the 4 open-source projects.

III. RESULTS

A. RQ1: What is the dominant class of self-admitted technical

debt?

Question RQ1 is similar to the one posed in [3]. Because we

used different datasets from those used in [3], we decided to test

the postulation that design debt is the predominant class of

SATD in each of the open-source projects. The distribution of

this class of debt was irrespective of the size of the project. For

example, Apache project with 452 SATD comments had design

debt of 62.1%, Eclipse with 167 SATD comments had design

debt of 56.5%. Similarly, the design debts for AgroUML (512

SATD comments) and Chromium (975 SATD comments) were

56.5% and 67.5% respectively. Clearly, all design debts are

more than 50% of SATD comments in each project. This result

confirms a similar result by Maldonado and Shihab [3] that

found that design debt contributes between 42% and 84% of all

identified SATD in different systems.

Precision (P) and Recall (R) values of confusion matrices

created from the text mining approach for the classification

were as follows: requirement debt (P=0.84, R=0.77), design

debt (P=0.85, R=0.84), testing debt (P=0.87, R=0.92), defect

debt (P=0.76, R=0.82) and documentation debt (P=0.81,

R=0.79).

1st International Workshop on Technical Debt Analytics (TDA 2016)

74

B. RQ2: What is the extent of rework effort required to

resolve SATD in open-source projects?

 Table 2 indicates the estimated rework effort (measured in

average commented LOC per SATD prone source file of each

system) for the maintenance team to resolve these SATD within

the source files of the respective systems studied. It should be

noted that Req’t and Docu in Table 2 denote Requirement and

Document debts respectively. From the perspective of

considering all the five classes of debts, it was realized that

design debt required substantial rework effort as elaborated in

Table 2. Thus, the rework effort for resolving design debt in

AgroUML is 7.9, Chromium is 17.1, Eclipse is 11.8 and lastly,

Apache is 12.6 commented LOC on average per SATD prone

source file. Similarly, test and defect debts were also of key

interest in this study which needed rework apart from design

debts. These two debts even though known by the development

team that it will lead to long-term bugs upon release were left

unfixed. This we believe will be due to the time-to-market

constraint as mentioned by Fernández-Sánchez et al. [9].

 Based on results from Table 2, there is no unique pattern in

relation to the SATD rework effort and the size of the open-

source projects. A typical example is seen in Eclipse and

Apache. Even though Eclipse has 437,640 commented LOC

much larger than that of Apache with 54,295 (Table 1), the

amount of SATD rework effort for Eclipse is 11.8 as compared

to 12.6 in Apache (Table 2). It can be seen that the rework effort

estimation of about 13-32 commented LOC on average per

SATD prone source file across the selected projects could affect

the quality of the software product.

TABLE 2: REWORK EFFORT FOR RESOLVING SATD

SATD

Class

Rework Effort for Projects

Agro Chromium Eclipse Apache

Req’t 0.7 2 4.4 3.9

Design 7.9 17.1 11.8 12.6

Testing 3.1 4.6 5.1 7.3

Defect 1.6 5.3 3.1 5.6

Docu. 0 0.4 0.3 2.2

Total 13.3 29.4 24.7 31.6

IV. THREATS TO VALIDITY

 The first threat to validity in this study is the use of well-

commented open-source project datasets. This constraint might

not be a representative sample of the total population of open-

source projects since not all projects are well-commented.

Thus, the findings of this study cannot confidently be

generalized. The selected projects used are popular and large in

size. Therefore, the examination of all the developers’

comments from the projects with the intention of resolving the

self-admitted technical debt (SATD) problem can form a good

foundation for researchers to conduct more in-depth studies in

this field. Secondly, the list of SATD indicators used from

previous study might not be a generalized representation of all

SATD in the software development and maintenance

environment. Since this study focused on source code comment

analysis, we were constraint of gathering more information

especially from industry to validate the results obtained.

V. CONCLUSION

 In this study, we performed an exploratory analysis with a

proposed text mining approach on source code comments of

four open-source projects. With the help of transforming the

source code comments into term weights, we were able to

estimate the rework effort for fixing these debts. This study

addressed two main research questions:
RQ1: What is the dominant class of self-admitted technical debt?

 Results from the study indicate that out of all the five classes

of SATD, design debts (56.5% - 67.5%) is the predominant

class of SATD for all the four systems.

RQ2: What is the extent of rework effort required to resolve

SATD in open-source projects?

 The result of this study indicate that rework effort of

between 13 and 32 commented LOC on average per SATD

prone source file will have be addressed in order to fix the

SATD. In order to improve the long term quality of the

software, it is essential that developers are encouraged to avoid

SATD.

 The proposed approach is a novel technique which can

assist in the estimation of rework effort needed to fix SATD

tasks that demands rework.

 In going forward, we intend to validate our approach based

on industrial case studies and different versions of open-source

datasets to facilitate result generalization.

REFERENCES

[1] A. Potdar, and E. Shihab. "An exploratory study on self-admitted
technical debt." 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014.

[2] F. Zhao, Y. Tang, Y. Yang, H. Lu, Y. Zhou, and B. Xu. "Is Learning-to-
Rank Cost-Effective in Recommending Relevant Files for Bug
Localization?." Software Quality, Reliability and Security (QRS), 2015
IEEE International Conference on. IEEE, 2015.

[3] E. S. Maldonado, and E. Shihab. "Detecting and quantifying different
types of self-admitted technical Debt." Managing Technical Debt (MTD),
2015 IEEE 7th International Workshop on. IEEE, 2015.

[4] C. D. Manning, P. Raghavan and H. Schütze. Introduction to information
retrieval. Vol. 1. No. 1. Cambridge: Cambridge university press, 2008.

[5] W. Sultan, E. Shihab, and L. Guerrouj. "Examining the Impact of Self-
admitted Technical Debt on Software Quality." 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering. IEEE,
2015.

[6] Y. Padioleau, T. Lin, and Z. Yuanyuan. "Listening to programmers—
Taxonomies and characteristics of comments in operating system code."
Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference on Software Engineering. IEEE, 2009.

[7] H. J. Harrington, "Poor-Quality Cost: Implementing, Understanding, and
Using the Cost of Poor Quality (Quality and Reliability)." (1987).

[8] A. Chatzigeorgiou, et al. "Estimating the breaking point for technical
debt." Managing Technical Debt (MTD), 2015 IEEE 7th International
Workshop on. IEEE, 2015.

[9] C. Fernández-Sánchez, J. Garbajosa, and A. Yagüe. "A framework to aid
in decision making for technical debt management." Managing Technical
Debt (MTD), 2015 IEEE 7th International Workshop on. IEEE, 2015.

[10] S. Fabrizio. "Machine learning in automated text categorization."ACM
computing surveys (CSUR) 34.1 (2002): 1-47.

[11] M. Bhardwaj, and A. Rana. "Impact of Size and Productivity on Testing
and Rework Efforts for Web-based Development Projects." ACM
SIGSOFT Software Engineering Notes 40.2 (2015): 1-4.

1st International Workshop on Technical Debt Analytics (TDA 2016)

75

