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Abstract—This paper focuses on two types of artifacts—local
variables and comments in a method (function). Both of them are
usually used at the programer’s discretion. Thus, naming local
variables and commenting code can vary among individuals, and
such an individual difference may cause a dispersion in quality.
This paper conducts an empirical analysis on the fault-proneness
of Java methods which are collected from nine popular open
source products. The results report the following three findings:
(1) Methods having local variables with compound names are
more likely to be faulty than the others; (2) Methods having
local variables with simple and short names are unlikely to be
faulty, but their positive effects tend to be decayed as their scopes
get wider; (3) The presence of comments within a method body
can also be useful sign of fault-prone method.

I. INTRODUCTION

Software systems have been utilized in many aspects of our
daily life, and management of software quality has been the
most significant activity for ensuring the safety and security
of the people. In fact, it is hard to always make a one-shot
release of a perfect software product which has no need to be
enhanced or modified in the future; software systems usually
require upgrades after their releases in order to fix their faults
and/or to enrich their functionality. Needless to say, it is better
to reduce both the frequency of their upgrades and the size of
their patches to be applied.

To minimize upgrades of software products, thorough re-
view and testing before their releases are desirable activities.
In general, software review and testing help to detect concealed
faults or identify suspicious software modules which are fault-
prone [1], [2]. Then, those problems can be resolved by fixing
faults or refactoring problematic programs in order to reduce
the risk of causing unwanted upgrades after their releases.
While review and testing are useful activities, they are also
costly ones, so there have been many studies using software
metrics to predict fault-prone modules prior to software review
and testing activities [3]. By predicting fault-prone parts of a
software product, cost-effective review and testing would be
performed, i.e., we would detect more faults at less cost.

Most studied methods and models for predicting fault-prone
modules have been based on structural features of products
such as their sizes and complexities, or on development histo-

ries stored in their code repositories such as the number of bug-
fix commitments which have been made by a certain point in
time [4], [5], [6]. However, the impact of human factors would
also be significant since programming activities are usually
done by human beings. Different programmers would probably
develop different programs for the same specification. Such
a difference among individuals must have a certain level of
influence on the quality of products, i.e., it must cause a
dispersion in quality. Therefore, we focus on the following
two artifacts which may vary from person to person, (1) local
variables declared in a method (function) and (2) comments
written inside the method body. While these artifacts have no
impact on the structure of a program, they seem to be related
to the understandability and the readability of the program,
so they can be expected to play important roles in predicting
fault-prone methods. In this paper, we quantitatively analyze
the relationships of these artifacts with the fault-proneness.

The key contribution of this paper is to provide the follow-
ing findings derived from the results of our empirical analysis
with nine popular open source software (OSS) products:

• Local variables with descriptive compound names (for ex-
ample, “countOfSatisfactoryRecords”) can be
signs that the methods are fault-prone.

• Methods having local variables with simple and short
names (for example, “c” or “cnt”) are unlikely to be
faulty, but their positive effects tend to be decayed as
their scopes get wider.

• Comments within a method body also seem to be related
to the fault-proneness of the method.

The remainder of this paper is organized as follows. Section
II describes two types of artifacts which may vary among
programmers—(1) names of local variables and (2) comments
written inside a method body—and their relationships with the
quality of source programs, and gives our research questions
in regard to impacts of those artifacts. Section III reports
on an empirical analysis on our research questions using
popular OSS products, and discusses the results. Section IV
briefly describes related work. Finally, Section V presents the
conclusion of this paper and our future work.
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II. LOCAL VARIABLES AND COMMENTS

This paper focuses on local variables and comments, since
they may vary widely from person to person and cause a
variation in quality. This section describes concerns of local
variable names and comments in regard to source code quality,
and set up our research questions.

A. Local Variable Name

Since local variables are valid only within a function or
a method, names of local variables are usually not spec-
ified in their software specifications or design documents.
Therefore, naming local variables can be at the programmer’s
discretion. In general, different programmers would prefer
different names for local variables even if they implement
the same algorithm in their function or method. For example,
a programmer likes to use “count” as the name of local
variable for storing the number of records which satisfy a
certain condition, but another programmer prefers “c” as its
name; there might even be a programmer who wants to give
“countOfSatisfactoryRecords” to the variable.

Needless to say, local variables with fully-spelled names
such as “count” or ones with descriptive compound names
“countOfSatisfactoryRecords” make it easy to un-
derstand the roles of those variables in their function or
method since those names provide more information about
those variables than shorter and/or simpler names. Lawrie et
al. [7] surveyed the understandability of identifiers (including
not only local variables’ names but also functions’ names)
used in programs by comparing three types of names, (1)
fully-spelled names such as “count,” (2) abbreviated names
such as “cnt” and (3) names using only an initial letter
such as “c.” They reported that a longer name is easier to
understand for programmers, but there is not a significant
difference in comprehensibility between fully-spelled names
and abbreviated ones in their survey results. That is to say, it
is not always necessary to give a long and descriptive name to
a local variable, and a short and simple name may be sufficient.

There are also programming heuristics on naming local
variables. Both the GNU coding standards [8] and the Java
coding convention [9] have said that names of local variables
should be shorter. Moreover, Kernighan and Pike [10] also
argued that shorter names are sufficient for local variables;
for example, they considered that name “n” looks good for
a local variable storing “the number of points” while name
“numberOfPoints” seems to be overdone. Thus, long and
descriptive names have not been recommended for the names
of local variables. However, the impact of such a descriptive
name on the code quality has not been clearly discussed in
those heuristics.

Aman et al. [11] conducted an empirical work and showed
that methods having local variables with long names are
more likely to be fault-prone and change-prone than the other
methods. That is to say, they showed a relationship between a
long name of a local variable and a poor quality of the code
in a statistical manner. However, their analysis missed taking
into account the following two aspects: (1) the composition of

variable’s name and (2) the scope of local variable. Focusing
on not only the length of local variable’s name but also those
two aspects would be more worthy in analyzing the impact
of local variable’s name and in enhancing the quality of code.
This is a key motivation of this work.

B. Comments

Comments are documents embedded in a source file, which
usually provide beneficial information in regard to the program
[12]. While there are several types of comments, we focus
on comments written inside a method (function) body in
this paper. Those comments usually give explanations or
programmer’s memos for their implementation in the method.
Of course, the other types of comments also provide important
information regarding the program. However, such comments
written outside a method body are often the copyright des-
ignation or the programmer’s manual explaining how to use
the method, i.e., those comments may not be decided at the
discretion of the programmer. Thus, those comments outside
a method body may be out of our research scope focusing
on the individual difference among programmers. That is the
reason why we will focus only on the comments written inside
a method body.

While comments along with executable code can be a great
help in understanding the code, there have also been criticisms
on their effects: comments might be written to compensate
for a lack of readability in complicated programs [13]. In this
context, Fowler [14] pointed out that well-written comments
may be “deodorant” for masking “code smells.” Although
comments themselves are good artifacts, they may be used
for neutralizing a “bad-smelling” code. Kernighan and Pike
[10] said that programmers should not add detailed comments
to a bad code; in such a case, it is better to rewrite their
code rather than adding comments. If a programmer wants to
add detailed comments to their code during their programming
activity, the programmer may consider that the program is
hard to understand for others without those comments. That
is to say, comments may be signs of complicated programs.
Aman et al. [11], [15] reported supporting empirical results
that commented programs tend to be more fault-prone than
non-commented ones. In this paper, we conduct a further anal-
ysis examining combinations of (1) the composition of local
variable’s name, (2) local variable’s scope and (3) comments,
in terms of fault-proneness.

C. Research Questions

As mentioned above, both the local variables and the
comments are not only artifacts which may vary among
programmers, but also remarkable ones which are expected to
have relationships with the quality of the code. However, the
analyses in the previous work [11], [15] missed considerations
for the composition of local variable’s name and the scope of
local variable. We will conduct a further analysis by focusing
on those missed aspects as well. In order to clarify our points
of view in our empirical analysis, we set up the following two
research questions (RQs):
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TABLE I
SURVEYED OSS PRODUCTS.

Product Size
(KLOC)

#Methods Having
a Local Variable

Data Collection Period Domain

IP-Scanner 16 433 2006-07-19 — 2016-04-04 Networking
Checkstyle 21 738 2003-05-05 — 2016-03-28 Code analysis
eXo 21 675 2007-03-17 — 2016-04-06 Social collaboration software
FreeMind 71 2, 353 2011-02-06 — 2016-03-30 Mind-mapping tool
ARM 282 1, 300 2013-09-11 — 2016-03-14 Development support
Hibernate 387 6, 372 2007-06-29 — 2016-03-31 Object/Relational mapping
ProjectLibre 224 1, 466 2012-08-22 — 2016-04-06 MS Project clone
PMD 75 738 2002-06-21 — 2016-04-05 Source code analyzer
SQuirreL 405 6, 060 2001-06-01 — 2016-04-05 Database client
Total 1, 502 20, 135

RQ1 Can local variables with compound names be signs
of fault-prone methods?

RQ2 How does a local variable’s scope relate to the effect
of local variable’s name on the fault-proneness in a
method?

We will check the above two questions while considering the
impact of comments as well.

2

As mentioned in Section II-A, there have been concerns in
giving descriptive names to local variables. Compound names
such as “numberOfPoints” are typical descriptive names.
RQ1 asks whether a local variable with such a compound name
can be a sign to find fault-prone method or not.

If a local variable is declared with a narrow scope, it does
not seem to need a descriptive name since its influence is
limited within a narrow range. RQ2 focuses on the relationship
of local variables’ names with their scopes.

In examining these RQs, this paper expects to find yet
another useful clue of fault-prone methods by focusing on
their local variable names.

III. EMPIRICAL ANALYSIS

This section conducts an empirical analysis in which we col-
lect quantitative data from popular OSS products and analyzes
that data in order to discuss the above research questions.

A. Aim and Dataset

The aim of this analysis is to quantitatively examine the
fault-proneness of Java methods by focusing on the names
of local variables, the scopes of them and the presence of
comments. The results of this analysis are expected to present
useful points to be checked during code review activities.

We collected data from nine popular OSS products of differ-
ent size and domain, shown in Table I—(1) Angry IP Scanner
(IP-Scanner)1, (2) Eclipse Checkstyle Plug-in (Checkstyle)2,
(3) eXo Platform (eXo)3, (4) FreeMind4, (5) GNU ARM
Eclipse Plug-ins (ARM)5, (6) Hibernate ORM (Hibernate)6,

1http://angryip.org/
2http://eclipse-cs.sourceforge.net/
3http://exoplatform.com/
4http://freemind.sourceforge.net/wiki/index.php/Main Page
5http://gnuarmeclipse.livius.net/blog/
6http://hibernate.org/

(7) PMD7, (8) ProjectLibre8 and (9) SQuirreL SQL Client
(SQuirreL)9. All of them are ranked in the top 50 popular Java
products at SourceForge.net10, and their source files have been
maintained with the Git. The restrictions of the development
language and the version control system are from our data
collection tools11.

B. Procedure of Data Collection

We collected data from each OSS project in the following
procedure.

(1) Make a clone of the repository, and make the list of all
methods included in the current version.

(2) Get the change history of each method:
We check the source lines which had been changed
through each commitment on the repository, and decide
which methods were modified at that time (see Fig.1).
The decision is made by the following three steps.
(2a) Get both the older version and the newer version

of the source file which had upgraded through the
commitment.

Fig. 1. Change histories of methods included in a source file.

7https://pmd.github.io/
8http://www.projectlibre.org/
9http://www.squirrelsql.org/
10http://sourceforge.net/
11http://se.cite.ehime-u.ac.jp/tool/
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(2b) Compare those two consecutive versions, and find
different parts between them. Then, obtain corre-
sponding line numbers in the newer version.

(2c) Decide which method(s) had been upgraded, by
checking the line numbers of upgraded lines against
each method’s position (range) in the newer version.

By iterating these steps for all commitments, we get the
change history of each method.

(3) Collect the data on representative local variables’ names
and scopes, and comments for each method:
We survey names of local variables declared in the initial
version of a method (see Fig.1) and the scopes of those
variables. We define the length of a local variable’s scope
to be the number of lines where the variable is valid except
for the line of its declaration. For example, the length of
scope of variable “len” shown in Fig.2 is 5 and that of
variable “str” is 2, respectively.
When there are two or more variables in a method, we
focus on the variable whose scope is widest in the method
as the “representative local variable” in order to connect
the features of the local variable to the method. In the
example shown in Fig.2, the “representative local variable”
of method “foo” is variable “len.” If there are two or
more local variables with the widest scope in a method,
we will adopt the variable with the longer name (having
more characters) as the representative variable. Needless
to say, if there is only one local variable in a method, the
variable is the representative local variable of the method.
On the other hand, any methods having no local variable
are excluded from the data of interest in this work.
We collect the lines of comments written inside a method
body as well.

(4) Check if a bug fix has occurred for each method:
We examine the change history of each method obtained
above and check if a bug fix has occurred or not at
the method’s upgrade. We decide whether a code change
was intended to a bug fixing or not, by checking their
commitment message [16]. For example, Fig. 3 shows a
part of commitment message (obtained by using git log
command) on the repository of SquirreL SQL Client,
which seems to be a bug fixing commitment. Since method
“_init” in “AliasEditController.java” was
modified through the commitment, we consider that a bug
fixing was performed at the method.

C. Procedure of Data Analysis

We conducted our data analysis in the following procedure.

String foo (String arg) {
int len = arg.length();
if (len < 5) {
return new String(arg);

}
String str = arg.substring(0, 5);
return str + "...";

}

Fig. 2. An example of method having local variables.

commit 0d005dc6573dcc12df03917ee974a0736b4d5cfd
.............
Bug #1236 Shortcut for comment/uncomment current line
(ctrl + "/") does not
Fixed according to the suggestion in the bug #1236
Please note: The orginal comment/uncomment hot key of
SQuirreL is ctrl+Num

Fig. 3. An example of actual commitment message.

(1) Perform a random sampling of methods, which have a
local variable, from all projects:
In order to avoid an impact of project’s size bias on our
empirical results, we randomly sample the same number
of methods from each project.

(2) Divide the set of methods into subsets according to the
representative local variable’s name.
We consider “a local variable with a short name” to be
one such that the length of its name is less than or equal
to the 25 percentile in the distribution of length of name.
We also take into account if the name is compound one
or not for RQ1. Thus, we consider the following three
categories.

• V1: the set of methods such that the name of repre-
sentative local variable is short and not compound.

• V2: the set of methods such that the name of represen-
tative local variable is not short and not compound.

• V3: the set of methods such that the name of repre-
sentative local variable is a compound one.

We decide that a variable has a compound name if it is
composed in camel case such as “numberOfItems.”
That is to say, we consider a name to be compound one if
it has a lower case letter followed by an upper case letter.
We regard such a pair of lower case letter and upper case
letter as a splitting position of the name. For example,
there are two splitting positions in “numberOfItems,”
i.e., the pair of “r” and “O,” and the pair of “f” and
“I,” so the name can be split into three portions (words)
“number,” “Of” and “Items.” We consider that such
compounded names cannot be short ones composed by
at most a few characters. Thus, we do not divide the
set of methods having representative local variables with
compound names, and define V3 only (not V3 and V4).

(3) Divide the subsets of methods obtained at Step (2) into
two, according to the presence of comments:
In order to analyze the impact of comments as well, we
divide the set of methods into two subsets by checking if
there are comments12 inside method bodies or not.

• C0: the set of methods having no comment.
• C1: the set of methods having comments.

Then, we define Mij = Ci ∩ Vj for i = 0, 1 and j =
1, 2, 3. For example, M01 is the set of non-commented
methods in which the representative local variable has a
short and non-compound name. Table II summarizes these
categories (the method sets) Mij .

12We excluded the comment out cases from our data by using a checking
algorithm [17].
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TABLE II
SYMBOLS REPRESENTING CATEGORIES.

Name of representative local variable
Symbol Non-compound

Compoundshort not short
Non-commented methods M01 M02 M03

Commented methods M11 M12 M13

(4) Examine the fault-proneness of methods by the above
categories Mij :
We statistically compare the bug fix rates among cate-
gories Mij (for i = 0, 1 and j = 1, 2, 3) and discuss the
results.

(5) Examine the trends of the bug fix rates over scope:
In order to analyze the impact of variable’s scope as well,
we analyze the changes in bug fix rate by varying the
range (the length of scope) which we focus on. In the
concrete, we compare the moving averages of the bug fix
rates among categories Mij (for i = 0, 1 and j = 1, 2, 3),
by varying the range of focusing scope.

D. Results and Discussion: Collected Data

We first show the results of our data collection. Since the
minimum number of methods included in a project was 433 as
shown in Table I (project “IP-Scanner”), we randomly sampled
400 methods from each project, so our dataset consists of
3, 600 methods in total.

Table III shows the distributions of length of representative
local variables’ names in character count and in word count,
respectively. Here, “word count” means the number of words
composing a variable’s name which is split according to the
notion of the camel case. The longest names in character count
were “containsSuppressWarningsHolderModule”
and “organizationInitializersHomePathNode”
which consist of 36 characters, and the longest name in
word count was “thereWereNodesToBeFolded” which
consists of 6 words. Although such some long and descriptive
names appear in some methods, most local variables have
names that consist of at most a few characters and they are
non-compound names whose word count is one. Since the
25 percentile (Q1) of the character count is four as shown in
Table III, we will consider a name whose length is less than
or equal to four letters to be short in the following analysis.

Table IV presents the distribution of length of a represen-
tative local variable’s scope. Since there were some methods
as shown in Fig.4, where the minimum length of the scope is
zero. As all local variables are valid only within a (part of the)

TABLE III
DISTRIBUTION OF LENGTH OF

REPRESENTATIVE LOCAL VARIABLE NAMES.

Unit Min. Q1 Median Q3 Max.
Character 1 4 6 10 36

Word 1 1 1 2 6

(Q1: 25 percentile; Q3: 75 percentile)

TABLE IV
DISTRIBUTION OF SCOPE OF REPRESENTATIVE LOCAL VARIABLES.

Min. Q1 Median Q3 Max.
0 4 9 19 793

(Q1: 25 percentile; Q3: 75 percentile)

private void doConnectToRunningChanged() {
if (doStartGdbServer.getSelection()) {
boolean enabled = doConnectToRunning.getSelection();

}
}

Fig. 4. An instance of local variable whose scope is zero (“enabled”).

method, the majority of them are around a few to ten lines of
code. In order to filter out extreme data which may be noise
in our analysis, we will use only the data whose scopes are in
between 25 percentile (Q1 = 4) and 75 percentile (Q3 = 19)
of their distribution. By this data filtering, the number of our
samples are reduced to 1, 872. Table V gives the number of
methods belong to each category Mij (for i = 0, 1; j = 1, 2, 3)
after this filtering.

Table VI shows the distribution of the number of bug fixes
which had occurred in methods over their upgrades. About
18% of methods seemed to have had a hidden fault and have
fixed through their code changes. Since we already filtered
out the methods such that the scope of the representative
local variable was wide, most of the methods in our dataset
were small-sized and thus possibly more simple in structure.
Hence, conventional size metrics and structural complexity
metrics would be ineffective for analyzing the fault-proneness
of methods in detail. It would be worth it to focus on a feature
of methods other than the size and complexity. A local variable
name might be yet another useful feature to be focused on.

E. Results and Discussion: Comparison of Bug Fix Rates by
Category

Table VII presents the bug fix rate in each category Mij

(for i = 0, 1; j = 1, 2, 3). There seem to be differences in the

TABLE V
NUMBER OF METHODS BELONG TO EACH CATEGORY.

Non-Compound Compound
Category ≤ 4 > 4 Name Total
Non-Commented 401 527 427 1, 355

(M01) (M02) (M03) (C0)
Commented 139 164 214 517

(M11) (M12) (M13) (C1)
Total 540 691 641 1, 872

(V1) (V2) (V3)

TABLE VI
DISTRIBUTION OF NUMBER OF BUG FIXES

OBSERVED IN METHODS AND BUG FIX RATE.

Min. Q1 Median Q3 Max. Rate
0 0 0 0 5 18.1%

(Q1: 25 percentile; Q3: 75 percentile)
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bug fix rates among categories. The minimum bug fix rate is
0.135 in M01 and the maximum bug fix rate is 0.252 in M13,
so the latter rate is about twice larger than the former one.

We did a χ2 test for the differences of bug fix rates in the
results. The test confirmed that there are statistically significant
differences among the bug fix rates in the categories, at
p = 0.0053 < 1% level of significance (χ2 = 16.6; degree
of freedom = 5). That is to say, the above categorization
of methods by focusing on the name of local variables and
comments is meaningful for discussing the differences of fault-
proneness in the methods.

In the categories of non-commented methods M0j (for
j = 1, 2, 3), we can observe an increasing trend in the
bug fix rate (BFR): BFR(M01) = 0.135 < BFR(M02) =
0.165 < BFR(M03) = 0.211 (see Table VII and Fig.5(a)).
We also identified that the increasing tendency is statisti-
cally significant through the Cochran-Armitage test [18] at
p = 0.0035 < 1% level of significance (χ2 = 8.52; degree
of freedom = 1). From this trend, we can say that methods
having representative local variables with shorter names are
likely to be better in terms of fault-proneness, and the ones
with compound names are worse than others.

On the other hand, in the categories of commented methods
M1j (for j = 1, 2, 3), we cannot identify an increasing trend
in the bug fix rate; they seems that BFR(M11) = 0.180 ≃
BFR(M12) = 0.177 < BFR(M13) = 0.252 (see Table VII
and Fig.5(b)).

For all three categories, their bug fix rates were higher
than ones of non-commented methods, i.e., BFR(M0j) <
BFR(M1j) (for j = 1, 2, 3):

• BFR(M01) = 0.135 < BFR(M11) = 0.180,
• BFR(M02) = 0.165 < BFR(M12) = 0.177, and
• BFR(M03) = 0.211 < BFR(M13) = 0.252.

Thus, the commented methods seem to be riskier in fault-
proneness than the non-commented methods. Similar trends
in regard to comments have been reported in the previous
work [11], [15] as well. Since programmers might want to add
comments when they considered that their code is difficult to
understand without an explanation, the presence of comments
would be a sign indicating that the code is complicated.

Notice that the bug fix rates in the categories of compound
names, M03 and M13, are the highest ones among categories;
Only those two categories show bug fix rates which are higher
than the average of all (18.1%) (see Fig.5). Thus, the methods
having representative local variables with compound names

TABLE VII
BUG FIX RATES BY CATEGORY.

Non-Compound name Compound
Category ≤ 4 > 4 name

Non M01 0.135 M02 0.165 M03 0.211
commented ( 54

401
) ( 87

527
) ( 90

427
)

M11 0.180 M12 0.177 M13 0.252
Commented ( 25

139
) ( 29

164
) ( 54

214
)

(a) Non-commented (b) Commented
Fig. 5. Comparison of bug fix rates by category.

are likely to be fault-prone regardless of the presence of
comments.

F. Results and Discussion: Comparison of Bug Fix Rates over
Scope

This subsection compares the bug fix rates among the
categories from another in-depth perspective of local variable’s
property, “scope.”

We first checked correlations of the length of a local
variable name with its scope. There do not seem to be specific
correlation between the length of local variable’s name and
the length of its scope (see Fig.6): Spearman rank-correlation
coefficients in character count and in word count were 0.083
and 0.0003, respectively. Hence, the length of a local variable’s
name is statistically independent of the length of its scope, and
the scope is not a confounding factor for discussing the fault-
proneness of methods by using their local variable’s name.

To observe the changes in fault-proneness over variable’s
scope, we computed the moving averages of bug fix rates
by varying the focusing interval of scope [s − 5, s + 5] for
s = 9, 10, . . . , 14; in simplified terms, we obtained the bug fix
rates of methods whose representative local variable’s scope
is “around s” (s± 5), where the lower and the upper limit of
s are decided so as to keep the interval [s − 5, s + 5] within
the scope range of all data: between 4 and 19. For example,
if s = 9 then [4, 14] is the focusing interval, we focus only
on the methods whose representative local variable’s scope is
“around 9” (9± 5). Figure 7 shows those results.

In Fig.7(a), we observed the relationships of bug fix rates
regardless of scope: BFR(M01) < BFR(M02) < BFR(M03),
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Fig. 6. Scatter diagrams: the length of variable’s name vs. the length of
variable’s scope.
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which are similar to the results shown in Fig.5(a). Thus, we
can say with emphasis: while the fault-proneness of methods
having representative local variables with shorter names are
low, the methods having representative local variables with
compound names are high. Since the gap in the bug fix rate
between M01 and M02 becomes smaller as the scope gets
wider, the superiority of a shorter name may be limited to a
narrower scope. If a local variable with a short and simple
name is used in a wider scope, it might cause an abuse of the
variable or a poor understandability of the program’s behavior.
While Kernighan and Pike [10] said to give a short and simple
name to a local variable, they did not recommend such a
naming in any case, and their argument supposed the case
that a local variables was used in just “locally” within a part
of a program. The results observed in Fig.7(a) seem to support
such a programming heuristic.

In Fig.7(b), while M11 (≤ 4 letters) are better than M12

(> 4 letters) with narrower scopes around 9 or 10, their
magnitude relationship inverts as their scope gets wider. That
would be the reason why BFR(M11) ≃ BFR(M12) in
Fig.5(b). Therefore, we can say that a shorter name is better
with a narrower scope, but cannot claim a shorter name is
always better. If programmers wanted to add comments, there
would be a lack of clarity in their code. In such a case, a
shorter name with a wider scope might spur the program’s
poor comprehensibility. On the other hand, compound names
always show the worst (highest) bug fix rates regardless of
scope, similar to the results in Fig.7(a). Although compound
names are usually descriptive, they seem to be signs of fault-
prone methods. If a programmer wanted to give a compound
name to a local variable, the role of the variable would be
somewhat complicated, so methods having such local variables
might be riskier than the others in terms of fault-proneness.

G. Answers to RQs

From the results of Sections III-E and III-F, we summarize
our findings for RQ1 and RQ2 in the following.

For RQ1, we conclude that methods having local variables
with compound names are likely to be faulty regardless of
scope. Although we do not imply that compound names cause
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Fig. 7. Moving averages of bug fix rates over scope.

faults in methods, the presence of a local variable with a
compound name may be a clue finding a risky part from the
perspective of the fault-proneness in a method. Such a local
variable might have an important role or a more complex role
in the program, so they have to be reviewed more carefully.

For RQ2, we can say that shorter names are better for local
variables with narrower scope. As a scope gets wider, the posi-
tive effect of shorter names seems to be decayed. While a short
and simple name would be preferable as mentioned in some
coding conventions and programmers’ heuristics [8], [9], [10],
our empirical results quantitatively showed that the variable’s
scope is also a feature worthy of consideration. Moreover, the
presence of comments may degrade the superiority of shorter
names as their scopes get wider. Therefore, we should take into
account not only the composition of local variable’s name but
also its scope and comments in the code review.

H. Threats to Validity

This empirical analysis has been conducted for Java prod-
ucts. While another programming language might produce
different results, there would not be essential differences in
the concept of local variables and comments, among Java
and many other modern programming languages. Thus, the
difference in programming language would not be a serious
threat to validity.

In order to avoid the data selection bias, we adopted a
random sampling in our data collection. Moreover, we used
popular different sized OSS products from different domains.
Therefore, our construction of dataset would not be a threat
to validity.

Since our data is collected from the initial version of
the methods, some methods might be no longer used today.
However, all methods in our dataset are included in the latest
version of the product because we made our method list by
checking the latest version of their source files as described
in Section III-B. Moreover, we did a random sampling from
them. Thus, we consider it will not be a serious threat to
validity in our empirical work.

Our definition of compound name is based on the notion
of camel case. If there are local variables whose names
are composed by another rule such as the snake case, e.g.,
“number_of_items,” they are wrongly categorized into
non-compound names. Thus, we rechecked all representa-
tive local variables’ names included in our data set, then
we found only two variables having snake case names,
“s_descriptors” and “size_h.” Due to the small num-
ber of error cases, our name splitting method was not a serious
threat to validity.

IV. RELATED WORK

Lawrie et al. conducted a survey on names of identifiers in
terms of their comprehensibility for over 100 programmers [7].
In their survey research, they classified names of identifiers
into three categories (1) fully-spelled name, (2) abbreviated
name and (3) initial letter—for example, (1) “count,” (2)
“cnt” and (3) “c”—, then compared their understandability.
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Their results showed that fully-spelled names were the easiest
to understand but that there did not seem to be significant
differences with abbreviated names in their comprehensibility
level. While their work provides a useful motivation to study
whether a shorter name is better or not, they did not discuss
the fault-proneness of program.

Kawamoto and Mizuno [19] conducted an empirical study
with two OSS products and reported that a class including
a long identifier tends to be faulty. While their work is one
of our most significant previous studies, our work focuses
on a finer-grained artifact—local variable—and conducts a
statistical analysis with taking into account of the scopes and
the comments.

Binkley et al. [20] focused on the relationship be-
tween the length of identifier (including a variable’s name,
a method’s name and a class’s name) and the human
short-term memory. They identified that identifiers with
long names are related to a difficulty in program com-
prehension. They were concerned that a long chain, e.g.,
“class.firstAssignment().name.trim(),” would
cause a loss of the readability of the code. While the research
viewpoint differs from our work, the fundamental concern
about the length of name is common, and it seems to be well
accorded with our results showing the compound names are
not recommended for local variables.

Aman et al. [11] reported an empirical analysis showing
that Java methods having local variables with long names are
more likely to be fault-prone and change-prone than the other
methods. That report is our significant previous work, and this
paper focuses more detailed features of local variables, i.e., the
composition of name and their scopes. While another work by
Aman et al. [15], reporting that commented programs tend to
be more fault-prone, is also our important previous work, we
conduct a further analysis examining combinations of the local
variable’s name, the scope and the comments in this paper.

V. CONCLUSION

We have focused on programming artifacts which may
vary among individuals: local variables’ names and comments.
Popular code conventions say that names of local variables
should be shorter and simple, and it seems to have been
a heuristic of programmers. We empirically evaluated the
heuristic in terms of fault-proneness by checking the names
of local variables, their scopes and the presence of comments.
The empirical analysis for the data from nine popular OSS
products showed the following three findings.
(1) Local variables with compound names can be signs of

fault-prone methods.
(2) Methods having the representative local variables with

non-compound and shorter names (≤ 4 letters) are less
fault-prone, but their positive effects are decayed as their
scopes get wider (around 10 or more lines).

(3) Methods having comments in their bodies are also more
likely to be faulty.

These findings are expected to be useful guidelines for more
efficient code reviews.

One of our significant future works is to conduct further
analyses of local variables’ names, which include an ap-
plication of the natural language processing technologies to
evaluate the meaning of local variables’ names. A further
analysis with products written in a programming language
other than Java is also our future project in order to ensure
the generality of the above findings.
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