
Transforming “Hard and Boring”
into “Accessible and Exciting”

Alexander Repenning

University of Colorado
Computer Science

Boulder, Colorado, 80309, USA
ralex@cs.colorado.edu

Abstract. Many kids describe their perception of programming to be “hard and
boring.” Computational Thinking, including programming, is considered by
many to be an important skill for the 21st century workforce. However, in order
for kids to get interested in Computational Thinking is it essential to understand
why kids perceive programming to be hard, i.e., to understand cognitive chal-
lenges, and why kids perceive programming to be boring, i.e., to understand af-
fective challenges. Over the last 20 years our Computer Science education re-
search creating Computational Thinking tools such as AgentSheets and
AgentCubes, developing curricula and providing teacher professional develop-
ment systematically explored what we call the Cognitive/Affective Challenges
space. We have not only found strategies to gradually move from “hard and
boring” towards “accessible and exciting” but in the process also developed re-
search instruments to computationally assess cognitive as well as affective chal-
lenges. This paper outlines the Cognitive/Affective Challenges space, briefly de-
scribes Computational Thinking Pattern analysis as cognitive instrument, and il-
lustrates Retention of Flow as affective instrument to assess motivation.

Keywords: Computer Science education, Computational Thinking.

1 The Cognitive / Affective Challenges Space

In the context of Computer Science Education we have systematically explored the
challenges keeping participants from transitioning from “Have to” to “Want to” and
have created the Cognitive/Affective Challenges space (Fig. 1) conceptualizing learn-
ing activities in a two dimensional space [1]. For instance, computing prime numbers
using Emacs to write C++ code would typically be considered hard and boring (red
point in Fig. 1). The root of this framework goes back to our research on Computer
Science Education but the framework is more general in nature and applies to all
kinds of subjects. However, to better illustrate these challenges this article will focus
on Computer Science Education in order to provide concrete examples. The statement
“programming is hard and boring,” made about 20 years ago by a young girl when
asked what she was thinking about programming, does not suggest a workable trade
off but rather a heartbreaking lose-lose proposition. Disappointingly, a recent report

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

25

by Google [2] lists “hard” and “boring” as the top two adjectives describing women’s
perception of programming. This perception helps explain why women do not choose
Computer Science as field of study. These persistent concerns can be interpreted as a
two-dimensional research space. The “hard” part is a cognitive dimension exploring
how programming can become more (or less) accessible. The “boring” part is an af-
fective dimension exploring how programming can become more (or less) exciting.
The big question is how does one transform “hard and boring” into “accessible and
exciting?”

Fig. 1. The Cognitive / Affective Challenges space

The cognitive and affective challenges implied by “hard and boring” can be mitigated
with tools, e.g.,

• Cognitive Dimension: Making Programming more Accessible through Computa-
tional Thinking Tools. Syntactic, semantic and pragmatic programming issues are
examples of cognitive challenges. With visual programming approaches and pow-
erful debugging tools these challenges can be mitigated. For instance, AgentSheets,
a programming environment for kids early on [3] pioneered the modern notion of
blocks programming through drag and drop interfaces to address syntactic chal-
lenges. As AgentSheets evolved over time and new systems such as AgentCubes
[4, 5] appeared gradually the notion of a Computational Thinking Tools emerged
[6] also addressing semantic and pragmatic aspects of cognitive challenges.

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

26

Fig. 2. Computational Thinking Tools address cognitive challenges

• Affective Dimension: Making Programming more Exciting through Domain-
Oriented Tools. Domain-Oriented Tools [7] scaffold the creation and programming
of interesting content. Using these tools users can create interactive 3D Worlds, ro-
bots, and may other things. Key ideas are ownership and creativity (Fig. 3).

Fig. 3. Ownership and creativity help to overcome affective challenges.

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

27

Some tools such as Inflatable Icons (Fig. 4) focus on the notions of ownership and
creativity by providing highly accessible mechanisms to create 2D, 3D and even
physical artwork, which then can be turned into programmable games. These ideas
can contribute significantly towards the broadening of participation [8].

Fig. 4. Inflatable Icons: drawing 2D images, turning them into 3D shapes, and printing them as
physical 3D objects

2 Instruments Assessing Cognitive and Affective Challenges

What are indicators that cognitive/affective tools have been sufficiently compelling to
transform participation from “have to” to “want to?” The Scalable Game Design pro-
ject [9] employs game design to get students interested in Computer Science and lev-
erages the competencies acquired to enable students to create STEM simulations.
Scalable Game Design employs tools such as AgentCubes online described above to
address cognitive and affective challenges. AgentCubes is the combination of a Com-
putational Thinking Tool with a Domain-Oriented Tool. To assess the effectiveness of
Scalable Game Design a number of research instruments have been created and test-
ed. One indicator of a transition towards “want to” is the projects created by students.
Students do not just create the games they are being instructed to build but they create
additional game characters, more levels and even create completely new games, in
many cases based on sophisticated programming. In 2013 a 3D Frogger game design
tutorial was part of the hour of code and was used by nearly a quarter million partici-
pants in just one week. Because AgentCubes online is a cloud based Computational
Thinking Tool all the games are available and can be analyzed through educational
data mining with respect to cognitive and affective measures:

• Cognitive Assessment: Computational Thinking Pattern Analysis (CTPA). Com-
putational Thinking Patterns [10-12] describe phenomenalistic object interactions
such as the collision of two objects. These patterns can be found in the project code
base by computing and comparing high dimensional feature vectors similar to the
way Latent Semantic Analysis is used to find matches between snippets of text.

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

28

CTPA can detect patterns independent of application (e.g., game versus simula-
tion). This enables the computation of indicators suggesting transfer of concepts
relevant to Computational Thinking from one domain to another. CTPA has been
validated and published.

• Affective Assessment: Retention of Flow (RoF). Retention of Flow uses education
data mining to assess Flow of students following instructions to create a game pro-
ject similar to IKEA customers following instructions to assemble furniture. A
Markov-chain model is employed to predict retention functions. With thousands of
students building games this model can determine motivational levels, i.e., Flow,
over time. Discrepancies between the model and actual data is indicative of poten-
tial instructional challenges that may result in either boredom or anxiety. This kind
of retention data does exist for 3rd party activities such as the Angry Birds Hour of
Code 2013 tutorial created by Code.org. RoF has been used to compare motiva-
tional levels across some of these tutorials suggesting very high levels of motiva-
tion for Scalable Game Design projects. This research is in an early stage but has
already been published [13, 14] including comparisons of Retention of Flow data
from different countries [15] (USA, Mexico and Switzerland).

Retention of Flow is particularly relevant to the discussion of “have to” versus “want
to” because it is based on voluntary tasks such as programming a game and measures
how far participants will progress without being forced. Our 3D Frogger Hour of
Code tutorial was intentionally designed to be a cliffhanger activity. That is, within
the one-hour time limit of the Hour of Code event participants would be able to create
the first couple of agents (the Frog, the road and trucks), create a first game level and
program the frog to be controllable by cursor keys. The participants would be able to
see that the tutorial has addition chapters raising the question of how likely they
would “want to” continue.

In a first stage we just analyzed the retention data exploring how many participants
would write at least 1 line of code, at least 2 lines of code, etc. This analysis revealed
that the data closely matched negative exponential distributions characterized by sur-
vival functions and also found in participation drop off in MOOCs and other pro-
gramming environments. Discrepancies between the negative exponential fit curve
and the actual data (Fig. 2 blue versus black line) could be explained through three
types of challenges: cognitive challenges, e.g., confusing instructions, technical chal-
lenges, e.g., browsers crashing when typing in unrecognized characters, and practical
challenges, e.g., schools only allocating exactly one hour for the activity.

Most interestingly the negative exponential curve continued beyond the first hour
of instructions and even beyond all instructions. That is, our cliffhanger approach
worked in the sense that participants continued beyond the time typically allocated in
schools at rates matching the rates of the first hour. Moreover, the rates were actually
higher than the retention rates of the Angry Birds tutorial built by code.org. We can
only speculate that the game design process including the design of their own charac-
ters and worlds was key to reach these high levels of motivation.

In a second step we wanted to model the decision process that participants must
have gone through. Following instructions such as the instructions to build a LEGO

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

29

construction, e.g., a LEGO Star Wars spaceship, can be conceptualized as sequence of
instructions to build an artifact. Each instruction will only be followed with a certain
probability. We have formulated a good design conjecture suggesting that it makes
sense to design tutorials in a way that each step poses roughly the same level of chal-
lenge. A Markov chain can be used to model this process of equal probabilities to
continue after each step. Using this model we can derive the probability to continue
from the retention data to find anomalies.

Fig. 5. Retention of Flow (blue) and Probability to Continue (red) versus lines of code. 55 lines
of code is roughly the result of one hour of programming.

The data resulting from computing the probability (Fig. 5) to continue is very fine
grained and can be used to quickly identify potential trouble spots in the instructional
material. These so called drops and kinks can be interpreted as deviations from a Flow
state, which, in turn, can shed light on the threshold between “have to” and “want to.”

3 Interactions between Cognitive and Affective Challenges

Scientifically speaking it is typically desirable to be able to comprehend individual
conditions of complex systems isolated from each other. The Cognitive/Affective
space, ideally, would enable the orthogonal investigation of cognitive and affective
concerns. However, in reality, it is difficult to separate probable interactions between

Drop

Drop

Drop
Drop

+Kink

-Kink

+Kink

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

30

these two dimensions. For example, it is likely that people are willing to tackle hard
problems in the presence of a compelling incentive. These incentives, in turn, may
interact with intrinsic and extrinsic motivation [16].

The Cognitive/Affective Space can be segmented into intrinsic motivation (Fig. 6,
green = “want to”) and extrinsic motivation (Fig. 6, red = “have to”). Extrinsic moti-
vation is often based on rewards such as receiving money for accomplishing a task.
However, as suggested by Benabou, the impact of rewards onto intrinsic and extrinsic
motivation is surprisingly difficult to predict. For instance, the impact of a reward is
likely to depend on the context in which the reward is provided. An “ex ante” award,
that is an award that is promised ahead of accomplishing the task may actually dimin-
ish intrinsic motivation by signaling that the task will be boring. “Ex post” rewards,
in contrast, such as providing a bicycle to a hard working child, may suggest that a
task was considered difficult and that the person accomplishing the task exhibited tal-
ent. In other words, unlike the “ex ante” reward, the “ex post” reward may have a pos-
itive impact onto intrinsic motivation.

Four examples illustrate the “want to” “have to” segmentation illustrated in Fig. 6:

1. Writing C++ Program to compute prime numbers. This is our classical example
of a task that is hard and boring. Perhaps with the exception of mathematicians the
intrinsic motivation of most people to compute prime numbers is minimal. Moreo-
ver, writing a C++ program to compute prime numbers is difficult tasks for people
with no prior programming experience.

2. Cleaning up your room. There is no high cognitive load on cleaning up a room but
this task is commonly perceived to be very boring. It may be difficult to develop
intrinsic motivation for this kind of task due to its Sisyphean nature. It takes con-
siderable effort to clean up the room but the chance that the room will quickly get
messy again is high.

3. Watch cat videos. The immense number of people who have watched cat videos on
YouTube or even shared cat videos through social media is astronomic and is in-
dicative of how excited most people appear to get by watching cat videos. Watch-
ing these videos is certainly not hard. Tasks that are this easy and this exciting, i.e.,
tasks that are in this deep green section of the “want to” space are not typically
well rewarded. In other words, it would probably be difficult to find a job based on
tasks like this.

4. Solving Crossword Puzzles. Many find solving crossword puzzles interesting but
some crossword puzzles can also be quite hard. The transition from 4a to 4b cap-
tures a gradual increase along the cognitive challenge dimension. From Monday to
Saturday the crossword puzzle featured daily in the New York Times gradually in-
creases from simple to super hard.

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

31

Fig. 6. Tasks: Want to or Have to? The Cognitive and Affective Challenges Interactions

Revisiting Fig. 1 and comparing it to Fig. 6 suggest a potential contradiction. In Fig. 1
the upper right corner, i.e., the Holy Grail of Computer Science education appears to
be roughly aligned with “watching cat videos on YouTube” in Fig. 6. Importantly,
however, one should not conclude from this alignment that Computer Science educa-
tion focuses on tasks that are necessarily easy and exciting. Instead, the Holy Grail
should be understood as a low threshold starting point for the apprehensive masses
with no experience in programming sharing a negative perception of programming.
Perhaps the threshold of entry for novices should try to be as low as watching cat vid-
eos in order to be become something that people “want to” do. Ultimately, however,
Computer Science education must include a well-designed path to move from simpler
towards more complex cognitive challenges. Similar to the notion of the gradually
more sophisticated New York Times crossword puzzles Scalable Game Design, as
Computer Science education strategy, is based on an approach to gradually move
from easy to hard Computer Science education challenges [17].

4 Conclusions

The boundary between “have to” and “want to” can be explored through the Cogni-
tive/Affective Challenges framework. On the one hand, tools can be used to mitigate
these challenges. On the other hand, instruments can be devised to measure cognitive
and affective challenges. There are complex interactions between cognitive and affec-

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

32

tive challenges but Retention of Flow is a research instrument that can identify and
even measure concrete challenges. Once these challenges have been identified
through research instruments they can be addressed to improve tools and instructions
to gradually shift from activities that are “hard and boring” to ones that are “accessi-
ble and exciting.”

5 Acknowledgements

This work is supported by the National Science Foundation under Grant Numbers
0833612, 1345523, and 0848962, by the Hasler Foundation, the Swiss National Sci-
ence Foundation under grant CRAGP2_158545, and. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of these foundations.

6 References

1. A. Repenning, "Making Programming Accessible and Exciting," IEEE Computer, vol. 18,
pp. 78-81, 2013.

2. "Women Who Choose Computer Science – What Really Matters, The Critical Role of
Encouragement and Exposure," Google, Google Report, Technical reportMay 26, 2014
2014.

3. A. Repenning and J. Ambach, "Tactile Programming: A Unified Manipulation Paradigm
Supporting Program Comprehension, Composition and Sharing," presented at the 1996
IEEE Symposium of Visual Languages, Boulder, CO, 1996.

4. A. Repenning, D. C. Webb, C. Brand, F. Gluck, R. Grover, S. Miller, et al., "Beyond
Minecraft: Facilitating Computational Thinking through Modeling and Programming in
3D," IEEE Computer Graphics and Applications, vol. 34, pp. 68-71, May-June 2014.

5. A. Repenning and A. Ioannidou, "AgentCubes: Raising the Ceiling of End-User
Development in Education through Incremental 3D," presented at the IEEE Symposium on
Visual Languages and Human-Centric Computing 2006, Brighton, United Kingdom, 2006.

6. A. Repenning, A. Basawapatna, and N. Escherle, "Computational Thinking Tools,"
presented at the IEEE Symposium on Visual Languages and Human-Centric Computing,
Cambridge, UK, 2016.

7. G. Fischer, "Domain-Oriented Design Environments," in Automated Software
Engineering. vol. 1, ed Boston, MA: Kluwer Academic Publishers, 1994, pp. 177-203.

8. D. Webb, A. Repenning, and K. Koh, "Toward an Emergent Theory of Broadening
Participation in Computer Science Education," presented at the ACM Special Interest
Group on Computer Science Education Conference, (SIGCSE 2012), Raleigh, North
Carolina, USA., 2012.

9. A. Repenning, D. C. Webb, K. H. Koh, H. Nickerson, S. B. Miller, C. Brand, et al.,
"Scalable Game Design: A Strategy to Bring Systemic Computer Science Education to
Schools through Game Design and Simulation Creation," Transactions on Computing
Education (TOCE), vol. 15, pp. 1-31, 2015.

10. M. Bienkowski, E. Snow, D. Rutstein, and S. Grover, "Assessment Design Patterns for
Computational Thinking Practices in Secondary Computer Science: A First Look," SRI
International2015.

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

33

11. A. Ioannidou, V. Bennett, K. H. Koh, A. Basawapatna, and A. Repenning, "Computational
Thinking Patterns," presented at the Annual Meeting of the American Educational
Research Association (AERA 2011), New Orleans, LA., 2011.

12. K. H. Koh, A. Basawapatna, V. Bennett, and A. Repenning, "Towards the Automatic
Recognition of Computational Thinking for Adaptive Visual Language Learning,"
presented at the Conference on Visual Languages and Human Centric Computing
(VL/HCC 2010), Madrid, Spain, 2010.

13. A. Repenning, A. Basawapatna, D. Assaf, C. Maiello, and N. Escherle, "Retention of
Flow: Evaluating a Computer Science Education Week Activity," presented at the Special
Interest Group of Computer Science Education (SIGCSE 2016), Memphis, Tennessee,
2016.

14. A. Repenning and A. Basawapatna, "Drops and Kinks: Modeling the Retention of Flow for
Hour of Code Style Tutorials," presented at the The 11th Workshop in Primary and
Secondary Computing Education (WiPSCE 2016), Münster, Germany, 2016.

15. N. Escherle, S. Ramirez-Ramirez, A. Basawapatna, D. Assaf, A. Repenning, C. Maiello, et
al., "Piloting Computer Science Education Week in Mexico," presented at the Special
Interest Group of Computer Science Education (SIGCSE 2016), Memphis, Tennessee,
2016.

16. R. Benabou and J. Tirole, "Intrinsic and extrinsic motivation," The Review of Economic
Studies, vol. 70, pp. 489-520, 2003.

17. A. Basawapatna, A. Repenning, K. H. Koh, and H. Nickerson, "The Zones of Proximal
Flow: Guiding Students Through A Space Of Computational Thinking Skills and
Challenges," presented at the International Computing Education Research (ICER 2013),
San Diego, CA, USA., 2013.

Proc. of Fourth International Workshop on Cultures of Participation in the Digital Age - CoPDA 2016
Gothenburg (Sweden), October 23, 2016 (published at http://ceur-ws.org).
Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

34

