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Abstract

This paper presents a method for the automatic conversion of constituency
trees into deep dependency graphs consisting of primary, secondary, and se-
mantic relations. Our work is distinguished from previous work concerning
the generation of shallow dependency trees such that it generates dependency
graphs incorporating deep structures in which relations stay consistent regard-
less of their surface positions, and derives relations between out-of-domain
arguments, caused by syntactic variations such as open clause, relative clause,
or coordination, and their predicates so the complete argument structures are
represented for both verbal and non-verbal predicates. Our deep dependency
graph conversion recovers important argument relations that would be missed
by dependency tree conversion, and merges syntactic and semantic relations
into one unified representation, which can reduce the bundle of developing
another layer of annotation dedicated for predicate argument structures. Our
graph conversion method is applied to six corpora in English and generated
over 4.6M dependency graphs covering 20 different genres.1

1 Introduction

Several approaches have been proposed for the automatic conversion of constituency
trees into dependency trees in English [8, 9, 12, 13, 22]. Multiple benefits are found
by this type of conversion. First, there exists a large amount of corpora annotated
with constituency trees in English such that by converting them into dependency
trees, large data can be obtained for building robust dependency parsing models with
a minimum of manual effort. Second, long-distance dependencies are represented
by non-projective dependencies in dependency trees, which can be reliably found by
the current state-of-the-art dependency parsers [10], whereas they are represented by
empty categories in constituency trees and little to no constituency parsers produce
them well [15]. Third, dependency trees are more suitable for representing flexible
word order languages as well as colloquial writings such that they are often preferred
to represent universal structures over constituency trees.

1All our resources are publicly available: https://github.com/emorynlp/ddr
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Most of the previous work focuses on the generation of shallow dependency trees,
which do not necessarily carry on the same dependency structures given different
syntactic alternations even when they comprise similar semantics. For the following
sentences, shallow dependency trees give different structures although the underly-
ing semantics of these sentence pairs are the same:

John called Mary vs. John made a call to Mary
John gave Mary a book vs. A book was given by John to Mary

Furthermore, since dependency trees are bounded by tree properties, single-root,
connected, single-head, and acyclic, they cannot represent any argument structure
that would break these properties [25]. Such argument structures occur often, where
an argument is shared by multiple predicates (e.g., open clauses, coordination) or it
becomes the head of its predicate by the syntax (e.g., relative clauses). Preserving the
tree properties allows the development of efficient parsing models [20, 30, 32, 41];
however, this ends up requiring the development of another model for finding the
missing arguments (e.g., semantic role labeling), which can be more cumbersome
than developing one graph parsing model that generates deep dependency graphs.

This paper presents a method that converts the Penn Treebank style constituency
trees [27] into deep dependency graphs. Our dependency graphs are motivated by
deep structures [11], where arguments take the same semantic roles regardless of
their surface positions, and give complete predicate argument structures by utilizing
function tags, empty categories, and unexplored features in coordination provided
by the constituency trees. We believe that this work will be beneficial for those who
need a large amount of dependency graphs with rich predicate argument structures,
where predicates are abstracted away from their syntactic variations.

2 Related Work

Nivre [31] proposed a deterministic conversion method using head-finding and label-
ing rules for the conversion of constituency trees into dependency trees. Johansson
and Nugues [22] improved this method by adding non-projective dependencies and
semantic relations using empty categories and function tags; their representation
had been used for the CoNLL’08-09 shared tasks [17, 37]. Choi and Palmer [8]
extended this work by updating the head-finding rules for the recent Penn Treebank
format and handling several complex structures such as small clauses or gapping
relations. de Marneffe and Manning [12] suggested a separate conversion method
that gives rich dependency labels, well-known as the Stanford typed dependencies.
Choi and Palmer [9] improved this work by adding non-projective dependencies
and secondary dependencies. de Marneffe et al. [13] introduced another conversion
method aiming towards the Universal Dependencies [33], a project that attempts
to develop an universal representation for multiple languages. Our work is distin-
guished from the previous work because they mostly target on the generation of tree
structures whereas our main focus is on the generation of graph structures.

36



Our work was highly inspired by previous frameworks on lexicalized tree adjoining
grammars (LTAG), combinatory categorial grammars (CCG), lexical functional
grammars (LFG), and head-driven phrase structure grammars (HPSG). Xia [39]
extracted LTAG from constituency trees by automatically deriving elementary trees
with linguistic knowledge. Hockenmaier and Steedman [18] converted constituency
trees into a corpus of CCG derivations by making several systematic changes in the
constituency trees, knowns as CCGbank [19]. Cahill et al. [5] extracted LFG subcat-
egorization frames and paths linking long distance dependencies from f-structures
converted from constituency trees. Miyao et al. [29] extracted HPSG by deriving
fine-grained lexical entries from constituency trees with heuristic annotations. Nu-
merous statistical parsers have been developed from the corpora generated by these
approaches where the generated structures can be viewed as direct acyclic graphs.
All of the above approaches were based on the old bracketing guidelines from the
Penn Treebank [26], whereas we followed the latest guidelines that made several
structural as well as tagging changes. Our work is similar to Schuster and Manning
[36] in a way that we both try to find the complete predicate argument structures
by adding secondary dependencies to shallow dependency trees, but distinguished
because their dependency relations are still sensitive to the surface positions whereas
such syntactic alternations are abstracted away from our representation.

There exist several corpora consisting of deep dependency graphs. Kromann
[24] introduced the Danish Dependency Treebank containing dependency graphs
with long-distance dependencies, gapping relations, and anaphoric reference links.
Al-Raheb et al. [1] created the DCU 250 Arabic Dependency Bank including manual
annotation based on the theoretical framework of LFG. Yu et al. [42] generated the
Enju Chinese Treebank (ECT) from the Penn Chinese Treebank [40] by developing
a large-scale grammar based on HPSG. Flickinger et al. [14] introduced Deep-
Bank derived from parsing results using linguistically precise HPSG and manual
disambiguation. Hajič et al. [16] created the Prague Czech-English Dependency
Treebank (PDT) consisting of parallel dependency graphs over the constituency
trees in the Penn Treebank and their Czech translations. ECT, DeepBank, and PDT
were used for the SemEval 2015 Task 18: Broad-Coverage Semantic Dependency
Parsing. Candito et al. [7] introduced the Sequoia French Treebank that added a
deep syntactic representation to the existing Sequia corpus [6].

Although not directly related, it is worth mentioning the existing corpora con-
sisting of predicate argument structures. Baker et al. [3] introduced FrameNet based
on frame semantics that gave manual annotation of lexical units and their semantic
frames. Palmer et al. [34] created PropBank where each predicate was annotated
with a sense and each sense came with its own argument structure. Meyers et al. [28]
created NomBank providing annotation of nominal arguments in the Penn Treebank
by fine-tuning the lexical entries. The original PropBank included only verbal pred-
icates; Hwang et al. [21] extended PropBank with light verb constructions where
eventive nouns associated with light verbs were also considered. Banarescu et al.
[4] introduced Abstract Meaning Representation which was motivated by PropBank
but richer in representation and more abstracting away from syntax.
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3 Deep Dependency Graph

Our deep dependency graphs (DDG) preserve only two out of the four tree properties:
single-root and connected. Two types of dependencies are used to represent DDG.
The primary dependencies, represented by the top arcs in figures, form dependency
trees similar to the ones introduced by the Universal Dependencies (UD) [33]. The
secondary dependencies, represented by the bottom arcs in figures, form dependency
graphs allowing multiple heads and cyclic relations. Separating these two types of
dependencies enables to develop either tree or graph parsing models. Additionally,
semantic roles extracted from function tags are annotated on the head nodes.2

3.1 Non-verbal Predicates

Copula Non-verbal predicates are mostly constructed by copulas. DDG considers
both the prototypical copula (e.g., be) as well as semi-copulas (e.g., become, remain).
Non-verbal predicates with copulas can be easily identified by checking the function
tag PRD (secondary predicate) in constituency trees (Figure 1a). Unlike UD, the
preposition becomes the head of a preposition phrase when it is a predicate in DDG
(Figure 1b). This is to avoid multiple subjects per predicate, which would be caused
by making a clause as the head of a prepositional phrase (Figure 1c).

Light verb construction Non-verbal predicates can also be constructed by light-
verbs, which are not annotated in constituency trees but they are in PropBank [21].
A set of light verbs L = {make, take, have, do, give, keep}, a set of 2,474 eventive
nouns N = {call, development, violation, . . .}, and a map M ∈ |L|× |N| → |P| =
{(give, call)→ to, (make, development)→ of, . . . } of prepositions indicating the
objects of the nominal predicates are collected from PropBank. Given a verb v ∈ L
with the direct object n ∈ N, v is considered a light verb and the preposition phrase
that immediately follows n and contains the preposition p←M(v,n) is considered
the object of n in DDG (Figure 2b). This lexicon-based approach yields about 2.5
times more light verb constructions than PropBank annotation; further assessment
of this pseudo annotation should be performed, which we will explore in the future.

3.2 Deep Arguments

Dative Indirect objects as well as preposition phrases whose semantic roles are the
same as the indirect objects are considered datives. A nominal phrase is identified
as an indirect object if it is followed by another nominal phrase representing the
direct object (Figure 3a). A preposition phrase is considered a dative if it has either
the function tag DTV (dative; Figure 3b) or BNF (benefactive; Figure 3c). Whether or
not all benefactives should be considered datives is opened to a discussion; we plan
to analyze this by using large unstructured data such as Wikipedia to measure the
likelihood of dative constructions for each verb.
2All figures are provided together at the end of this paper.
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Expletive Both the existential there and the extrapositional it in the subject posi-
tion are considered expletives. The existential there can be identified by checking
the part-of-speech tag EX. The extrapositional it is indicated by the empty category
*EXP*-d in constituency trees, where d is the index to the referent clause (Figure 4c).
When there exists an expletive, DDG labels the referent as the subject of the main
predicate (Figures 4a and 4d) such that it is consistently represented regardless of
the syntactic alternations, whereas it is not the case in UD (Figures 4b and 4e).

Passive construction Arguments in passive constructions are recognized as they
would be in active constructions. The NP-movement for a passive construction is
indicated by the empty category *-d in the constituency tree, where d is the index
to the antecedent (Figures 5a and 5b). However, the NP-movement for a reduced
passive construction is indicated by the empty category * with no index provided for
the antecedent (Figure 5c). To find the antecedents in reduced passive constructions,
we use the heuristic provided by NLP4J, an open source NLP toolkit, which gives
over 99% agreement to the manual annotation of this kind in PropBank.3 In Figure 5,
John, Mary, and book, are the subject (nsbj), the dative (dat), and the object (obj)
of the predicate give, regardless of their syntactic variations in the active, passive,
and reduced passive constructions, which can be achieved by deriving dependency
relations from the empty categories. Note that the object relation in Figure 5c would
cause a cyclic relation among primary dependencies such that it is represented by
the secondary dependency in DDG.

Small clause A small clause is a declarative clause that consists of a subject and a
secondary predicate, identified by the function tags SBJ and PRD, respectively. There
are two kinds of small clauses found in constituency trees, one with an internal
subject and the other with an external subject. Figure 6 shows examples of small
clauses with internal subjects. In this case, John is consistently recognized as the
subject of the adjectival predicate smart in the declarative clause (Figure 6a), the
small clause (Figure 6b), and the small clause in the passive construction (Figure 6c).
The subject relation in Figure 6c causes the non-projective dependency, which adds
another complexity to DDG; nonetheless, making John as the subject of consider
instead of smart as in UD would yield different relations between active (Figure 7a)
and passive (Figure 7b) constructions, which is against the main objective of DDG.

Unlike the case of a small clause with the internal subject, a small clause with
the external subject contains the empty category *PRO*-d where d is the index to
the external subject. In this case, the external subject takes two separate semantic
roles, one from its matrix verb and the other from the secondary predicate in the
small clause. In Figure 8, John is consistently recognized as the object of the verbal
predicate call and the subject of the nominal predicate baptist for both the active
(Figure 8a) and the passive (Figure 8b) constructions in DDG, whereas it is not
the case in UD. The subject relation between John and baptist is preserved by the
secondary dependency to avoid multiple heads among the primary dependencies.
3This heuristic is currently used to pseudo annotate these links in PropBank, labeled as LINK-PSV.
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Open clause An open clause is a clause with the external subject indicated by the
empty category *PRO*-d (see the description above). Figure 9 shows examples of
open clauses. The external subjects are represented by the secondary dependencies
to avoid multiple heads. Notice that the head of the open clause, teach, in Figure 9b
is assigned with the semantic role prp (purpose) extracted from the function tag
PRP, which gives a more fine-grained relation to this type (Section 3.4).

Relative clause The NP-movement for the relativizer in a relative clause is noted
by the empty category *T*-d in the constituency tree. Each relativizer is assigned
with the dependency relation before its NP-movement and labeled as r-*, indicating
that there exists a referent to this relativizer that should be assigned with the same
relation. In Figure 10a, the relativizer who becomes the subject of the predicate smart
so it is labeled as r-nsbj, implying that there exists the referent John that should
be considered the real subject of smart. Similarly in Figure 10b, the relativizer who
becomes the dative of the predicate buy so labeled as r-dat, implying that there
exists John who is the real dative of buy. These referent relations are represented by
the secondary dependencies to avoid cyclic relations. The constituency trees do not
provide such referent information; we again use the heuristic provided by NLP4J,4

which has been used to pseudo generate such annotation in PropBank, LINK-SLC.

Coordination Arguments in coordination structures are shared across predicates.
These arguments can be identified in constituency trees; they are either the siblings
of the coordinated verbs (e.g., the book and last year in Figure 11a) or the siblings
of the verb phrases that are the ancestors of these verbs (e.g., John in Figure 11a).
When the coordination is not on the same level, right node raising is used, which can
be identified by the empty category *RNR*-d. In Figure 11b, John is coordinated
across the verb phrase including value and the preposition phrase including for.
Unlike the coordinated verbs in Figure 11a that are siblings, these are not siblings
so need to be coordinated through right node raising. The coordinated arguments
are represented by the secondary dependencies to avoid multiple heads.

3.3 Auxiliaries

Modal adjective Modal adjectives are connected with the class of modal verbs
such as can, may, or should that are used with non-modal verbs to express possibility,
permission, intention, etc:

able 915 ready 105 prepared 32 due 24 glad 21
likely 235 happy 69 eager 30 sure 24 unwilling 20
willing 173 about 49 free 30 determined 22 busy 18
unable 165 reluctant 44 unlikely 28 afraid 22 qualified 16

Table 1: Top-20 modal adjectives and their counts from the corpora in Table 3.

4https://github.com/emorynlp/nlp4j
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An adjective am is considered a modal if 1)it is a non-verbal predicate (i.g., if it
belong to an adjective phrase with the function tag PRD), 2)it is followed by a clause
whose subject is an empty category e, and 3)the antecedent of e is the subject of
am. In Figure 12, able and about are considered modal adjectives because they are
followed by the clauses whose subjects are linked to the subjects of the adjectival
predicates, John. Modal adjectives together with modal verbs give another level of
abstraction in DDG.

Raising verb Distinguished from most of the previous work, raising verbs modify
the “raised” verbs in DDG. A verb is considered a raising verb if 1)it is followed
by a clause whose subject is the empty category *-d, and 2)the antecedent of the
empty category is the subject of the raise verb. In Figure 13, the raising verbs go,
have, and keep are followed by the clauses whose subjects are the empty categories
*-1, *-2, and *-3, which all link to the same subject as the raised verb, study.

have 1,846 begin 825 stop 379 keep 158 prove 89
go 1,461 seem 787 be 322 use 157 turn 67
continue 1,210 appear 714 fail 233 get 136 happen 38
need 1,038 start 546 tend 168 ought 91 expect 38

Table 2: Top-20 raising verbs and their counts from the corpora in Table 3.

3.4 Semantic Roles

As shown in Figure 9a, semantic roles are extracted from certain function tags and
added to the terminal heads of the phrases that include such function tags. The
function tags used to extract semantic roles are: DIR: directional, EXT: extent, LOC:
locative, MNR: manner, PRP: purpose, and TMP: temporal.

4 Analysis

4.1 Corpora

Six corpora that consist of the Penn Treebank style constituency trees are used to
generate deep dependency graphs: OntoNotes (Weischedel et al. [38]), the English
Web Treebank (Web; Petrov and McDonald [35]), QuestionBank (Judge et al. [23]),
and the MiPACQ|Sharp|Thyme corpora (Albright et al. [2]). All together, these
corpora cover 20 different genres including formal, colloquial, conversational, and
clinical documents, providing enough diversities to our dependency representation.

OntoNotes Web Question MiPACQ Sharp Thyme
SC 138,566 16,622 4,000 19,141 50,725 88,893
WC 2,620,495 254,830 38,188 269,178 499,834 936,166

Table 3: Distributions of six corpora used to generate deep dependency graphs.
SC: sentence count, WC: word count.
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4.2 Primary vs. Secondary Dependencies

Table 4 shows the distributions of the primary and secondary dependencies generated
by our deep dependency graph conversion. At a glimpse, the portion of the secondary
dependencies over the entire primary dependencies seems rather small (about 2.3%).
However, when only the core arguments (*sbj, obj, dat, comp) and the adverbials
(adv*, neg, ppmod) are considered, where the secondary dependencies are mostly
focused on, the portion increases to 8.4%, which is more significant. Few of the
secondary dependencies are generated for unexpected relations such as acl, appo,
and attr; from our analysis, we found that those were mostly caused by annotation
errors in constituency trees.

4.3 Syntactic vs. Semantic Dependencies

Table 5 shows the confusion matrix between the syntactic dependencies in Table 4
and the semantic roles in Section 3.4. As expected, the adverbials followed by the
clausal complements (comp) take the most portion of the semantic dependencies.
A surprising number of semantic roles are assigned to the root; from our analysis,
we found that those were mostly caused by non-verbal predicates implying either
locative or temporal information. It is possible to use these semantic dependencies
in place of the syntactic dependencies, which will increase the number of labels,
but will allow to develop a graph parser that handles both syntactic and semantic
dependencies without developing complex joint inference models.

5 Conclusion

We present a conversion method that automatically transforms constituency trees
into deep dependency graphs. Our graphs consist of three types of relations, pri-
mary dependencies, secondary dependencies, and semantic roles, which can be
processed separately or together to produce one unified dependency representation.
The primary dependencies form dependency trees that can be generated by any
non-projective dependency parser. The secondary dependencies together with the
primary dependencies form deep dependency graphs. The semantic roles together
with the syntactic dependencies form rich predicate argument structures. Our con-
version method is applied to large corpora (over 4.6 times larger than the original
Penn Treebank), which provides big data with much diversities. We plan to further
extend this approach to more semantically-oriented dependency graphs by utilizing
existing lexicons such as PropBank and VerbNet.
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Type Label Description Primary Secondary

Subject csbj Clausal subject 5,291 123
expl Expletive 10,808 0
nsbj Nominal subject 298,418 71,383

Object
comp Clausal complement 86,884 105
dat Dative 6,763 87
obj (Direct or preposition) object 205,149 20,785

Auxiliary

aux Auxiliary verb 148,829 0
cop Copula 81,661 0
lv Light verb 7,655 0
modal Modal (verb or adjective) 49,259 0
raise Raising verb 10,598 0
acl Clausal modifier of nominal 24,791 7
appo Apposition 32,460 17

Nominal attr Attribute 352,939 14
and det Determiner 334,784 0

Quantifier num Numeric modifier 95,957 0
poss Possessive modifier 62,489 0
relcl Relative clause 35,371 0

Adverbial

adv Adverbial 156,473 7,736
advcl Adverbial clause 49,503 1,750
advnp Adverbial noun phrase 73,026 480
neg Negation 26,373 1,037
ppmod Preposition phrase 371,927 4,471

Particle
case Case marker 420,045 0
mark Clausal marker 47,286 0
prt Verb particle 13,078 0

Coordination cc Coordinating conjunction 131,622 0
conj Conjunct 137,128 0

Miscellaneous

com Compound word 270,326 0
dep Unclassified dependency 39,101 0
disc Discourse element 14,834 0
meta Meta element 19,228 0
p Punctuation or symbol 647,505 0
prn Parenthetical notation 6,973 0
root Root 318,694 0
voc Vocative 2,303 0

Referential

r-adv Referential adv 2,220 0
r-advcl Referential advcl 2 0
r-advnp Referential advnp 16 0
r-attr Referential attr 1 0
r-comp Referential comp 1 0
r-dat Referential dat 13 0
r-nsbj Referential nsbj 17,523 0
r-obj Referential obj 1,975 0
r-ppmod Referential ppmod 1,409 0

Total 4,618,691 107,995

Table 4: Distributions of the primary and the secondary dependencies for each label.
The last two columns show the frequency counts of the primary and the secondary
dependencies across all corpora in Table 3, respectively.
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clr dir ext loc mnr prp tmp Total
csbj 3 0 0 32 4 0 4 43
expl 0 0 0 4 0 0 0 4
nsbj 99 4 0 8 4 1 6 122
comp 5,736 10 0 779 39 89 166 6,819
dat 3 0 0 1 0 0 0 4
obj 546 9 0 22 3 5 6 591
acl 7 0 0 45 1 4 16 73
appo 15 3 0 6 1 0 7 32
attr 0 0 0 17 0 0 5 22
num 3 0 2 0 0 0 44 49
relcl 14 9 2 437 9 14 31 516
adv 1,614 3,448 304 6,725 9,800 1,210 32,172 55,273
advcl 38 24 2 820 648 13,174 10,155 24,861
advnp 0 92 1,113 3,852 441 19 27,678 33,195
neg 0 1 0 1 0 1 1,597 1,600
ppmod 37,502 11,280 531 47,195 8,192 7,492 34,687 146,879
case 164 65 2 67 3 36 87 424
conj 80 31 8 382 48 47 141 737
com 0 2 0 14 4 0 148 168
dep 46 3 0 47 5 8 31 140
disc 0 0 0 0 1 0 1 2
meta 16 11 0 68 14 20 96 225
prn 1 1 0 25 2 4 21 54
root 181 44 1 2,519 95 399 2,682 5,921
r-adv 0 8 2 1,176 43 12 891 2,132
r-advcl 0 0 0 1 0 0 1 2
r-advnp 0 3 1 0 2 1 8 15
r-comp 0 0 0 1 0 0 0 1
r-nsbj 5 0 0 0 0 0 0 5
r-ppmod 140 15 2 273 48 44 95 617

Total 46,213 15,063 1,970 64,517 19,407 22,580 110,776 280,526

Table 5: Confusion matrix between the syntactic and the semantic dependencies.
Each cell shows the frequency counts of their overlaps across all corpora in Table 3.
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Figures

(a) Penn Treebank (PTB).

(b) Deep Dependency Graph (DDG).

(c) Universal Dependencies (UD).

Figure 1: Examples of non-verbal predicates constructed by copulas (cop), which
are identified by the function tag PRD in PTB (Figure 1a). The preposition becomes
the head of a preposition phrase when it is a predicate in DDG (Figure 1b), whereas
it is not the case in UD (Figure 1c) such that the verbal predicate imagine ends up
having two nominal subjects (nsubj).
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(a) Deep Dependency Graph (DDG).

(b) Deep Dependency Graph (DDG).

(c) Universal Dependencies (UD).

Figure 2: Examples of non-verbal predicates constructed by light verbs (lv). Com-
pared to the one without a light verb construction (Figure 2a), the relations between
the predicate call and its arguments John and Mary stay the same in DDG with the
light verb construction (Figure 2b), whereas it is not the case in UD (Figure 2c).
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(c) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 3: Examples of datives. Indirect objects (Figure 3a), preposition phrases with
the function tag DTV (dative; Figure 3b), and preposition phrases with the function
tag BNF (benefactive; Figure 3c) are considered datives (dat).
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(a) Deep Dependency Graph (DDG).

(b) Universal Dependencies (UD).

(c) Penn Treebank (PTB).

(d) Deep Dependency Graph (DDG).

(e) Universal Dependencies (UD).

Figure 4: Examples of expletives (expl) where the subject relations are consistently
represented with the existential there and the extrapositional it in DDG (Figures 4a
and 4d) regardless of their syntactic alternations, whereas it is not the case in UD
(Figures 4b and 4e). The extrapositional it and its referent clause can be identified
by the function tag *EXP* (Figure 4c).
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(c) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 5: Examples of passive constructions where the relations between the pred-
icate give and its arguments, John, Mary, and book, stay the same as the ones in
the active construction (Figure 3a). The object in the reduced passive construction,
book, is represented by the secondary dependency in Figure 5c to avoid the cyclic
relation among the primary dependencies.
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(c) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 6: Examples of small clauses where John is consistently recognized as the
subject of the adjectival predicate smart in the declarative clause (Figure 6a), the
small clause (Figure 6b), and the small clause in the passive construction (Figure 6c).
The subject relation in Figure 6c causes the non-projective dependency, which can
be handled well by most recent dependency parsers.
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(a) Universal Dependencies (UD).

(b) Universal Dependencies (UD).

Figure 7: Examples of small clauses with internal subjects in UD where John is
recognized as the subject of the adjectival predicate smart in the active construction
(Figure 7a) but not in the passive construction (Figure 7b).
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(a) Penn Treebank (top), Deep Dependency Graph (middle), and Universal Dependencies (bottom).

(b) Penn Treebank (top), Deep Dependency Graph (middle), and Universal Dependencies (bottom).

Figure 8: Examples of small clauses with external subjects where John is consis-
tently recognized as the object of the verbal predicate call and the subject of the
nominal predicate baptist for both the active (Figure 8a) and the passive (Figure 8b)
constructions in DDG, whereas it is not the case in UD. The subject relation between
John and baptist is preserved by the secondary dependency.
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 9: Examples of open clauses where the external subjects are indicated by the
secondary dependencies to avoid multiple heads among the primary dependencies.
Notice that the head of the open clause, teach, is also assigned with the semantic
role prp (purpose) extracted from the function tag PRP.
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 10: Examples of relative clauses (relcl) where the relativizers are assigned
with the dependency relations (r-*) from their original positions indicated by the
empty category *T*-d. Referent relations to these relativizers are represented by the
secondary dependencies to avoid cyclic relations among the primary dependencies.
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 11: Examples of coordinated structures (conj) with (Figure 11a) and without
(Figure 11b) right node raising, indicated by the empty category *RNR*-d. The
arguments in the coordinations are represented by the secondary dependencies.
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(a) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

(b) Penn Treebank (PTB; top) and Deep Dependency Graph (DDG; bottom).

Figure 12: Examples of modal adjectives, followed by the clauses whose subjects
are linked to the subjects of the adjectival predicates, able and about in Figures 12a
and 12b, respectively.
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(a) Penn Treebank (PTB).

(b) Deep Dependency Graph (DDG).

Figure 13: Examples of raising verbs, followed by the clauses whose subjects are
the empty categories *-d linking to the subject of the raised verb, study.
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