
A Smooth Transition to Modern mathoid-based
Math Rendering in Wikipedia with Automatic

Visual Regression Testing

Moritz Schubotz1 and Alan P. Sexton2

1 Database Systems and Information Management Group,
Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany

schubotz@tu-berlin.de
2 School of Computer Science

University of Birmingham
Edgbaston, Birmingham, U.K.
a.p.sexton@cs.bham.ac.uk

http://png.formulasearchengine.com

Abstract. Pixelated images of mathematical formulae, which are in-
accessible to screen readers and computer algebra systems, disappeared
recently from Wikipedia. In this paper, we describe our efforts in ma-
turing mathoid, the new services that provides better math rendering
to Wikipedia, from a research prototype to a production service and
a novel visual similarity image comparison tool designed for regression
testing mathematical formulae rendering engines.
Currently, updates to Math rendering engines that are used in production
are infrequent. Due to their high complexity and large variety of special
cases, developers are intimidated by the dangers involved in introduc-
ing new features and resolving non critical problems. Today’s hardware
is capable of rendering large collections of mathematical contents in a
reasonable amount of time. Thus, developers can run their new algo-
rithms before using them in production. However, until now they could
not identify the most significant changes in rendering due to the large
data volume and necessity for human inspection of the results.
The novel image comparison tool we are proposing, will help to iden-
tify critical changes in the images and thus lower the bar for improving
production level mathematical rendering engines.

Keywords: Wikipedia, Math rendering, Mathematical formulae, Image com-
parison

1 Introduction

In [11], we analysed different ways to improve math rendering in Wikipedia and
presented our solution, which we coined mathoid. However, two years later, only
a small group of registered users benefit from the improvements in rendering.
In the past two years, many bugs were reported and fixed. Those bugs can be

http://png.formulasearchengine.com


2 Moritz Schubotz and Alan P. Sexton

categorized into two main concerns; performance and layout. While improving
performance is relatively straightforward to measure, improving the layout is still
an open problem [1, 9, 10, 17]. In particular, any work in this area is hindered by
the issue of ensuring that improving the layout of some aspect of math rendering
does not negatively impact other aspects. When such regression testing requires
humans to visually inspect and compare tens of thousands of images, progress
on layout can be slow and error prone.

In this paper, we present a method to automatically compare images of math-
ematical formulae generated by different rendering engines and thus automate
visual regression testing in this domain.

Our paper is structured as follows: We begin by presenting an overview of
the improvements over the old rendering, then we describe the request flow of
the new rendering process in detail and analyse its performance.

Thereafter, we describe mathpipe, the tool we built to compare different ren-
dering mechanisms at scale and finally present the current state of our image
comparison tool. Since this is work in progress, we encourage the reader to visit
http://png.formulasearchengine.com for the latest updates.

2 mathoid’s Improvements Over texvc Rendering

As described in [11], mathoid provides “Robust, Scalable, Fast and Accessible
Math Rendering for Wikipedia.” In 2014 mathoid was one of the first Wikimedia
nodeJS services, supporting the MediaWiki extension Math, which takes care of
the handling of mathematical expressions used in Wikipedia and other websites
running MediaWiki. Today mathoid is constructed from a huge number of services
such as citoid and graphoid, which support the MediaWiki extensions Cite and
Graph respectively. All of these service-supported extensions add complex func-
tionality to MediaWiki, which would be hard to reimplement with native and
efficient PHP code. Moreover, they all share the goal to be “Robust, Scalable,
Fast and Accessible”. The so called service-template provides a common ground
for robustness and scalability and reduces the maintenance effort.

For the Math extension, that means no binaries need to be installed on the
MediaWiki servers and no files in the file-system are created. Thus robustness
is improved with respect to the old approach that relies on the texvc binary
and creates local files [11], which uses MathJax [2] rather than LATEX for the
rendering. Note, that the set of supported ”LATEX like macros“ is exactly the
same for the old and the new system.

With the service template scaling the mathoid service is simple. As an im-
provement over the original version of mathoid presented in [11], now all formulae
of a page are processed in parallel (cf. Section 3) instead of sequential. That way
the page loading time is determined by the formula that takes the longest time
to render and no longer by the sum of all the rendering times. See Section 4 for
the time measurements of individual formulae.

However, most significant to the user are the accessibility component and the
change in the layout itself. After the new rendering was tested on beta clusters

http://png.formulasearchengine.com


mathoid and Automatic Visual Regression Testing for Formulae 3

Fig. 1. Copying MathML expressions from the German version of Wikibooks to Wol-
fram Mathematica: On the left, there is a screen-shot, displaying a section of the book
on quantum mechanics taken on May’16 2016 (the day MathML rendering became the
default rendering mode for mathematical Formulae on Wikibooks) as non registered
visitor using Firefox version 45, with the Native MathML plugin enabled. The photon
momentum was selected, to demonstrate the bounding boxes of the symbols, and to
copy and paste it to the computer Algebra System Mathematica (screen-shot on the
right) as In[8]. The same step was performed for the relativistic momentum In[9].
Thereafter, an additional = sign has been manually inserted to In[8] and Solve[%8,λ]
was typed to compute the De-Broglie wavelength.

it has been enabled on Wikidata and the German version of Wikibooks on May
16th, 2016, and was enabled globally on May 31th, 2016.

As visualized in Figure 1, the MathML code is available to the browser. This
allows screen readers to verbalize the formulae from the additional information
that is neither available from the new SVG image nor from the old PNG image.
The documentation page of the Math extension contains links to examples of
this feature and [3, 4, 8, 12, 14] provide further information on that topic.

However, since MathML requires certain fonts that are not available on all
operating systems, MathML will only be provided to people that have installed
a browser extension that indicates that their browser actually provides good
MathML rendering. This could be either Mozilla Firefox with the Native MathML
plugin [16] or Internet Explorer with the MathPlayer plugin [13]. The majority will
see SVG images, which is already an improvement, especially for high resolution
displays, or in situations were the formulae are printed.

https://de.wikibooks.org/w/index.php?title=Quantenmechanik&oldid=768145#De-Broglie-Wellenl.C3.A4nge
https://www.mediawiki.org/wiki/Extension:Math


4 Moritz Schubotz and Alan P. Sexton

Fig. 2. Overview of the Wikimedia infrastructure (based on an image from Luca
Toscano, which was released under the Creative Commons (CC3) license.)

3 Internals of the New mathoid Rendering

While the Wikipedia request flow as visualized in Figure 2 is quite complicated,
we summarize a typical visit of a page that contains mathematical formulae
below.

1. A user requests a page
2. If that page is not cached (neither physically close to the user or abroad),

MediaWiki renders the page from the internal representation (wikitext) to
HTML. Note that this is only true for a regular visit. If the user wants to
edit the page using the visual editor the page would be rendered by parsoid
(cf. 3).

3. All math elements on a page are collected

https://wikitech.wikimedia.org/w/images/4/4d/Infrastructure_overview.png
http://creativecommons.org/licenses/by-sa/3.0/


mathoid and Automatic Visual Regression Testing for Formulae 5

4. A bundle of requests (the size of this bundle is a performance tuning param-
eter) is sent to restbase (check request)

5. restbase checks the requests; either the result is cached in the internal cas-
sandra data store

6. or it contacts mathoid which calls texvcinfo which calls texvcjs (this will be
explained later in detail).

7. restbase returns the results of the check and other information about the
formulae i.e. the sanitized tex, a hash and the SVG.

8. After a bundle of check requests is returned to the MediaWiki, the extension
evaluates each check response, and either replaces the Math tag with an error
message in case the check request was not successful or collects the hash of
the MathML and SVG.

9. Now, the math extension has collected the hashes of all valid input formulae
and a second request bundle is sent to restbase requesting the MathML
rendering.

10. restbase responds with the MathML rendering from storage. In the header
of the request response, the SVG dimensions are stored.

11. Thereafter, the math extension replaces the math tags with MathML and a
link to the SVG fallback image. The style-sheet is configured in a way that
the fallback image is visible by default and the MathML element is invisible.

12. Finally, MediaWiki returns the HTML of the page, including the links to
the SVG fallback images.

13. If the browser of the user does not overwrite the visibility information of the
MathML and SVG, the browser sends a request for each individual formula.

14. While most of the image requests will be served from either the browser
cache or varnish (a caching http reverse proxy [15]), the rest will go directly
to restbase without contacting MediaWiki.

4 Measuring mathoid’s performance

To evaluate the absolute performance of the new rendering, we performed mea-
surements with the following set-up: We use two identical work stations (Intel(R)
Core(tm) i7-3770 CPU @ 3.40GHz 16 GB RAM, Gigabit Ethernet, 2x1 TB HDD,
Ubuntu 14 LTS). One system (hereafter referred to as the server) has the Cas-
sandra storage engine, the restbase Client and mathoid. The other system (client)
has MediaWiki with the extension Math and MathSearch, it uses as many par-
allel workers as CPUs are present (8) to call to get the data as would be done in
production. Our performance tests script can be downloaded from github script.

For each formula, the requests are sent in as described in 3 and the time is
measured. Note that, for this test, we did not use the complete endpoint but the
MathML or SVG endpoint respectively. For each formula we randomly chose if
it was rendered first in SVG or MathML mode. The measurement results are
visualized in Figure 3. The figures indicate an almost linear relationship between
the formula length and the rendering time. It should be noted that formulae
whose request could be answered by restbase from the cassandra storage without

https://github.com/wikimedia/mediawiki-extensions-MathSearch/blob/master/maintenance/performance.sh


6 Moritz Schubotz and Alan P. Sexton

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Input length (caracters)

R
en
de
ri
ng
ti
m
e
(m
s)

MathML

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Input length (caracters)

R
en
de
ri
ng
ti
m
e
(m
s)

SVG

(a) MathML rendering (b) SVG rendering

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Input length (caracters)

R
en
de
ri
ng
ti
m
e
(m
s)

Check

0 50 100 150 200 250 300
0.00

0.02

0.04

0.06

0.08

0.10

Input length (caracters)

F
re
qu
en
cy
de
ns
it
y

Input length distribution

(c) Input checking (d) Distribution of input length

Fig. 3. Rendering and verification time versus input length: Measurements for the
Test Collection, with different rendering modes. (a-c) shows the rendering, times and
standard deviations respectively. (a-b) Include two series, where the yellow (lower)
series is the cached result.



mathoid and Automatic Visual Regression Testing for Formulae 7

Fig. 4. mathpipe processing chain

contacting mathoid were fast, independent of the length of the input tex string.
The average was around 4ms. These measurements indicate that, in the average
case, where already rendered formulae get requested again, most of the time
is spend at the checking phase (>20ms). Therefore, the most recent version of
restbase, which has not been tested yet, also caches the check responses from
mathoid. This is supposed to reduce the checking significantly.

Compared to the old LATEX based rendering, which created a LATEX document
for each formulae, rendered that document and thereafter converted it to a PNG
image, this is a significant performance improvement.

5 Comparing Different Rendering Engines with mathpipe

mathpipe is a program specifically designed for testing the different options for
rendering mathematics on the web. It starts with user input (currently limited
to texvc dialects) and goes via different routes to PNG output. All current
routes are visualized in Figure 4. From there on, we perform the analysis of
different generated png images and calculate the similarity scores as described
below. mathpipe has two modes of operation. A command-line mode that can
be used for batch jobs and a web interface. The command-line will be used to
identify the formulae that have the biggest divergence. The web interface will
provide a quick comparison for humans to manually investigate the difference
outputs and check the derived results. We encourage the reader to visit http:
//png.formulasearchengine.com and test an instance of our service.

6 Image comparison

The lack of practical automatic regression testing on mathpipe-generated ren-
derings of the huge collection of mathematical formulae in Wikipedia has been a
serious hinderance to speedy improvement of rendering quality and performance.
Currently, any change made to the rendering pipeline can only be checked vi-
sually by humans. Even then, it is very easy for a human inspector to overlook

http://png.formulasearchengine.com
http://png.formulasearchengine.com


8 Moritz Schubotz and Alan P. Sexton

some small but important error that has arisen in the rendering. The motiva-
tion for automating this procedure with a suitably high precision machine-based
approach is clear.

The problem to be solved involves comparing two PNG images rendered using
different methods from the same input source. These methods vary in their choice
of fonts (and therefore also the thickness of the character strokes), the resolutions
of rendered images, the approaches to anti-aliasing and background transparency
rendering, spacing between characters and relative sizes of characters. Some of
the methods also generate extra empty padding around the images and most
generate some form of greyscale or colour images, the details of which can vary,
rather than monochrome.

In comparing these images, our ideal is to make judgements about the rela-
tive validity of these renderings as an extremely careful human inspector would.
Differences insignificant to the readability and correct interpretation of the un-
derlying mathematical formulas should be overlooked. For example:

– changes of font where corresponding characters from the two images are
visually very similar.

– differences in character spacing in the two images which are within aesthet-
ically reasonable bounds.

– characters that are spatially discrete but close together in one rendering
may touch in another. This is often due to the rendering resolution chosen
together with the antialiasing approach used. If the resulting touching char-
acters are perfectly readable, then this should not cause significant concern
or trigger reporting of errors unless the user is explicitly looking for such
problems.

– with symptoms very similar to the previous case, a single character in one
image may be broken into two or more characters in the other. This arises not
from characters touching, but by the renderer building a character, often an
extendable fence or integral character, out of separate character components.
The renderer is supposed to make such characters touch, but may fail to do
so completely. Such a case rarely interferes with the readability of the image,
but should be overlooked or highlighted as the user requires.

Conversely, significant issues should be identified and reported:

– characters in one image but missing from the other.
– characters that have significantly different shapes, for example if the char-

acter is missing or mis-indexed in the font used in one of the images.
– significant differences in spacing that may confuse the reader, e.g. a super-

superscript that is rendered on the same baseline as a superscript.
– touching characters that are unreadably overlapped.
– broken characters that are so spatially separated that it confuses the reader.

The tolerances used to determine many of the fuzzy quality issues (i.e. “visually
similar”, “aesthetically reasonable”, etc.) described above should be choosable
by the user to correspond to the user’s purpose at the time, although defaults
should be set to practical values for general purpose regression testing.



mathoid and Automatic Visual Regression Testing for Formulae 9

In general, the system should be biased to not overlook serious issues, even if
that means that more insignificant differences are reported as significant (false
positives).

Finally, a practical and robust way of reporting issues found is necessary to
assist developers in quickly identifying problems and their sources.

6.1 Approach

The constraints of a solution as described above mean that a purely image-
focused approach is unlikely to be successful. Instead we have taken an approach
based on a structural analysis of the image into a form where we can deal with
the image components and their relationships more abstractly. This form is based
on connected components. A connected component in a monochrome image is a
maximal set of foreground pixels that are horizontally, vertically or diagonally
connected. Thus an equals symbol, “=” and the letter “i” both have two connected
components, while an equivalence symbol “≡” and a capital greek letter xi, “Ξ”,
both have three.

In brief, the general approach we have chosen involves binarising the images,
decomposing them into sets of connected components, scaling the meta-data
(bounding-box information) about the connected components to make them
comparable between the images, identifying viable pairings of corresponding
connected components in the different images based on relative positions, as-
pect ratios, and size, verifying the pairings using features of the underlying con-
nected component shape and pixel distributions, and finally treating connected
components not successfully paired as possible candidates for touching/broken
character analysis.

It should be noted that, though we use techniques borrowed from the areas
of document analysis and optical character recognition [5], we do not attempt to
classify characters or interpret the mathematical formulae in any way, and hence
we avoid the problems of classifier training, mis-classifications and incomplete-
ness of a model for the structure of mathematical formulae. More precisely, we
borrow only methods of binarisation, connected component analysis and some
simple shape feature extraction methods that are commonly used in document
analysis for character classification purposes but here are used only to provide a
basis for metric shape similarity measurements between corresponding compo-
nents of the two images.

We shall now discuss each part of the approach in detail.

Binarisation and Connected Component Analysis Connected component
analysis requires binary choices between foreground and background images.
Since these images are generated rather than scanned, a very simple binarisation
method selecting the pixel class based only on the RGBA (red-green-blue-alpha)
value of the pixel itself is sufficient. The only issue of (minor) concern is the
different approaches to background colours and anti-aliasing. Background pixels
and anti-aliasing in an effectively monochrome image is best implemented by



10 Moritz Schubotz and Alan P. Sexton

using the same (foreground) colour for all pixels but varying the transparency of
the anti-aliased pixels down to fully transparent for background pixels. However,
some images do change the grey-scale/colour as well as the transparency while
others do not use transparency at all but merely blend the foreground into a
different background colour. Binarisation must be aware of these variations and
manage them all.

Connected component analysis is accomplished using the algorithms de-
scribed in [6, 7]

Cropping and Scaling Removing extraneous background padding is a simple
matter of cropping to the size of the rectangle union of the bounding boxes of
the identified connected components.

Scaling is slightly more subtle; Since these images can be of relatively low
resolution, the size of a pixel relative to the whole connected component can be
significant. Hence scaling the image to a common size can introduce discretisation
artifacts that impede the analysis. Hence the images themselves are not scaled
but a scaled version of the connected component bounding box information
is added. The scale factors are chosen so that one of the images’ information
is scaled to correspond to an image of width 1.0 (using floating point rather
than integer numbers of pixels) and a height that maintains the original aspect
ratio. The other image is scaled so that the image is exactly the same size, even
if that distorts its aspect ratio. This results in relative positions of connected
components in the scale spaces being directly comparable. The underlying image
pixels are not changed so shape analysis is not affected by the scaling.

Simple Component Pairing At this point we attempt to pair off connected
components in one image with the corresponding ones in another. A simple
matching of corresponding positions does not work for a number of reasons:

– While scaling ensures that the left-most and rightmost characters are in very
close to the same horizontal position, variations in spacing may mean that
characters in the centre of the image are significantly out of horizontal align-
ment with the corresponding character of the other image, and, indeed, may
be in exactly the same relative position as a non-corresponding character.
Ditto for vertical alignments.

– Multiple characters in one image may be touching and therefore occur as a
single connected component while they are separated in the other. Therefore
the correct pairing should be of at least one connected component with a set
of connected components.

– Depending on the actual parameters used, a component of one image may
viably, but incorrectly, be paired with any one of a number of different com-
ponents from the other. We call such a case a “multi-match”

– Because of variations of character fonts, positioning and sizing, any choice of
discrimination parameters that correctly accept/reject a pairing in one part
of the image tends to be wrong for another part of the image. An adaptive



mathoid and Automatic Visual Regression Testing for Formulae 11

approach that varies the parameters over different parts of the image might
be possible but it is not clear what criterion can be used to accomplish it
without more in-depth classification or recognition.

For these reasons we chose an iterative approach, where we start with very tight
constraints on acceptable parameters to pair components based on their posi-
tion, aspect ratio and size (i.e. area of the bounding boxes), with a verification
element based on a metric shape similarity measure, to guarantee reliability of
the pairing. This ensures that any pairings found are robust and can be removed
from consideration. Repeating the process with slightly relaxed parameters on
the thinned out set of remaining components allows robust pairings to be made
where, with the full set of components, an unambiguous pairing would not have
been possible. This cycle continues until one of the following holds:

– no unpaired components remain (in which case the two images can be con-
sidered to have passed the comparison check) or

– any further pairings require relaxing the parameters beyond their upper lim-
its or

– there is a component which, at the current parameter setting, could viably
be paired with more than one component (a multi-match).

In the latter two cases further analysis is necessary.

Touching Component Analysis At this point, assuming there are multi-
matches or unpaired components remaining, there is a set of components from
each image that could not be paired with components from the others. The only
allowable remaining situation that would not justify reporting this as an error is
if components are touching in one image but not in the other, and there may be
multiple separate cases involved. Simply trying all possible combinations of ways
that components could touch is computationally infeasible for our purposes.

To find such cases, note that a touching component in one image that cor-
responds to a group of components from the other is necessarily larger than the
individual sub-components. Therefore we work iteratively starting at the largest
remaining unpaired component of both images, the target component, and se-
lect the set of unpaired components (the candidate components) from the other
image that overlap with an expanded version of the bounding box of the target
component. This excludes from consideration components that should not realis-
tically be considered as candidates, but the expansion allows for some distortion
of the spacing between the different images.

Even if the target does correspond to some of the candidate components, it
may not correspond to all. For example, consider the following expressions where
the left is from one image and the right from another:

√
xK

√
xK

Here the target would be the touching
√

K component from the right and the
candidate set would include all three components from the left, because all three



12 Moritz Schubotz and Alan P. Sexton

are within the appropriate space. However, the x should not be included in the
pairing or it will cause the shape matching to fail.

For these reasons, all combinations of the candidate components are consid-
ered by calculating the comparison attributes of the union of each combination,
where the attributes involved are; centre of the bounding box, aspect ratio, area
of bounding box and, only if the checking of those attributes passes, the more
expensive shape similarity test. The final shape similarity test ensures that the
resulting merged shape is still readable. The limitation of the set of candidate
characters to those that overlap the expanded target component bounding box
ensures computational feasibility.

If a pairing is found, the components are removed and the process repeats on
any remaining unpaired components until exhaustion of unpaired components
or failure to find a pairing.

Reporting of Results The results of the above analysis is four-fold:

1. Simple matches: A set of pairs of single compatible components that are
within appropriate matching parameters.

2. Touching matches: A set of pairs of sets of components corresponding to
target/candidate set matching pairs for touching component cases.

3. First image unpaired: A set of components from the first image that could
not be paired with corresponding components from the second.

4. Second image unpaired: A set of components from the second image that
could not be paired with corresponding components from the first.

The test passes if all except simple matches is empty. It can be considered to
pass if touching matches is also non-empty and the user chooses that option. A
short narrative report is generated of the results to a log file or to the standard
output stream. However, a textual description of the problems when errors occur
is frustratingly difficult to interpret. Hence we also generate two error images,
These are cropped binarised images but with unpaired components drawn in one
colour, target components of touching matches in another and the corresponding
matching candidate components in a third. This is usually sufficient for immedi-
ate identification of the problem to the user. However, sometimes it is necessary
to investigate more directly the relative positioning or sizing issues that trig-
gered the comparison failure so we provide a python plugin for the GIMP image
processing tool that allows the two error images to be loaded as separate layers,
scaled and positioned to exactly the same size and position so that, by varying
the transparency of the layers with the GIMP’s layer tool, one can precisely see
the issues involved.

An example of the error results when touching matches are found are shown
in Figure 5

7 Further work

As a work-in-progress, there is still much work to do in refining and improving
the image comparison tool, testing and evaluating it on the various mathpipe



mathoid and Automatic Visual Regression Testing for Formulae 13

Fig. 5. Error images from two different renderings of the same formula. The orginal
of the second image has been articifially edited to force the B′ characters to touch,
as indicated by the green colour. In the first image the two characters that form the
matching candidates are in blue. The third image shows the result when the two images
are scaled and overlaid using the GIMP plugin to demonstrate differences in the spacing
and character shapes between the two images.

rendering pipelines and, eventually, building it into the mathpipe construction
toolchain.

8 Conclusion

We have presented Wikipedia’s new approach to higher performance, higher
quality, scalable, accessible mathematical formula rendering and delivery and
the work we carried out in performance analysis of its results that demonstrates
its huge performance improvement over the previous approach.

We have also presented our work on addressing a critical need for speedier
and more robust development of further improvement in mathematical formula
rendering; namely an image comparison program suited for use in automatic re-
gression testing of mathematical formula rendering software. While this program
is still under heavy development, it is already showing promise in providing sup-
port for more aggressive development of new mathoid-based rendering methods.

Acknowledgments. The authors would like to thank the Wikimedia Foundation
employees, especially Marko Obrovac and Gabriel Wicke for their code reviews,
guidance, contributions, and discussions in the context of mathoid.



Bibliography

[1] Börjesson, E. and Feldt, R. (2012). Automated system testing using visual
GUI testing tools: A comparative study in industry. In Antoniol, G., Bertolino,
A., and Labiche, Y., editors, 5th IEEE Int. Conf. on Software Testing, Veri-
fication and Validation, ICST 2012, pages 350–359. IEEE Computer Society.

[2] Cervone, D. (2012). Mathjax: A Platform for Mathematics on the Web.
Notices of the American Mathematical Society, 59(2):312–316.

[3] Chisholm, W., Vanderheiden, G., and Jacobs, I. (2001). Web content acces-
sibility guidelines 1.0. Interactions, 8(4):35–54.

[4] Cooper, M., Lowe, T., and Taylor, M. (2008). Access to mathematics in web
resources for people with a visual impairment. In Miesenberger, K., Klaus, J.,
Zagler, W., and Karshmer, A., editors, Computers Helping People with Special
Needs, volume 5105 of LNCS, pages 926–933. Springer.

[5] Doermann, D. and Tombre, K., editors (2014). Handbook of Document Image
Processing and Recognition. Springer.

[6] He, L., Chao, Y., and Suzuki, K. (2008). A run-based two-scan labeling
algorithm. IEEE Transactions on Image Processing, 17(5):749–756.

[7] He, L., Chao, Y., Suzuki, K., and Wu, K. (2009). Fast connected-component
labeling. Pattern Recognition, 42(9):1977–1987.

[8] Maddox, S. (2007). Mathematical equations in Braille. Maths, Stats and
Operations Research (MSOR) Connections, 7(2):45–48.

[9] Memon, A., Nagarajan, A., and Xie, Q. (2005). Automating regression test-
ing for evolving GUI software. J. of Software Maintenance, 17(1):27–64.

[10] Memon, A. M. (2008). Automatically repairing event sequence-based GUI
test suites for regression testing. ACM Trans. Softw. Eng. Methodol., 18(2).

[11] Schubotz, M. and Wicke, G. (2014). Mathoid: robust, scalable, fast and
accessible math rendering for wikipedia. In Watt, S. M., Davenport, J. H.,
Sexton, A. P., Sojka, P., and Urban, J., editors, Proc. Int. Conf. on Intelligent
Computer Mathematics (CICM 2014), pages 224–235. Springer.

[12] Soiffer, N. (2005a). MathPlayer. In Proc. 7th Int. ACM Conf. on Computers
and Accessibility – ASSETS 2005, page 204, New York. ACM Press.

[13] Soiffer, N. (2005b). MathPlayer. In Proc. 7th Int. ACM Conf. on Computers
and Accessibility – ASSETS 2005, page 204, New York, New York, USA. ACM
Press.

[14] Sorge, V., Chen, V., Raman, T., and Tseng, D. (2014). Towards making
mathematics a first class citizen in general screen readers. In 11th Web for All
Conference, Seoul, Korea, 6–9 April 2014. ACM.

[15] Varnish (2016). Varnish HTTP cache. https://varnish-cache.org/. Ac-
cessed: 25 June 2016.

[16] Wang, F. (2016). Native MathML. https://addons.mozilla.org/en-US/
firefox/addon/native-mathml. seen May, 2016.

[17] Yoo, S. and Harman, M. (2012). Regression testing minimization, selection
and prioritization: a survey. Softw. Test., Verif. Reliab., 22(2):67–120.

https://varnish-cache.org/
https://addons.mozilla.org/en-US/firefox/addon/native-mathml
https://addons.mozilla.org/en-US/firefox/addon/native-mathml

	1 Introduction
	2 mathoid's Improvements Over texvc Rendering
	3 Internals of the New mathoid Rendering
	4 Measuring mathoid's performance
	5 Comparing Different Rendering Engines with mathpipe
	6 Image comparison
	6.1 Approach

	7 Further work
	8 Conclusion

