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In this paper we consider the problem of enumerating diagonal Latin squares of small order. In particular 

we discuss possible algorithmic approaches to this problem and show our results in this regard. Surprisingly, our 

research showed that the best algorithm for enumerating diagonal Latin squares consists of a number of fixed 

loops, and its effectiveness can be significantly increased by careful tuning and applying special heuristics. We 

used the constructed algorithm to enumerate all diagonal Latin squares of order 8. Also, it is being used to carry 

out large-scale computational experiment aimed at enumeration of diagonal Latin squares of order 9. 

 

Keywords: combinatorics, enumeration, Latin square, volunteer computing 

 
The research was partially supported by Russian Foundation for Basic Research (grants 14-07-00403-a, 15-07-07891-a and 

16-07-00155-a) and by Council for Grants of the President of the Russian Federation (grants NSh-8081.2016.9, MK-

9445.2016.8 and stipend SP-1184.2015.5). We thank citerra [Russia team] for his help in development and implementing of 

some algorithms. 
 

 
© 2016 Eduard I. Vatutin, Oleg S. Zaikin, Alexey D. Zhuravlev, Maxim O. Manzyuk, Stepan E. Kochemazov, Vitaliy S. Titov. 

 

486 



Introduction

One of the important classes of combinatorial and discrete optimization problems [Colbourn, 

Dinitz, 2006] is formed by enumeration problems. During their decision one needs to determine how 

many objects with specified properties exist. The simplest examples of such problems are the well-

known problems about chess rooks, chess queens, etc. For some of them it is possible to formulate 

precise analytic decisions, while to solve others one needs to perform exhaustive search to enumerate 

all possible objects with desired properties. For example, for chess rooks problem the number of pos-

sible dispositions of N  rooks on the board of size N N  matches the number of permutations and is 

equal to !N . For some problems from the considered class the number of decisions can be expressed 

using Stirling numbers (of the first and the second kind), Bell numbers [Becker, Riordan, 1948], the 

number of combinations or partial permutations and so on. At the same time the precise analytical 

formulas for the number of decisions for chess queens problem or the number of Latin squares of or-

der N  are unknown (in the latter case there are known upper and lower bounds). 

The number of decisions usually grows rapidly with the increase of the dimension of a problem 

N , that is why when enumerating corresponding objects using brute force strategy one has to develop 

highly effective program implementation that takes into account the features of considered problem 

and provides high rate of generation of enumerated objects. From the point of view of parallel pro-

gramming the enumeration problems of such type are weakly coupled problems, thus the algorithms 

for their solving can be implemented in the form of parallel programs that are efficient within the con-

text of parallel computing environments with various architecture that comprise grid systems. 

Enumeration of diagonal Latin squares of order less than 9  

In the present paper we study diagonal Latin squares (DLS). An arbitrary DLS is a square table of 

size N N , where each cell is filled by an element of some alphabet (typically a number from 0 to 

1N  ) in such a way that in each row, each column and also in main diagonal and main antidiagonal 

all elements are distinct. Basically, DLS are a special case of Latin squares (LS) that satisfy additional 

diagonality constraints. Using simple transformations that do not violate any of the constraints an arbi-

trary DLS can be transformed to DLS in which the elements of the first row are sorted in ascending 

order. The corresponding squares form an isomorphism class of size !N . The dependence of number 

of LS on N  is well known and presented by A000315 sequence in the Online Encyclopedia of Integer 

Sequences (OEIS) [A000315], the dependence of the number of LS with fixed first row has the num-

ber A000479. For DLS similar sequences are unknown and apparently can be calculated only using 

exhaustive search. 

One can apply different approaches to generate DLS. For example, in [Vatutin, Zhuravlev, …, 

2016] this problem was reduced to Boolean satisfiability problem (SAT) and solved using SAT solv-

ers. In [Vatutin, Zhuravlev, …, 2015] to construct DLS there have been tested exhaustive search 

methods, randomized search methods, ant colony method, and also the original problem regarding the 

existence of solution was reduced to discrete combinatorial optimization problem. All tested heuristic 

methods work relatively well if one wants to construct DLS with more or less uniform distribution 

over the search space formed by all possible DLS of a specific order. However, they are not really 

suitable for enumerating DLS because these methods are not complete (i.e. they cannot guarantee that 

we will construct all possible solutions) and in contrast to the exhaustive search they can produce du-

plicate solutions over time. The average rate of DLS generation in [Zaikin, Kochemazov, 2015] for 

exhaustive search was about 1 DLS of order 10 per second. In [Zaikin. Vatutin. …, 2015] there was 

proposed to fill the cells of DLS in a specific order, in particular, to fill diagonals first and then all the 

other elements row by row. It made it possible to improve the generation rate to about 5000 DLS per 

second. In [Vatutin, Zhuravlev, …, 2015] we performed several algorithmic and high-level optimiza-
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tions of the exhaustive search where while filling Latin square cells we prioritize the ones for which 

on the current step the number of possible elements is low. This and several other modifications made 

it possible to increase generation rate to approximately 200 000 DLS of order 10 per second in a recur-

rent implementation. When we reorganized the algorithm in the form of iterative implementation with 
2

N  nested loops, the generation rate increased to 340 000 DLS per second. 

An advantage of recurrent implementation lies in the fact that we can modify the order in which 

we fill non diagonal cells based on the number of possible elements that can be put into them. Howev-

er, commands CALL and RET in the program code reduce the performance of the program implemen-

tation due to frequent returns. The iterative implementation does not possess this disadvantage, but for 

a price: the order of loops in it is fixed at compile time and can not be changed. Despite this fact, its 

performance is about 1.7 times better, thus it looks more promising for future work. 

In the present paper we further studied how the order of filling cells influences the generation 

rate. In particular, we managed to find the order which significantly increases the generation rate com-

pared to the previously used one. To produce it we used a simple heuristic: on each step we choose to 

fill the cell, which is the most “constrained” by already filled cells. It is based on a simple observation 

that for an arbitrary cell, the size of set of values that can be put into it decreases with each already 

filled cell in the same row/column and diagonal (for diagonal cells). Here we do not care about partic-

ular values, only about the fact that the cells are filled. Thus, we fix the first row of the DLS (since any 

DLS can be transformed accordingly) and choose the cell to be filled next in an iterative process. It 

can be best explained using the following figure, on which we consider DLS of order 5 as an example. 

 

Fig. 1. The order of filling cells for DLS of order 5. Crosses correspond to already filled cells, numbers corre-

spond to the number of constraints imposed by other cells 
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On Fig. 1A we show the initial condition of Latin square cells. Grey cells marked with ‘x’ corre-

spond to already filled cells from the first row. It means that every other cell of this square has at least 

one constraint (because in the same column one element is already used). For cells positioned on main 

diagonal or main antidiagonal there are two constraints: one imposed by the filled element in the same 

column and one produced by the element from the diagonal. It means that the cell in the third row and 

third column has the largest number of constraints (3), thus on this step we fill it. The situation after 

filling the cell (3,3) is displayed on Fig. 1B. Here we recalculate the number of constraints, choose the 

most constrained cell, etc. In a situation when several cells have the same amount constraints we 

choose one of them at random. As a result we construct the order displayed on Fig. 1U. On the first 

glance it may seem that this order does not significantly differ from the previously used one (where we 

first fill in both diagonals, and then remaining cells row-by-row), however, the generation speed in-

creased significantly: up to 790 000 DLS per second. This implementation was used to enumerate all 

DLS for 9N  . The corresponding results are shown in Table 1. 

Table 1. Number of DLS of order N  

N  
Number of DLS with 

fixed first row 
!N  

Total number of 

DLS 

Computing time on 

1 CPU core 

1 1 1 1 < 1 second 

2 0 2 0 < 1 second 

3 0 6 0 < 1 second 

4 2 24 48 < 1 second 

5 8 120 960 < 1 second 

6 128 720 92 160 < 1 second 

7 171 200 5 040 862 848 000 2 seconds 

8 7 447 587 840 40 320 300 286 741 708 800 30 hours 

On the enumeration of diagonal Latin squares of order 9 

 After obtaining results which were described Section 2, we managed to improve the performance 

of the algorithm by three more heuristics. Let us briefly describe them below. 

 The first heuristic influences the order of cells. In particular, let us consider the situation depicted 

on  Fig. 1E  (see  Section  2).  It  is  easy  to  see  that  at  this  state  there  is  only  one  element  on  the  main 

antidiagonal that is not filled. Since we consider diagonal Latin squares, it means that there is at most 

one  possible  element  to  be  put  into  the  cell  (5,1).  However,  in  the  previously  outlined  order,  as  the 

next cell to be filled we chose (4,4). We found that if we process such situations by filling the last un- 

filled cell in row/column/diagonal right when such situation arised, we can improve the algorithm ef- 

fectiveness. 

 The  second  heuristics  is  tied  to  the  first  in  that  it  works  with  last  unfilled  elements  in 

row/column/diagonal. From the definition of diagonal Latin square we know, that the sum of all ele-

ments within a single row (similar for columns and diagonals) is equal to ( 1)
2

N
N   . It means that 

we can use formula to compute the value of a single unfilled element without the need for iterating 

over all possible values. 

The third heuristic is a kind of lookahead, commonly used in combinatorial algorithms [Golomb, 

Baumert, 1965]. Its general idea is to sometimes spend a little more resources than necessary in order 

to avoid spending much more in future. It depends on several parameters which require specific tun-

ing. Let us consider it in more detail. Remind that we fill the cells of diagonal Latin square one by one 

in a specific order. It means that on certain stages of this process there arise situations when the num-

ber of constraints on some cells is so large, that it can completely eliminate all possible element val-
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ues, thus making further search useless (e.g. more than 9 constraints when constructing DLS of order 

9). However, if we check too often and for too many cells we did not fill yet, the corresponding ac-

tions may significantly reduce the performance of the algorithm. We found out that when we apply 

these restrictions on steps from 42 to 60 for DLS of order 9 we have the most profit. 

The described three heuristics make it possible to improve the enumeration speed for DLS of or-

der 9 to about 1 800 000 DLS per second. While this is a significant success, it is clear from the analy-

sis of Table 1, that if we want to compute the number of diagonal Latin squares of order 9, we need to 

employ high performance computing, because it is unrealistic to do it on a single PC. Thus we started 

the experiment in volunteer computing project Gerasim@home that is aimed at enumeration of all di-

agonal Latin squares of order 9. 
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