
Using grid systems for enumerating combinatorial objects

 on example of diagonal Latin squares

 E. I. Vatutin
1,a

, O. S. Zaikin
2
, A. D. Zhuravlev

3
, M. O. Manzyuk

3
,

 S. E. Kochemazov
2
, V. S. Titov

1

 1
Southwest State University, Kursk, Russia

 2
Matrosov Institute for system dynamics and control theory of SB RAS, Irkutsk, Russia

 3
Internet portal BOINC.ru, Moscow, Russia

 E-mail: a evatutin@rambler.ru

In this paper we consider the problem of enumerating diagonal Latin squares of small order. In particular

we discuss possible algorithmic approaches to this problem and show our results in this regard. Surprisingly, our

research showed that the best algorithm for enumerating diagonal Latin squares consists of a number of fixed

loops, and its effectiveness can be significantly increased by careful tuning and applying special heuristics. We

used the constructed algorithm to enumerate all diagonal Latin squares of order 8. Also, it is being used to carry

out large-scale computational experiment aimed at enumeration of diagonal Latin squares of order 9.

Keywords: combinatorics, enumeration, Latin square, volunteer computing

The research was partially supported by Russian Foundation for Basic Research (grants 14-07-00403-a, 15-07-07891-a and

16-07-00155-a) and by Council for Grants of the President of the Russian Federation (grants NSh-8081.2016.9, MK-

9445.2016.8 and stipend SP-1184.2015.5). We thank citerra [Russia team] for his help in development and implementing of

some algorithms.

© 2016 Eduard I. Vatutin, Oleg S. Zaikin, Alexey D. Zhuravlev, Maxim O. Manzyuk, Stepan E. Kochemazov, Vitaliy S. Titov.

486

Introduction

One of the important classes of combinatorial and discrete optimization problems [Colbourn,

Dinitz, 2006] is formed by enumeration problems. During their decision one needs to determine how

many objects with specified properties exist. The simplest examples of such problems are the well-

known problems about chess rooks, chess queens, etc. For some of them it is possible to formulate

precise analytic decisions, while to solve others one needs to perform exhaustive search to enumerate

all possible objects with desired properties. For example, for chess rooks problem the number of pos-

sible dispositions of N rooks on the board of size N N matches the number of permutations and is

equal to !N . For some problems from the considered class the number of decisions can be expressed

using Stirling numbers (of the first and the second kind), Bell numbers [Becker, Riordan, 1948], the

number of combinations or partial permutations and so on. At the same time the precise analytical

formulas for the number of decisions for chess queens problem or the number of Latin squares of or-

der N are unknown (in the latter case there are known upper and lower bounds).

The number of decisions usually grows rapidly with the increase of the dimension of a problem

N , that is why when enumerating corresponding objects using brute force strategy one has to develop

highly effective program implementation that takes into account the features of considered problem

and provides high rate of generation of enumerated objects. From the point of view of parallel pro-

gramming the enumeration problems of such type are weakly coupled problems, thus the algorithms

for their solving can be implemented in the form of parallel programs that are efficient within the con-

text of parallel computing environments with various architecture that comprise grid systems.

Enumeration of diagonal Latin squares of order less than 9

In the present paper we study diagonal Latin squares (DLS). An arbitrary DLS is a square table of

size N N , where each cell is filled by an element of some alphabet (typically a number from 0 to

1N ) in such a way that in each row, each column and also in main diagonal and main antidiagonal

all elements are distinct. Basically, DLS are a special case of Latin squares (LS) that satisfy additional

diagonality constraints. Using simple transformations that do not violate any of the constraints an arbi-

trary DLS can be transformed to DLS in which the elements of the first row are sorted in ascending

order. The corresponding squares form an isomorphism class of size !N . The dependence of number

of LS on N is well known and presented by A000315 sequence in the Online Encyclopedia of Integer

Sequences (OEIS) [A000315], the dependence of the number of LS with fixed first row has the num-

ber A000479. For DLS similar sequences are unknown and apparently can be calculated only using

exhaustive search.

One can apply different approaches to generate DLS. For example, in [Vatutin, Zhuravlev, …,

2016] this problem was reduced to Boolean satisfiability problem (SAT) and solved using SAT solv-

ers. In [Vatutin, Zhuravlev, …, 2015] to construct DLS there have been tested exhaustive search

methods, randomized search methods, ant colony method, and also the original problem regarding the

existence of solution was reduced to discrete combinatorial optimization problem. All tested heuristic

methods work relatively well if one wants to construct DLS with more or less uniform distribution

over the search space formed by all possible DLS of a specific order. However, they are not really

suitable for enumerating DLS because these methods are not complete (i.e. they cannot guarantee that

we will construct all possible solutions) and in contrast to the exhaustive search they can produce du-

plicate solutions over time. The average rate of DLS generation in [Zaikin, Kochemazov, 2015] for

exhaustive search was about 1 DLS of order 10 per second. In [Zaikin. Vatutin. …, 2015] there was

proposed to fill the cells of DLS in a specific order, in particular, to fill diagonals first and then all the

other elements row by row. It made it possible to improve the generation rate to about 5000 DLS per

second. In [Vatutin, Zhuravlev, …, 2015] we performed several algorithmic and high-level optimiza-

487

tions of the exhaustive search where while filling Latin square cells we prioritize the ones for which

on the current step the number of possible elements is low. This and several other modifications made

it possible to increase generation rate to approximately 200 000 DLS of order 10 per second in a recur-

rent implementation. When we reorganized the algorithm in the form of iterative implementation with
2

N nested loops, the generation rate increased to 340 000 DLS per second.

An advantage of recurrent implementation lies in the fact that we can modify the order in which

we fill non diagonal cells based on the number of possible elements that can be put into them. Howev-

er, commands CALL and RET in the program code reduce the performance of the program implemen-

tation due to frequent returns. The iterative implementation does not possess this disadvantage, but for

a price: the order of loops in it is fixed at compile time and can not be changed. Despite this fact, its

performance is about 1.7 times better, thus it looks more promising for future work.

In the present paper we further studied how the order of filling cells influences the generation

rate. In particular, we managed to find the order which significantly increases the generation rate com-

pared to the previously used one. To produce it we used a simple heuristic: on each step we choose to

fill the cell, which is the most “constrained” by already filled cells. It is based on a simple observation

that for an arbitrary cell, the size of set of values that can be put into it decreases with each already

filled cell in the same row/column and diagonal (for diagonal cells). Here we do not care about partic-

ular values, only about the fact that the cells are filled. Thus, we fix the first row of the DLS (since any

DLS can be transformed accordingly) and choose the cell to be filled next in an iterative process. It

can be best explained using the following figure, on which we consider DLS of order 5 as an example.

Fig. 1. The order of filling cells for DLS of order 5. Crosses correspond to already filled cells, numbers corre-

spond to the number of constraints imposed by other cells

488

On Fig. 1A we show the initial condition of Latin square cells. Grey cells marked with ‘x’ corre-

spond to already filled cells from the first row. It means that every other cell of this square has at least

one constraint (because in the same column one element is already used). For cells positioned on main

diagonal or main antidiagonal there are two constraints: one imposed by the filled element in the same

column and one produced by the element from the diagonal. It means that the cell in the third row and

third column has the largest number of constraints (3), thus on this step we fill it. The situation after

filling the cell (3,3) is displayed on Fig. 1B. Here we recalculate the number of constraints, choose the

most constrained cell, etc. In a situation when several cells have the same amount constraints we

choose one of them at random. As a result we construct the order displayed on Fig. 1U. On the first

glance it may seem that this order does not significantly differ from the previously used one (where we

first fill in both diagonals, and then remaining cells row-by-row), however, the generation speed in-

creased significantly: up to 790 000 DLS per second. This implementation was used to enumerate all

DLS for 9N  . The corresponding results are shown in Table 1.

Table 1. Number of DLS of order N

N
Number of DLS with

fixed first row
!N

Total number of

DLS

Computing time on

1 CPU core

1 1 1 1 < 1 second

2 0 2 0 < 1 second

3 0 6 0 < 1 second

4 2 24 48 < 1 second

5 8 120 960 < 1 second

6 128 720 92 160 < 1 second

7 171 200 5 040 862 848 000 2 seconds

8 7 447 587 840 40 320 300 286 741 708 800 30 hours

On the enumeration of diagonal Latin squares of order 9

 After obtaining results which were described Section 2, we managed to improve the performance

of the algorithm by three more heuristics. Let us briefly describe them below.

 The first heuristic influences the order of cells. In particular, let us consider the situation depicted

on Fig. 1E (see Section 2). It is easy to see that at this state there is only one element on the main

antidiagonal that is not filled. Since we consider diagonal Latin squares, it means that there is at most

one possible element to be put into the cell (5,1). However, in the previously outlined order, as the

next cell to be filled we chose (4,4). We found that if we process such situations by filling the last un-

filled cell in row/column/diagonal right when such situation arised, we can improve the algorithm ef-

fectiveness.

 The second heuristics is tied to the first in that it works with last unfilled elements in

row/column/diagonal. From the definition of diagonal Latin square we know, that the sum of all ele-

ments within a single row (similar for columns and diagonals) is equal to (1)
2

N
N   . It means that

we can use formula to compute the value of a single unfilled element without the need for iterating

over all possible values.

The third heuristic is a kind of lookahead, commonly used in combinatorial algorithms [Golomb,

Baumert, 1965]. Its general idea is to sometimes spend a little more resources than necessary in order

to avoid spending much more in future. It depends on several parameters which require specific tun-

ing. Let us consider it in more detail. Remind that we fill the cells of diagonal Latin square one by one

in a specific order. It means that on certain stages of this process there arise situations when the num-

ber of constraints on some cells is so large, that it can completely eliminate all possible element val-

489

ues, thus making further search useless (e.g. more than 9 constraints when constructing DLS of order

9). However, if we check too often and for too many cells we did not fill yet, the corresponding ac-

tions may significantly reduce the performance of the algorithm. We found out that when we apply

these restrictions on steps from 42 to 60 for DLS of order 9 we have the most profit.

The described three heuristics make it possible to improve the enumeration speed for DLS of or-

der 9 to about 1 800 000 DLS per second. While this is a significant success, it is clear from the analy-

sis of Table 1, that if we want to compute the number of diagonal Latin squares of order 9, we need to

employ high performance computing, because it is unrealistic to do it on a single PC. Thus we started

the experiment in volunteer computing project Gerasim@home that is aimed at enumeration of all di-

agonal Latin squares of order 9.

References

Colbourn C.J., Dinitz J.H. Handbook of Combinatorial Designs // Second Edition. Chapman&Hall. —

2006. — 984 p.

Becker H.W., Riordan J. The arithmetic of Bell and Stirling numbers // American Journal of Mathe-

matics. — 1948. — Vol. 70. — P. 385–394.

Number of reduced Latin squares of order n; also number of labeled loops (quasigroups with an identi-

ty element) with a fixed identity element. [Electronic resource]. URL: https://oeis.org/A000315.

Vatutin E.I., Zhuravlev A.D., Zaikin O.S., Titov V.S. Employing algorithmic features of the problem

for generation of diagonal Latin squares // Proceedings of the South-West State University. Series

‘Control, Computer Engineering, Information Science. Medical Instruments Engineering’. —

2016. — No. 2 (65). — P. 46–59.

Vatutin E.I., Zhuravlev A.D., Zaikin O.S., Titov V.S. Features of the use of weighting heuristics in the

search for diagonal Latin squares // Proceedings of the South-West State University. Series ‘Con-

trol, Computer Engineering, Information Science. Medical Instruments Engineering’. — 2015. —

No. 3 (16). — P. 18–30.

Zaikin O.S., Kochemazov S.E. The search for pairs of orthogonal diagonal Latin Squares of order 10 in

the volunteer computing project SAT@home // Bulletin of the South Ural State University: Se-

ries ‘Computational Mathematics and Software Engineering’. — 2015. — Vol. 4, No. 3. —

P. 95–108.

Zaikin O.S. Vatutin E.I. Zhuravlev A.D., Manzyuk M.O. Applying high-performance computing to

searching for triples of partially orthogonal Latin squares of order 10 // Proceedings of the 10th

Annual International Scientific Conference on Parallel Computing Technologies. Arkhangelsk,

Russia, March 29-31, 2016. CEUR-WS. — 2016. — Vol. 1576. — P. 155–156.

Golomb S.W., Baumert L.D. Backtrack Programming // Journal of the ACM. — 1965. — Vol. 12, Is-

sue 4. — P. 516–524.

490

https://www.swsu.ru/izvestiya/English/
https://www.swsu.ru/izvestiya/English/SeriesManagementComputerFacilitiesComputerScience.MedicalInstrumentMaking/
https://www.swsu.ru/izvestiya/English/SeriesManagementComputerFacilitiesComputerScience.MedicalInstrumentMaking/
http://elibrary.ru/contents.asp?issueid=1673753&selid=27174936
https://www.swsu.ru/izvestiya/English/
https://www.swsu.ru/izvestiya/English/SeriesManagementComputerFacilitiesComputerScience.MedicalInstrumentMaking/
https://www.swsu.ru/izvestiya/English/SeriesManagementComputerFacilitiesComputerScience.MedicalInstrumentMaking/
http://vestnik.susu.ru/cmi/article/view/3264
http://vestnik.susu.ru/cmi/article/view/3264

